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Abstract

Intrusion Detection Systems (IDS) aim at detecting andipbyspreventing the execution of attacks
against computer networks, thus representing a fundainema@ponent of a network defence-in-
depth architecture. Designing an IDS can be viewed pattern recognitionproblem. Pattern
recognition techniques have been proven successful initepconcepts from example data and
constructing classi ers that are able to classify new daité Wigh accuracy. In network intrusion
detection the main objective is to design a classi er thaalide to distinguish between normal
and attack tra c, therefore several researchers have used statisti¢tatpatcognition and related

techniques to accomplish this task showing promising tesul

We explore several aspects of the application of statlgpiadern recognition to network intru-
sion detection from a practitioner point of view. Our int&nto point out signi cant challenges and
possible solutions related to designing statistical pattéassi cation systems for network intrusion
detection. In particular, we discuss three problems: ajrieg from unlabeled trac; b) Learning
in adversarial environment; c) Operating in adversariairenment. Because of the dculties in
constructing labeled datasets of network tca unlabeled learningechniques have recently been
proposed to construct anomaly-based network IDS. In thée,d&e tra ¢ used for learning is usu-
ally directly extracted from the live network to be protettend does not undergo any labeling
process. Unfortunately, learning from unlabeled datahiantly di cult. As a consequena-
labeled anomaly IDSu er from a relatively high number of false positives. We prsgpa new
unlabeled anomaly IDS based on a modular Multiple Classtgstem (MCS), and show that the
proposed approach improves the accuracy performance cecthfma‘monolithic” IDS proposed by

other researchers. As the network traused for training unlabeled IDS is directly extracted from
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the network, an adversary may try to pollute the trainingslet by sending proper y crafted tra

to the protected network. The adversary's objective is talifigdhe distribution of training data, so
that future attack instances will not be detected. Usingse saudy we show that such attacks are
possible in practice and then we discuss possible couteumea Also, assuming the adversay does
not interfere with the learning process, she may try to “etdde IDS during the oprational phase.
We show how an attack may be transformed to blend in hormaldrg¢hus reaching the protected
network unnoticed. Afterwords, we present a strategy whints to harden anomaly-based network

IDS by combining multiple classi ers, makingiending attacksnore di cult to succeed.
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Chapter 1

Introduction to Intrusion Detection

1.1 Computer Security

Ever since the birth of multi-levehulti-user computers in 1960s, computer security has asgwan
fundamental role. A multi-level computer supports accesgrol policies which aim to guarantee
limited access to resources. The access decision is bastk atassi cation of both the user's
privileges and properties of the object the user wants tessc[58, 69]. Because of the very limited
or absent networking, in multi-level computers the primesypcern was related to legitimated users
who try to access resources without having proper authtaizaAfterwards, along with the growth
in popularity of personal computers and the developmenteflhternet in 1990s, the scenario
changed and the primary concern became the potential alditiey of computer systems in face of
attacks from anonymous remote users [69].

The rst known internet-wide attack and penetration ocedrin November 1988. The attack
was in the form of a self-propagating program that spreagutin the network using a variety of
propagation techniques [69]. The attack was named “MorrisridV, after his author Robert T.
Morris Jr. The “Morris Worm” exploited common miscon guiah in sendmail , a Mail Transfer
Agent (MTA) software. In 1996 the online magaziRbrackpublished an article by Aleph One [79]
discussing the details of how to perform intrusions by eitipig bu er-over ow vulnerabilities.
Today, attacks that exploit ber-over ow vulnerabilities (usually referred to &s1 er-over ow at-

tackg are among the most common andeetive, given the large number of new lar-over ow

1



1. Introduction to Intrusion Detection

vulnerabilities discovered every year and that a succkattack has a high probability of yielding
administration privileges on the attacked machine [69]nc8iearly 1990s, attacks against com-
puter systems have signi cantly increased in number andhistipation. At the same time, the
development and release afitomatic attackools on the Internet has caused the skills necessary
for launching computer attacks to dramatically decreasesh@wn in Figure 1.1. On the other
hand, whereas in the beginning attacks were performed lysagmi way to prove attacker's own
skills, today the motivations behind attacks against cammsystems are becoming more and more
criminal-driven [71]. As a consequence of computer crimanyncompanies have lately undergone
major nancial losses [38].

One of the rst studies on computer security is “Computer (B¢ Threat Monitoring and
Surveillance”, by J. P. Anderson, published in 1980 [11]himwork, Anderson discussed a frame-
work for investigation of intrusions and intrusion deteati In particular, he gave a de nition of
fundamental terms lik&hreat Risk Vulnerability, Attack andPenetration from a computer secu-
rity perspective. The de nition of these terms as given byd&rson in [11] are reported below:

Threat The potential possibility of a deliberate, unauthorizéérapt to:
(a) Access information
(b) Manipulate information

(c) Render a system unreliable or unusable

Risk Accidental or unpredictable exposure of information, iotation of op-
erations integrity due to malfunction of hardware or incéstg or in-

correct software design.

Vulnerability.: A known or suspected aw in the hardware or software desigopera-
tion of a system that exposes the system to penetrationioforsnation

to accidental disclosure.
Attack A specic formulation or execution of a plan to carry out adht.

Penetration A successful attack; the ability to obtain (unauthorizadgess to les

and programs or the control state of a computer system.
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Figure 1.1: The evolution of attack sophistication and devolution ¢dekers' skills [69].

1.2 Intrusion Detection

According to Anderson’s terminology, intrusion detect&ims at detecting and possibly preventing
the execution of both penetrations (or intrusions) ancclstai.e., both successful and unsuccess-
ful attacks. In the beginning, intrusion detection was performed tgtomanual analysis of audit
records by security experts. This was particularly impdrfar early computer-assisted nancial
transactions and for the protection of military systemsteAfards, because of the growth of the
volume of nancial transactions and military informatioardled by computer systems, it was ev-
ident that an automatic way to perform security audit waslade Dorothy Denning's paper “An
Intrusion Detection Model” [25] is one of the rst and mostuential papers on intrusion detection.
Denning assumes the attacks are distinguishable from hasess' behavior. Therefore, the main
task for constructing an ective Intrusion Detection System (IDS) is to nd an appiaf way

of modeling the normal activities and suitable metrics taamege the distance between attacker's
activities and the model of normal behavior. Denning's whds inspired many researchers and

represents the base for several commercial products [71].

1Although detecting intrusions is the most important objegtgathering information about unsuccessful attacks is i
general useful as well because it allowes security expeestimate where the major threats come from and what are the
targeted machines in the protected network
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1.2.1 Misuse-based vs. Anomaly-based Intrusion Detection

The intrusion detection problem can be viewed as an instahttee general signal-detection prob-
lem [71]. Intrusive activitiescan be viewed as the signal to be detected whameawnal activities
can be considered to be noise. In classical signal-deteapproaches, the distribution of both the
signal and the noise is known or approximated. The decisioogss consists in distinguishing be-
tween noise and signal-plus-noise in the communicationméla Unlike classical signal-detection,
in which both a model of the noise and the signal are used teeraalecision, IDS typically base
their decision on either a model of the signal (i.e., a modelttack activities) or a model of the
noise (i.e., the normal behavior). IDS which construct a ehofithe attacks to make a decision are
usually referred to amisuse-basetDS. Misuse-based IDS often use a set of rules (or signgtures
as attack model, with each rule usually dedicated to detdct erent attack. In this case IDS are
commonly referred to asignature-basedDS. A rule can be as simple as a string of consecutive
byte values that matches a part of a network packet sentgitirenexecution of the attack the rule
refers to. On the other hand, when a model of normal activisaised to make a decision, IDS are

usually referred to asnomaly-basedDS.

Despite the anomaly-based approach was the rstto be intediby Denning in [25], signature-
based IDS are the most deployed. This is in part due to théifatsignature-based IDS areeztive
in detecting known attacks and usually produce less fatenal (i.e., a normal event erroneously
agged as attack) compared to anomaly-based IDS. An exaofpledely deployed signature-based
IDS isSnort [90], an open source software project that has receivedd &itention during the last
few years. However, although signature-based IDS have jy@sen to be quite ective, they are
inherently unable to detect unknown attacks or even nevantwriof known attacks [71]. Moreover,
the signature-generation process is usually a slow (seraiial process. This means that a window
of vulnerability exists even after the attack is released laought to the attention of the computer
security research community. Conversely, anomaly-ba3&dare in theory able to detect any know
or unknown attack. However, designing a model of normal iehand suitable metrics that allow
to clearly separate attacks or anomalous activities frormabactivities is in general non trivial and

the resulting IDS are usually prone to false alarms.

4
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1.2.2 Host-based vs. Network-based Intrusion Detection

Based on the type of events or data the IDS analyze in ordegterdintrusions, it is also possi-
ble to distinguish between host-based and network-bas8dHDst-based IDS are installed on and
protect single hosts, usually by inspecting system log.d&t@ example, the audited system log
data may be sequences of system é4ll§4]. Host-based IDS can also monitor single applications
For example, an host-based IDS protecting a web server maitonthe logs produced by thHgtp
serversoftware looking for anomalous http request patterns. @mther hand, network-based IDS
analyze packets crossing an entire network segment. Netwased IDS have the advantage of
being able to protect a high number of hosts at the same tiroeeiker, they can sier from per-
formance problems due to the large amount of tdhey need to analyze in real-time and possible
attacks that exploit ambiguities in network protocols aadse the exhaustion of the memory and
computational resources of the IDS [39]. Furthermore, pdtviased IDS cannot easily monitor
encrypted communications and are inherently unable to tmoinitrusive activities that do not pro-
duce externally (with respect to a single host) observatilgeace. On the other hand, host-based
IDS have access to detailed information on system eventaaybe disabled or made useless by an
attacker who successfully gains administrative privikega the protected machine. Intrusions that
bring to the installation of so calledot kits® [49] are an example of such attacks. Oncertiat kit

is installed, it is usually possible for the attacker to govee traces of malicious activities by, for
example, cleaning the system logs, hiding information &bmalicious processes at the kernel level,

etc.

1.2.3 Practical Aspects of Intrusion Detection

IDS must be considered as just one piece of the defensepih-drategy of an organization. A
precise plan is needed before the deployment of any detestinsor. In particular, decisions have
to be made regarding where to place the sensors in order tonizaxthe security of critical net-

work assets, how to con gure the IDS so that the general gigqomlicies of the organization are

2System calls are calls to functions provided by the opegatirstem kernel
3A root kit is a piece of software that installs itself as pdrtie operating system kernel and is able to hide traces of
anomalous system activities
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respected, and how to react to alarms raised by the IDS [71].

In case of large networks, it may be necessary to deploy phelllDS to protect dierent seg-
ments of the network. Moreover, given the complementafityetwork-based and host-based IDS,
deploying multiple IDS of dierent types may help in raising the bar against network sidns.
However, managing multiple IDS requires a signi cantoet. Furthermore, although collecting and
correlating information from multiple sensors would hetpdonstructing a thorough view of the
network, this process is not straightforward. Some work been done on correlation of alarms
generated by multiple IDS, along with information genedaly rewalls, authentication servers
and other devices used to enforce security [104, 105, 82vader, alarm correlation is still in its

infancy.

1.3 Attacks Against Intrusion Detection Systems

The objective of IDS is to detect attacks against machinetelddy the protected network. However,
IDS themselves can be the target of attacks. If the attackimsgnformation about the IDS that
protects the network (e.g., through social engineerinfusive employee, etc.), she may tray to
attack the IDS in order to disable it or to make it unable t@detuture intrusion attempts. Besides,
alike many other kinds of software, commercial and reseld&hoften have security vulnerabilities
resulting from awed design or coding errors.

In [85] three di erent attacks against network-based IDS are discussedovielel packet
forgery, it is possible to construct network tra in order to producénsertion evesionandDenial
of Servicg(DoS) attacks. Insertion attacks exploit the fact that nghdDS may accept packets that
the destination machine will reject. An attacker may useritien of unrelevant packets to prevent
the signature matching algorithm of a signature-based tb&:tect an ongoing attack. Similarly,
an evasion attack exploits the fact that the IDS may negkechets that the real destination machine
will accept as valid. For example, an attacker may split IBkp&s using overlapping fragments.
Some IDS may not be able to correctly reconstruct and andhaeriginal IP packet, whereas
the destination machine may be able to reconstruct thenatig® packet correctly. If the original

packet contains an attack, the destination machine maydbeted while the IDS would produce a

6



1.4 Outlook of this Thesis 7

false negative (i.e., no alarm is raised). On the other hdnadpbjective of DoS attacks is to cause
IDS' resource exhaustion. It is easy to see that reasseghbiigmented packets may be a CPU
and memory intensive task, given that the fragments of a getlect may arrive unordered and in
di erent time instants. As network-based IDS have to monitgel&olumes of tra c in real-time,
the attacker may try to generate large amountseif-craftedfragmented packets in order to cause
the IDS to reach 100% of CPU usage or to consume the/[R&®ack bu er, so that the IDS will not
be able to process new packets until part of the resourceld (CPhemory) are freed. This means
that an DoS attack against the IDS may be used to hide animris a machine in the protected
network.

Attackers may also ugelymorphismandmetamorphisnto evade detection [40]. The objective
of these techniques is to modify the code of a given attackyeiree the attack is launched against
a new victim. This makes signature-based IDS iegtive, because the derent instances of the
attack do not share any common features, or the common ésatue not sucient to generate
an e ective signature. On the other hand, anomaly-based IDS maple to detect polymorphic
attacks because they usually look suently di erent from normal trac. However, a number of
attacks, often referred to asmicry attackshave been proposed that can evade both network-based
and host-based anomaly detectors [98, 109, 34]. The ideadehimicry attacks is to craft the
attack so that it looks like “normal” from the point of view tfie IDS, while still being able to
exploit the targeted vulnerability.

Another class of attacks has been recently proposed aghiarning phase implemented by
some IDS. When machine learning techniques are impleméatednstruct the IDS, the attacker
may try to pollute the learning data on which the IDS is trdin€he attack is launched by forcing
the IDS to learn from properly crafted data, so that durirggdperational phase the IDS will not be

able to detect certain attacks against the protected nlefddr 81, 77].

1.4 Outlook of this Thesis

As anticipated above, and as we hope will be clearer by theoétids thesis, designing a network

IDS is a very complicated task. Current commercial and rebeaetwork IDS often suer from

7



1. Introduction to Intrusion Detection

relatively poor accuracy in detecting attacks against théepted network. Moreover, as discussed
in Section 1.3, network IDS themselves may be vulnerable terént types of attacks.

Designing an IDS can be viewed agattern recognitionproblem. Pattern recognition tech-
nigues have been proven successful in learning conceptsdrample data and constructing clas-
si ers that are able to classify new data with high accurdeyparticular, statistical pattern recogni-
tion has been successfully applied in many elds. In netwintkusion detection the main objective
is to design a classi er that is able to distinguish betweermral and attack trac. Several re-
searcher have used statistical pattern recognition aatetetechniques to accomplish this task (e.qg.,
[59, 37, 31, 112]). The obtained results show that the agiiin of statistical pattern recognition is

promising and may lead to signi cant advances in intrusietedtion.

1.4.1 Our Contribution

In this thesis we focus on the application of statisticatgratrecognition techniques for the devel-
opment of network-based IDS. We explore several aspectifask from a practitioner point of

view. Our intent is to point out signi cant challenges andsgible solutions related to designing
statistical pattern classi cation systems for networkriiston detection. In particular, we discuss

three problems:

a) Learning from unlabeled tra c¢. Many pattern classi ers are constructed usirgupervised
learningapproach. To this end, a dataset containing a representatimber of labeled exam-
ples of both normal and (derent types of) attack trac is needed. Unfortunately, in network
intrusion detection it is very hard and expensive to comstsuch a labeled dataset. In order
to overcome this problenunsupervisear unlabeled learningechniques have recently been
proposed to construct anomaly-based network IDS. Howésaming from unlabeled data
is inherently di cult. As a consequence, these systems oftereisérom a relatively high
number of false positives, thus making the IDS unlikely taibed in real scenarios. In order
to improve the performance of unlabeled anomaly-basedarktildS, we propose a modu-
lar Multiple Classi er System (MCS). We discuss how such atsgn can be designed and
we show that the proposed modular approach improves thetbeteaccuracy, compared to

unlabeled anomaly detectors proposed by other researchers

8



1.4 Outlook of this Thesis 9

b) Learning in adversarial environment. As mentioned above, the process of labeling network
data is often very hard and expensive. Therefore, unladebtiing has been proposed to
overcome this problem. Usually, in unlabeled network ID®dain amount of trac is col-
lected from a live network and used (after Itering) to t aagistical model. The obtained
model is then used for classi cation of new tra, i.e., to distinguish between normal tra
and attacks. In the process of collecting and learning frataheled tra c it is fundamental
to account for an adversary which may try to interfere with IBS' learning process. The
objective of the adversary is to modify the distributiontod training data used to tthe detec-
tion model, so that future attacks will passed unnoticed.Viey discuss some theoretical
scenarios in which this could happen, and present a casgiatudhich we show how this type
of attacks are possible in practice. The objective is totpoin the weaknesses of the learn-
ing phase implemented by certain IDS. We also discuss somssipe (partial) solutions to
the problem of learning in adversarial environment, altffowe believe a generic and sound

solution to this problem is still to be found.

c) Operating in adversarial environment. Assume the adversary is not able or simply chooses
not to interfere with the learning process of an IDS. Aftex tBS has been trained and de-
ployed, the adversary may still be able to evade the IDS.itmvadtacks have been demon-
strated to be successful against both misuse-based andgrbased systems. In particular,
as discussed in Section 1.3, a class of attacks referrednonaisry attackshas been proven
successful against host based anomaly detection systemavillshow that such mimicry
attacks are also possible against recently proposed rlet®& which are designed using
statistical pattern recognition techniques. The mainaeasghy such attacks are possible is
due to the simplicity of the statistical model used by som8.IDhis simplicity derives from
a trade-o between the computational performance of the IDS and itaracg. In order to
make mimicry attacks less likely to succeed we propose a edwank anomaly IDS based on
a multiple classi er system. The proposed architecturedases the robustness of statistical

based anomaly IDS, while adding low overhead compared &tiegidetection systems.

9



10 1. Introduction to Intrusion Detection

1.4.2 Thesis Outline

This thesis is structured as follows. In Chapter 2 we intoedstatistical pattern recognition tech-
niques and brie y report how researchers have so far apptieth to network intrusion detection.
Supervised and unsupervised learning approaches areylpresented, and the reasons why un-
supervised or unlabeled learning approaches seem to besmiteble for addressing the intrusion
detection problem are discussed. In Chapter 3 we preseattugacy challenges to be faced when
designing an anomaly detection system based on unlabeleurlg approaches. In particular, we
discuss thébase rate fallacyproblem and propose a modular approach based on Multiplesicla
er Systems (MCS) for improving the accuracy performancaun$upervised anomaly detectors.
Chapter 4 presents the problem of learning in adversanat@ment. We discuss how the attacker
may, in theory, mislead a learning algorithm in order to evéte resulting detection model. We
also present a case study, showing how such kindiskeading attacksan be successfully devised
and launched in practice. Possible ad-hoc solutions tceadshg attacks are discussed, although a
generic solution remains an open research problem. Chaptesents an attack call@dlymorphic
Blending Attack The Polymorphic Blending Attack is a mimicry attack dedisegainst anomaly
detection systems which use simple payload statisticsdardo construct a model of normal net-
work tra c. The objective of the attacker is to transform a generacitinto a polymorphic variant
which looks like normal tra ¢ from the point of view of the IDS, yet maintaining the sam@eit
semantic. The Polymorphic Blending Attack points out the ailties related to operating in ad-
versarial environment. As a possible solution to the Polphiz Blending Attack we propose an
anomaly detector constructed by using an ensemble of @ss-8VM classi ers, which makes the

attack less likely to succeed. Then, we brie y conclude irater 6.
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Chapter 2

Pattern Recognition for Network

Intrusion Detection

This chapter is divided in two parts. In the rst part we bryeand informally introducdPattern
Recognition with particular focus orstatistical Pattern Classi cationwhereas in the second part
we discuss the most signi cant work on the application ofgat recognition and related techniques

to the problem of network intrusion detection.

2.1 Pattern Recognition

Pattern recognition studies “how machines can observerieoeament, learn how to distinguish
patterns of interest from their background, and make sonddeasonable decisions about the cat-
egories of the patterns” [44]. A pattern can be for examplengerprint image, a human face,
a voice signal, a text document, a network packet, etc. fatézognition techniques have been
proven successful in learning concepts from example datacanstructing classi ers that are able
to classify new data with high accuracy. In particular,ist&al pattern recognition techniques have
been the most studied and applied in practice [44]. Baseti@tetrning approach, pattern recog-
nition techniques can be divided supervisedand unsupervised Supervised pattern recognition

approaches are able to learn concepts from labeled examples label attached to each example

1In this thesis we do not discuss regression problems, wefoolys on classi cation.
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2. Pattern Recognition for Network Intrusion Detection

supervised unsupervised
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Selection of the
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,,,,,,,,,,,,,,,,,,,,, -

Performance
evaluation

Deployment of the
Figure 2.1: The process of designing a Pattern Recognition System

pattern represents the class (or category) the pattermdgmlm. During the operational phase the
supervised pattern recognition system assigns new psitieenprede ned class. On the other hand,
unsupervised approaches deal with learning concepts frdabeled data. In unsupervised classi -
cation new patterns are assigned to a hitherto unknown d$sAn alternative approach, called

semi-supervisechas also been proposed, whereby both labeled and unlatededples are used

during the learning process [22].

2.1.1 Designing a Statistical Pattern Recognition System

A high level view of the process of designing a pattern regagnsystems is depicted in Figure 2.1.
Once the problem to be solved has been de ned, the rst stapdsllect example data that will be
pre-elaborated and fed to the learning system. In ordehéocollected data to be used by the pattern
recognition system, a number fgfatureshave to be measured. The features are used to describe the
patterns. For examplepinutiaepoints are common features used to describe ngerprint enadg

ngerprint recognition [42]. As mentioned in Section 2.hetlearning problem may be addressed

12



2.1 Pattern Recognition 13

using the supervised or unsupervised approach.

When the supervised approach is used, the problem of uaddisy if all the measured features
are useful has to be address. In theory, the higher the nuaildeatures, the easier to precisely
distinguish between patterns belonging toatient classes. In practice, when a high number of
features is used and a limited number of example patterngaitable for learning, the curse of
dimensionality problem may arise and the performance oféhegnition system may degrade [29,
44]. Feature selection and extraction technigues aim aiciag the dimensionality of the feature
space in order to improve the accuracy of the classi er. Afrds, a suitable learning algorithm has
to be chosen. The training and test phase allow the desigreamistruct and estimate the accuracy
of a classi er. As deciding a priori that a certain learnirigaithm is the most suitable for the
problem at hand is usually not easy, model selection is padd by constructing several classi ers
using di erent learning algorithms, comparing the performance ohed them and choosing the
one that performs the best [57]. If the results are not satisfy, it may be necessary to go back and
redesign part of the recognition system in order to impréseperformance, for example by using

di erent feature reduction techniques or a new learning dkgori

Clustering algorithms are usually applied when the avilaxample patterns are not labeled.
Clustering aims at identifying and grouping patterns that cose to each other according to a
certain metric [43]. The results of the clustering processthen usually validated by an expert on
the problem at hand. A cluster may be representative of addynunknown class of patterns. For
example, clustering is often applied in marketing analysisrder to discover classes (or groups)
of customers that have meaningful characteristics (froaptbint of view of marketing analysts) in

common.

2.1.2 Multi-Class Pattern Classi cation

A pattern classi er can be viewed as a function

C:R"7! ; = flgloilg (2.1)

13



14 2. Pattern Recognition for Network Intrusion Detection

where! i;i = 1;::;1 represent the possible classes. Given a paketine classi erC assigns it to a
classC(x) =! 2 . Given adataset of labeled patternsD(x1; L(X1)); (X2; L(X2)); ::; (Xm; L(Xm))0
whereL : R" 7! is a (unknown) function that assigns a patterto itstrue class 2, supervised
learning algorithms aim at constructing a classi@ithat can correctly classify new patterns. We
say thatC is trained on D.

OnceC has been trained, a generic new patterqa D can be classi ed usin@. As an interme-
diate step towards the classi cation ofC computes thesupportsor scores i(2);i = 1;::;1, where
each (2) represents how strong® believes thatz 2 ! ;. Afterwards, a decision rule is applied on

the supports j(2);i = 1;:l, in order to assign a label to the pattetriTypically, the decision rule is

argiznl1a>( @)=k ) z2! (2.2)

2l
2.1.3 One-Class Pattern Classi cation

Most supervised learning algorithms work well when thenireg dataset idalanced i.e., when it
contains approximately the same number of examples fromaass. In the presence of unbalanced
datasets, technigues such as undersampling of the mossegped class, oversampling of the least
represented class, and other similar techniques are ysalied [45, 15]. However, in case of
two-class problems for which one of the classes of objectgelssampled, whereas the other one
is severely undersampled or not represented (e.g., due fac¢hthat it is too di cult or expensive
to obtain a signi cant number of training patterns for thiss), resampling the dataset might not
improve the performance and might not even be possible. isncidisespne-class classi cation
approaches may be applied

One-class classi ers aim at constructing a decision sar&aound the example patterns belong-
ing to the most represented class while leaving out the noatteelonging to the least represented
one [100]. The goal is to distinguish between a setaofet objectsand all the other possible ob-
jects, referred to agutliers Therefore, during the operational phase, if a new patlies inside the

constructed decision surface it will be classi ed as targéterwise it will be classi ed as outlier.

2For simplicity, we are not consider the problem of learnirapf noisyexamples.
*Novelty detectiomndoutlier detectionare other terms used in the pattern recognition literaturefer to one-class
classi cation
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Figure 2.2: Three fundamental reasons why an MCS may work better thasingée best classi er in the ensemble [28].

2.1.4 Multiple Classi er Systems

A Multiple Classi er System (MCS) is an ensemble of classsewvhose individual decisions are
combined in some way to make a nal decision about new paitgt8, 57]. For example, a simple
and straightforward way to combine the decision of multiplassi ers is by the application of
the majority voting rule [50, 57]. Assume we want to solve @-wlass problem for which we
constructed three derent classi ersCq, C,, andCs. Let! 1 and! 5 be the two classes. We can
construct an MCS based on the majority voting rule so thatt@ez is assigned to, say, clakg

if at least two out of three classi ers assignetb ! 1, otherwisez is labeled as belonging tos.

It has been shown in many applications that MCS are much nooteae than any of the single
classi ers they combine. As discussed by Dietterich in [28]order for the MCS to perform better
than the single classi ers in the ensemble, the combinessckrs need to be accurate and diverse,
in the sense that they need to perform better than the ranaosting algorithm and make derent

errors on new patterns. Dietterich [28] explained threesaaa why accuracy and diversity are
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16 2. Pattern Recognition for Network Intrusion Detection

desired (see Figure 2.2). LEt: R" 7! |, be the (unknown) function that correctly assigns any
patternz to its true class$ ,, and assume to havedi erent classi ersH1; Hy; ::;Hp, in @ hypothesis
spaceH , constructed so that they approxim&eThe rst reason given by Dietterich is statistical.
A learning algorithm can be seen as a search algorithm fleattty nd a functionH 2 H as close
as possible td-. When the size of the training dataset D is small comparetidasize ofH , the
algorithm may nd many di erent functiondH;g=1.., 2 H which all have the same accuracy on D.
By combining the output of the classi ef$lig=1..n, the obtained MCS reduces the risk of choosing
a single classi er that may have poor performance on new. ddia second reason is computational.
Many learning algorithms have a stochastic component aridmpesome sort of search with random
initialization withinH . These algorithms may get stuck in a local optima. An ensemdhstructed
by running the learning algorithm using dirent initializations may provide a better approximation
of F. The third reason is representational. In many real csed , i.e.,F cannot be represented
by the learning algorithm. By combining the dirent hypothesiH;g-1..n 2 H, it may be possible

to “expand” the spackl and nd a solution which is closer tb.

2.1.5 Classi cation Performance Evaluation

As mentioned in Section 2.1.1, model selection is an imponteart of the process of designing
pattern recognition systems. In order to perform modelctiele, we need a way to compute and
compare the accuracy of dérent classi cation algorithms. The accuracy of a classCas de ned

as (1 Perr), wherePerris the probability of error, i.e., the probability of a patie be misclassi ed

by C. The accuracy can be directly estimated as the fraction wectly classi ed patters. For
example, assuming the classi & has been trained using a training dataset D, given a labeled
dataset of test examples= f(z1; L(z1)); (z2; L(z2)); 35 (zn,; L(zn,))9 with T, D, the accuracy can

be computed as X

Accuracy(C) = Ni 1(C(2) = L(2) (2.3)
U221

wherel is the indication function, wherelya) = 1 if ais true, otherwisé(a) = 0. This method for
estimating the accuracy is callédld-out Another method, calleld-fold cross-validationis often

used to estimate the accuracy when a limited amount of ldlsdéa is available. In this case the
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2.1 Pattern Recognition 17

training dataset D is divided ik portions, O ; ::; Dy, of equal size. The classi er is trained on the
union of K 1) portions and the accuracy is estimated on the one potti@nhias not been used
during training. This process is repeatetimes, testing on a dierent portion for each iteration.
Thek accuracy measures are then averaged to obtain a moreeativhate of the real accuracy.
For many classi cation problems the accuracy is not a sigtabeasure. For example, consider
a two-class problem for which a class is well representetlandst set, whereas the other one is not
(see Section 2.1.3). Formally, Ibk be the number of test patters of the rst class, &dbe the
number of test patterns of the second class. In the congidga@mple we havél; Ny, and the
test dataset is said to leghly unbalanced Suppose now that a classi € always classi es the

patterns as belonging to the rst class. In this case

N
Accuracy(C) = N, +1N2 1 (2.4)

It is easy to see that according to the estimated accuracygldlssi er performs almost perfectly,
although in fact it will always make a mistake on objects fritra second class.

Another way to evaluate and compare the performance of aidasC is by means of the
Receiver Operating Characteristic curve (ROC) and the Aheder the ROC Curve (AUC) [17].
Assume we have again a two-class problem. We can refer to fotie @lasses, say , as the
positiveclass, and the other, sy, as thenegativeclass. LetN, be the number of patterns from
class! |, (i.e., the positive classN, be the number of patterns from cldss(i.e., the negative class),
theFalse PositivesF P, be the number of patterns from the negative class that e drroneously
classi ed as positive patterns iy, and theTrue PositivesT P, be the number of patterns from the
positive class that have been correctly classi ed as p@sipatterns. According to the de nition
above we can compute the false positive and true positieeanﬁ%, andL—E respectively.

As mentioned in Section 2.1.2, given a test patigi@ computes the supports(z);i = p;n, for

the positive and negative class. A possible decision rule is
z2'p o(2) > (2.5)

where is a constant. By varying the thresholdt is possible to “tune” the false positive and
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18 2. Pattern Recognition for Network Intrusion Detection

true positive rates generated By The ROC curve is a two dimensional curve. The coordinates
(x;y) of the points on the ROC curve represent the false positieketaue positive rate generated
by C using di erent values of the threshold The ROC curve represents a good way to visualize
a classi er's performance and helps in choosing a suitablkerating point, i.e., a suitable value of
the decision threshold for the classi erC for which the desired trade-obetweenFP and TP
is attained. However, when comparing drent classi cation algorithms it is often desirable to
obtain a number, instead of a graph, as a measure of clagencperformance [17]. Therefore,
the AUC is used as an estimate of classi cation performaride highest the AUC, the better the
classi cation performance of a classi €. In particular, the AUC is an estimate of the probability
P( p(zp) > p(zn)), wherez, 2 !  represents a generic positive pattern, apn@® ! , represents
a generic negative pattern. Therefore, the AUC is an estiroithe probability that the classi er
scores the positive patterns higher than the negative daags [

Many other methods for estimating and comparing the pedioca of classi ers exist. We
suggest the reader to refer to [51, 29, 44, 57] for a more cetmgliscussion and for the details on

estimating classi cation accuracy and performing modé&tai#on.

2.2 Application of Statistical Pattern Recognition to Netvork Intru-

sion Detection

As mentioned in Section 1.2.1, signature-based IDS are Inletta detect really new attacks or
even variants of already known attacks. This is mainly duthéofact that theattack signatures

are usually (semi-)manually written. It is decult for security experts to write generic signatures
capable of detecting variants of attacks against a knowmevability. Attempts to manually write
such signatures may easily make the IDS prone to false aldttackers are aware of this problem
and are constantly developing new attack tools with theatbvje toevadesignature-based IDS. For
example, techniques based on metamorphism and polymorrs used to generate instances of
the same attack that look syntactically drent from each other, yet retaining the same semantic and
therefore the same ect on the victim [108]. In principle this problem could béveal by designing

vulnerability-speci csignatures [110] that capture the “root-cause” of an ajtduks allowing the
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2.2 Application of Statistical Pattern Recognition to Netvork Intrusion Detection 19

IDS to detect all the attacks that try to exploit the same exdhility. This type of signatures usually
works well when implemented as part of host-based IDS. Hewet is di cult to implement
vulnerability-speci ¢ signatures for network-based ID&do computational complexity problems
related to the high volume of events to be analyzed.

The main motivation in using pattern recognition technifoe IDS is their generalization abil-
ity, i.e., the ability to correctly classify new patternshish may support the recognition of variants
of known attacks and unknown attacks that cannot be detégtsthnature-based IDS. In the fol-
lowing we brie y report how supervised and unsupervisedraay approaches have been so far

applied to network-based intrusion detection.

2.2.1 Supervised Network IDS

A number of supervised learning approaches for constmietetwork IDS have been proposed in
the literature, for example [59, 30, 74, 80, 37, 36]. In [5@ELproposed a framework based on data
mining techniques to nd a suitable set of features for diéstg network connections and construct
network IDS. Lee's analysis brought to the constructionhaf KDDCup'99 datasethftp://kdd.
ics.uci.edu/databases/kddcup99/kddcup99.html ), which is part of the UCI KDD archive
(http://kdd.ics.uci.edu/ ). In the KDDCup'99 each pattern represents a network cdiorec
which is described by 41 features. For example, the numbleytek transmitted by the source and
the destination of the connection, the duration in term®obads, the number of connections to the
same destination machine in a certain time window, are arttengsed features. The features where
derived in order to distinguish between normal connectiand a number of dierent computer
attacks grouped in four categories. RIPPER [23], a rulenlagralgorithm, is used by Lee [59] to
infer classi cation rules that distinguish between normatwork connections and derent types

of attacks. Each RIPPER rule consists of a conjunction oflitimms to be tested on values of
attributes that describe network connections. In [30] Elgeesented the results of the KDDCup'99
classi er learning competition. The competition consisia constructing a classi cation system
capable of distinguishing between legitimate and illegitie network connections. The dataset
used for the competition was derived from the work of Lee [B@ntioned above. Among the 24

participants, the winning classi cation system [83] wasM@S constructed using decision trees
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20 2. Pattern Recognition for Network Intrusion Detection

and a combination obaggingand boosting[57]. In [74] arti cial neural networks and support
vector machine are compared on the task of classifying m&taannections, whereas [80] compares
decision trees and support vector machines on the sameltaf36, 37] Giacinto et al. proposed
a modular MCS for supervised misuse-based detection ofankteonnections. Each module is
responsible for detecting attacks that use a certain (gofupervice(s) as attack vector. Multiple
classi ers are trained on descriptions of network conmmettiobtained using derent subsets of the
set of attributes (or features) proposed by Lee [59]. Thewtubf the obtained classi ers are then
combined using various techniques in order to decide if aeotion is normal or if it is an attack.

In order to apply supervised learning techniques a datasetining examples of attack pat-
terns as well as normal trac is needed. In 1998 and 1999 the MIT Lincoln Laboratory wdrke
on a project funded by DARPA for evaluating IDS [65], whichl e the construction of two la-
beled datasets of network tr& containing both normal and attack tre. These datasets contain
the traces of several weeks of tra in the (simulated) computer network of an air force basevHo
ever, the obtained datasets, usually referred 0ARPA 1998ndDARPA 1999have been largely
criticized [70, 67]. The main critique is concerned with faet that the simulated trac contained
in the DARPA datasets cannot be considered representdteve@eal network tra c. In particular,
the percentage of attack tr& contained in the dataset is way larger than the percentagiack
tra c expected for a real network. Moreover, a large part of threnabtra ¢ was arti cially pro-
duced using automatic scripts that cannot accurately simtihe tra ¢ generated as a consequence
of human behavior. On the other hand, creating a labeledelatd tra c directly extracting the
raw data form a real network and then analyzing it in ordersgign a label to each packet or con-
nection is very hard and expensive. Moreover, ttaraces from dierent networks have derent
characteristics, therefore the labeling process shoulgpeated for each new network we want to

protect. For these reasons, the supervised approach culiito apply in the general case.

2.2.2 Unlabeled Network IDS

In order to overcome the problems related to supervisedarktidS, unsupervisedr unlabeled
approaches for constructing anomaly-based network ID8 haen recently proposed [84, 31, 55,

66, 116, 118, 112, 63, 113, 111]. Here there is an ambiguitydmn the terms “unsupervised”
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2.2 Application of Statistical Pattern Recognition to Netvork Intrusion Detection 21

and “unlabeled” that should be clari ed. In the intrusiontelgion literature these two terms are
often used as synonyms, whereas according to the pattesgni@on terminology this may create
confusion. Unfortunately, we were not able to nd a clear ni¢ion of the di erence between the
two terms and the techniques they refer to. We think a passiglnition that solves the ambiguity
may be the following. We refer tansupervised learning those cases when the (unlabeled) training
patterns are used to nd hitherto unknown classes [44], edmemve refer tanlabeled learningn
those cases when the sebf possible classes is already known and we want do nd aictati®n
functionC : R" 7! using unlabeled examples. As the objective of anomalyeaseusion
detection is to distinguish between two known classes, n@mal and anomalous tra, in the

following we will refer tounlabeledanomaly detection.

In unlabeled intrusion detection, the tra is directly extracted from the computer network to be
protected and used without the necessity of a labeling pecEhe onlya priori knowledge about
the data is usually represented by two assumptions thatlyisidd in practice: a) the extracted
dataset contains two classes of data, normal and anomatous, b) the numerosity of the anoma-
lous tra c class is by far less than the numerosity of the normal ¢ralass. In case when these
assumptions are true, novelty detection, outlier-dedactir one-class classi cation techniques can
be applied to construct anomaly-based network IDS. As roeatl in Section 1.2.1, anomaly-based
IDS have the advantage of being able (at least in theory)textboth known and never-before-seen
attacks. This ability supports the main motivation (disagsabove) for applying pattern recognition

techniques to develop intrusion detection systems.

NIDES [10] is one of the rst unlabeled anomaly detectiontsyss. It monitors TCRIDP
ports and source and destination IP addresses. NIDES lauitdsdel of network behavior over a
long-term period, which is assumed to contain a very low amofi(or no) attacks. During the op-
erational phase, NIDES raises and allarm if a network pagigei cantly deviates from the normal
behavior pro le. In [68], Mahoney et al. proposed a nonstadiry anomaly detection systems. The
proposed detection systems is made up of two componentspPRid ALAD. PHAD monitors the
tra c on a packet basis. It constructsi@mal modebf 33 elds from the Ethernet, IP, and trans-
port layer packet header. Instead of monitoring single e;KALAD monitors TCP connections. It

constructs a model of normal connections using informatimsource and destination IP addresses
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22 2. Pattern Recognition for Network Intrusion Detection

and TCP ports, TCP header ags, akelywords which represent the rst word on a line of input
for a certain application protocol. The detection algaritis devised in order to assign a high score
to an event , i.e., an attribute having a particular valuapifhovel values have been seen for a long

time for that event [68].

In [84] a variant of the single-linkage clustering algonithis used to discover outliers in the
training dataset. A pattern vector represents a connect@nce the normal patterns are sepa-
rated from outlier patterns, the clusters of normal datauaesl to construct a supervised detection
model. Tests are performed on the KDDCup'99 dataset. In,[B$kin et al. presented a geo-
metric framework to perform anomaly detection. The pateare mapped from a feature sp&ce
to a new feature spade® and anomalies are detected by searching for patterns éhat Siparse
regions ofF%. Three di erent classi cation technique are used, a clustering élyor a k-NN al-
gorithm and a SVM-based one-class classi er. Experimergparformed on the UCI KDD dataset
(http://kdd.ics.uci.edu/ ), both on the portion containing network tra, and on the portion

containing sequences of system-calls.

The anomaly detectors proposed in [55, 112, 113, 111] aedhgtra c on a packet basis. The
focus is on detecting attack packets that carry executalgle.cThis approach is particularly useful
against buer over ow attacks, which are frequently seen in the wild[356] Kruegel et al. proposed
a service speci c anomaly detection systems. The main itd@eaase of the proposed approach is
to include information about the protocol into the model ofmal tra c. To this end, they describe
the network packets using three (sets of) features, narhelytype of request (i.e., the protocol
and the type of request for that particular protocol), thekpalength, and an approximation of the
distribution of byte values in the payload. The histograpresenting the distribution of the byte
values in normal payloads is sorted in a discending orddr meispect to the occurrence frequency
of the byte values, and split in 6 bins. An overall anomalyeés computed by combining anomaly
scores computed on the type of the request from the cliehttedrver, the length of the request and
by a measure of similarity between the distribution of byades in the packet under test and the
distribution in normal tra c. A variant of the Perason's? test is used to compute this similarity.
Kruegel et al. also proposed a similar model to detect weledhattacks through the analysis of

URI strings [56] related to HTTP GET requests. In this caseoaehis learned for each speci c
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web application hosted on a web server. The length and deardistribution of the parameters
passed to the web application through the URI are analyzea aetection model is constructed in
a way which is very similar to the one proposed in [55]. Theéharg also propose to combine this
statistical model to a structural model of the URI based omkig\a models. Mahoney et al. [66]
proposed an anomaly detector that uses the rst 48 bytes phtRets as features to describe the
network tra c. Nine di erent network protocols are considered and a separate isaagistructed

for each one of them. The detector assigns a high anomalg szoare events.

In [116], Yang et al. proposed an anomaly detection measltedcEWIND and an unsuper-
vised pattern learning algorithm that uses EWIND to nd @irticonnections in the data, whereas
Leung et al. [63] presented a new density-based and grieldbzlsstering algorithm to perform un-
labeled network anomaly detection. In [118] a two-layer IB$resented. The rst layer uses a
clustering algorithm to “compress” the information exteatfor network packets, whereas the sec-
ond layer implements an anomaly detection algorithm tosdiaghe patterns received from the rst

layer.

Wang et al. [112, 113, 111] develop on the idea presentedShdbd propose a more precise
way to model the distribution of byte values in the payloadhofmal packets. In [112, 113] they
propose to consider the entire distribution of byte valugsaut any binning. A model is trained for
each di erent service running on dérent server hosts in the protected network. For each packet
the frequency of the byte values in the payload (i.e., tha gattion of the packet) is measured
and a simple Gaussian model is trained. The detection of aloas packets is performed by using
a simpli ed Mahalanobis distance between the packets and the modelrofahdra c. As the
distribution of single byte values in the payload do not astrstructural information, they also
propose to generalize the detection model by measuringiskiébdtion ofn-grams, i.e., sequences
of n consecutive bytes in the payload. In [111] a new way to mduehiormal tra c is presented.
The authors propose to use a Bloom lter [18] to store infatiora about the distribution of n-
grams [24] in the payload. Compared to [112, 113], the tepimpresented in [111] provides a way
to e ciently store structural information extracted from thglpad and improves the classi cation
accuracy. The authors rst propose an unlabeled learnimycaeh, whereby a model of normal

tra cis trained on a dataset of payloads which are consideretdynmasmal. Then they propose to
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24 2. Pattern Recognition for Network Intrusion Detection

improve the detector by adding a supervised learning plwasertstruct a model of known attacks.

Statistical models of normal trec are also used to detect Distributed Denial of Service (DDoS
attacks. In [32], for example, the authors propose to meawerdistribution of a number of elds in
IP packet headers in order to create a model of normaldeassing through a router. A statistical
distribution of the values is estimated for a number of eltlging a period of lengtW. This
distribution is considered asreormal pro le of tra c. Future tra ¢ is compared to the obtained
distributions by means of & statistical test. Trac which is signi cantly di erent from the normal
pro le is considered anomalous and possibly generate by a®&ttack. Therefore, a response is
activated in order to reduce the impact of the detectedkatt@r anomalies) [32].

It is worth noting that some of the work brie y presented haiiél be described in more details

in the next chapters.

2.2.3 Feature Extraction for Network Intrusion Detection

In the pattern recognition literature, the term “featurdraotion” often refers to the process of
projecting the patterns from an original feature spad®e a new feature spade®with the objective
of reducing the dimensionality of the feature space. Inodases the term “feature extraction”
refers to the measurement of the features themselves. SJoilesrwise speci ed, in the remainder
of this thesis we refer to feature extraction as the “featoeasurement” process, namely the process
through which the features used to describe the patters easured.

The feature extraction process is a fundamental part ofésegd of a pattern recognition sys-
tem. Because the features describe the patterns to beeaths$ioosing the wrong features usually
heavily in uences the results of the learning phase, and tha overall performance of the recogni-
tion system. The choice of what features might be the mottldei often involves a broad expertise
on the problem at hand. It is worth noting that in networkuston detection the features to be
measured are strictly related to what kind of tathe IDS is going to analyze and to what kind of

attacks we want to detect, as discussed in Section 2.2.Ing®ekction 2.2.2.
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Chapter 3

Unlabeled Anomaly Detection

As mentioned in Section 2.2.1, the application of supedviarning approaches for designing
network IDS is hampered by the problems in obtaining a remtative labeled dataset of network
tra c. For this reason, unlabeled anomaly detection approdwes been recently proposed, for
example in [84, 31, 112, 111].

In this chapter we discuss unlabeled anomaly detectiomigabs that aim to learn how to dis-
tinguish between normal and attack (or anomalous) netwankections from unlabeled examples.
We will rst give a precise de nition of the problem. Afterwds, we will present some related
work on the topic and some of the challenges related to ulddteEnomaly detection in general.
Because learning from unlabeled is inherently hard, régc@nbposed unlabeled anomaly detectors
tend to be prone to a high rate of false alarms. We will progopessible solution to the unlabeled
anomaly detection problem based on a modular Multiple C&sSystem (MCS), and show that
the proposed approach improves the classi cation accucaoypared to approaches proposed by

other researchers.

3.1 Problem De nition

The tra c over a TCHP network consists of packets related to communicatiohsd®n hosts. The
exchange of packets between hosts usually ts indlient-serverparadigm, whereby a client host

requests some information ered by a service running on a server host. The set of pacated
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26 3. Unlabeled Anomaly Detection

to the communication established between the client ardggivice running on) the server forms
a connection Each connection can be viewed as a pattern to be classi ddrennetwork-based

anomaly detection problem can be formulated as follows:[36]

Given the information about connections between pairs stdiaassign each connection to the

class of either normal or anomalous tra.

3.2 Di culties in Unlabeled Anomaly Detection

Learning from unlabeled data is more diult than learning from labeled data [43]. Due to the
inherent di culties in learning from unlabeled data, unlabeled anordatgction systems usually
su er from a relatively high false positive rate. It turns ouatthigh false positive rates cause a
signi cant decrease in the Bayesian detection rate, as shiovthe following. As we will discuss
later in this chapter, it is extremely important to improhe performance of anomaly detectors in

order to attain a very low false positive rate and a high detecate at the same time.

3.2.1 The Base-rate Fallacy

The base-rate fallacy is a logical fallacy that occurs wheking a probability judgment without
taking into account priori probabilities. As an example, consider e medical Tebr a disease
D which is 99% accurate, i.e., the probabilB(T = positivgD) that the result ofT is positive
given that the patient is sick, and the probabiR¢T = negativg D) thatT is negative given that
the patient is not sick are both equal to 0.99. Given a patidmt was found to be positive to the
medical tesfT, we want to know what is the probabilitg(DjT = positive) that the patient really
su er from the diseasP. A quick (but wrong) judgment may bring us to believe thatdinswer is
P(DjT = positive) = 0:99. This answer does not take into account the incidenceeofligease in
the population, i.e., tha priori probabilities. Now, leP(D) = 10 “ be the rate of incidence @ in

the population under study, am{: D) = 1 P(D). We can easily compute the correct answer by
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means of the Bayes formula

P(T = positivgD) P(D)

P(DjT = positive)= P(T = positivgD) P(D) + P(T = positivg: D) P(: D)

(3.1)

which gives
0:99 104
P(DjT = positive)= = 0:0098 3.2
(DIT = positive)= 556 104+ 001 (1 109 (3.2)

This means that even if the the test is 99% accurate, the Ipititpaf the patient being sick is less

than 1%.

The same reasoning applies to the intrusion detection @mablin [12], Axelsson presents a
simple example considering a hypothetical installaticet ihcludes a few tens of computers. Let
assume this computers produce adidit records per day through logging. He also hypothesis th
given the limited number of computers, the number of attapekdays is limited to just a few. If we
assume, say, 2 intrusions attempts per day and 10 audidregported per intrusion, the priori
probabilities of an audit record being related to an attdk), and to normal activitiesP(: ),
would be 2 10 ® and 099998, respectively. Assume we deployed an IDS which mmnite audit
records mentioned above. LE(Ajl) be the probability that the IDS raises an alarm given that an
intrusion occurred, i.e., the detection rate, 844j: |) be the probability that the IDS raises an alarm
given that no intrusion occurred, i.e., the false alarm.rdtee probabilityP(ljA) that an intrusion

really occurred given that the IDS raised an allarm is

P(Al) P(T)
P(Al) P(1)+P(A: 1) P(: 1)

P(1jA) = (3.3)

It is easy to see that the factor governing the detection R(1§¢ = 2 10 °, is completely over-
whelmed by the factor governing the false positive r&tg,l) = 0:99998. This is what causes the
fallacy to arise [12]. As an example, assume a (unrealiptichect detection rat€(Ajl) = 1.0, and

a very low false positive ratd?(Aj: 1) = 1 10 °. In this case the Bayesian detection rate is only
P(1jA) = 0:66, that is there is a 34% chance that no intrusion occurred #wough the IDS raised an
alarm. Figure 3.1 shows how the base-ratecsP(1jA) for varying detection rate and false allarm

rate.

27



28 3. Unlabeled Anomaly Detection
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Figure 3.1: The base-rate fallacy problem [12].

In the applications we consider in this chapter we are comckwith analyzing network connec-
tions instead of system logs. The problem presented ab@leso this case as well, given that we
expect the number to network connections related to iringsio be overwhelmed by the number of
normal connections. The only way to mitigate the base-redblpm seems to be the improvement
of the classi cation accuracy of the IDS in order to make ithsse as possible to the ideal situation

of 100% detection rate and 0% false positive rate, thus miaiimP(1jA).

3.3 State of the Art

In Section 2.2.2 we brie y reported the most relevant workuotabeled anomaly detection. Among
the studies described in Section 2.2.2, the closest to oare mesented in [84] and [31], which
are described in more detail in the following. Both in [84d&i31] the authors assume that the
tra cis extracted from the computer network to be protected anohiabeled. The onlg priori
knowledge about the data is represented by two assumptiansisually hold in practice: a) the
extracted dataset contains two classes of data, normalraomdadous tra c; b) the numerosity of
the anomalous trac class is by far less than the numerosity of the normal ¢ralass.

In [84], Portnoy et al. used an online clustering algorittergtoup similar network connec-

28



3.3 State of the Art 29

tions. Given a metridM and a cluster widthv, instances (i.e., network connections) are picked up
one by one from the training dataset. AccordingMa distance is measured between the instance
and the centroid of the already existing clusters. The it&tds assigned to the closest cluster if
the minimum distance is less than otherwise the instance initializes a new cluster. Aftétlad
instances in the training dataset have been grouped thmethtelusters are labeled. According to
the assumption that the numerosity of the anomalousdrelass is by far less than the numerosity
of the normal tra c class, the clusters are labeled by numerosity and theslaoges are labeled
as “normal” until a certain percentage of instances arereayend the rest of the clusters are then
labeled as “anomalous”. During the detection phase a distsxmeasured between the instance
under test and the centroids of the clusters obtained dirdtiging. The instance is classi ed ac-
cording to the label associated to the closest cluster. irpats are performed on the KDDCup'99
dataset. The approach proposed by Portnoy is “monolitii¢hé sense that one detection model is

constructed for all the possible network protocols.

In [31], Eskin et al. propose to project the patterns from dgiwal feature spack to a suitable
feature spac&®, and then to apply outlier detection algorithmsFfin order to isolate the attack
patterns from the normal ones. The proposed detectionitlger are based on the dot product
among pattern vectors, therefore kernel functions may péeapy and there is no need to explicitly
map the patterns frorf to F. Assuming that the numerosity of the class of normal conoest
is by far higher than the numerosity of the class of anomatmmections, the authors propose
three di erent algorithms for anomaly detection. The rst algorithencluster-based. Given a
patternx, the algorithm estimates the local density arounidy counting the number of patterns
in a hypersphere of radius centered irx. Points that are in low density regions are classi ed as
anomalous. The second algorithm is based on a variant dé-Md algorithm. If the sum of the
distances betweexand itsk nearest neighbors is greater than a certain threskakiconsidered
anomalous. The third algorithm is the one-class SVM by &b et al. [92]. Similarly to [84] the
anomaly detection algorithms are applied using a “moniclitapproach, i.e., one detection model

is constructed which takes into account all the possible/orit protocols.
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30 3. Unlabeled Anomaly Detection

3.4 Performance Improvement Using a Modular MCS

As discussed in Section 3.3, the anomaly detection systeop®ged in [84] and [31] are based on
a “monolithic” approach. A single classi er is constructedorder to distinguish between normal
and attack connections, regardless of the network praté®keach network protocol has dirent
characteristics, it is hard to construct a precise modebofnal tra ¢ by using a single classi er.
In the following we propose a modular approach. Accordingh di erences among protocols,
one or multiple classi ers are constructed in order to mad®mal connections related to dirent
(groups of) protocols. We then compare the obtained restltsthe results obtained by using a

“monolithic” approach.

3.4.1 Assumptions

As in [84] and [31], we assume that the trais directly extracted from the computer network to be
protected, and used without need of a labeling process. filyeagriori knowledge about the data

is represented by two assumptions that usually hold in joeact) the extracted dataset contains
two classes of data, normal and anomalous &rab) the numerosity of the anomalous traclass

is by far less than the numerosity of the normal tcaclass. The latter assumption is usually true
unless Distributed Denial of Service attacks (DDoS) or ntoerdinated attacks are occurring while
the tra c is sni ed from the network. However, as DDoS attacks usually hageothjective of
exhausting the network resources, theieets are in general easy to detect. We then need to be
careful and use only the trac we believe was not sned during such attacks. Assumption b) is also
supported by the fact that signature-based IDS can be ugwdrie known attacks from the srdd

tra cin order to reduce the numerosity of the attack class inrtirihg dataset.

3.4.2 Modular Architecture

As mentioned in Section 3.1, each connection is related tarécplar service. Dierent services
are characterized by derent peculiarities, e.g., the tra related to the HTTP service is dirent
from the tra c related to the SMTP service. Besides, asedent services involve derent soft-

ware applications, attacks launched againsedent services manifest dérent characteristics. We
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Figure 3.2: Modular architecture

propose to divide the network services imtogroups, each one containing a number of “similar”
services [37]. Thereforen modules are used, each one modeling the normaldnalated to one
group of services. The intuitive advantage given by the radcapproach is supported by the results
in [61], where Lee et al. used information theory to meashieg“tomplexity” of the classi cation
task. The subdivision of services into groups turns into@ekese of the entropy of each subset of
data, which in general coincides to the ability to consteuctore precise model of the normal tra

An example of how the services can be grouped is shown in &ig§L&t, where the groupings refer
to the network from which the KDD-Cup 1999 dataset was ddr{gee Section 3.5). In Figure 3.2,
a “miscellaneous” group is used to aggregatesdént services that are rarely used in the computer
network at hand. It is worth noting that the number of groups the type of services in each group
depend on the network to be protected, asedent networks may provide derent services with

di erent characteristics.

3.4.3 Overall vs. Service-Speci c False Alarm Rate

Anomaly detection requires setting an acceptance threégheb that a tra ¢ patternx is labelled

as anomalous if its similaritg(x; M) to the normal modeM is less thert. The similarity measure

s depends on the particular technique chosen to implememhtuel of normal tra c M. As we

use di erent modules (i.e., derent models) for dierent services, a method to tune the acceptance
threshold for each module is necessary. In order to solgddlk, we propose an heuristic approach
whereby given a xed tolerable false alarm rate for the 10%, overall detection rate is optimized.

Let m be the number of service-speci ¢ modules of the IR be the overall tolerable false
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32 3. Unlabeled Anomaly Detection

alarm rateF AR be the false alarm rate related to thth moduletj be the acceptance threshold for
thei-th module;P(M;) = nj=n be the prior distribution of the patterns related to itk group of

services (i.e., the moduldyl; in the training data, wheng is the number of patterns related to the
services for which the modull); is responsible and is the total number of patterns in the training

dataset. Accordinglyi-ARis de ned as

FAR= X P(M;) FAR (3.4)
i=1

Given a xed value of the tolerable false alarm ré&@&R for the IDS, there are many possible
ways to “distribute” the overalF AR on them modules. A value oFAR has to be chosen for
each modulaVi; so that Equation (3.4) is satis ed. OnceFAR has been set for each module
M;, the thresholds; can be chosen accordingly. As a rst choice, we could’s8R = FARfor
each moduleVl;. This choice satis es Equation (3.4) and appears to be rede, given that no
service is seemingly penalized. Nevertheless, this chmiesents two drawbacks. One drawback
is related to the actual number of false positives genelagezhch service. As the number of false
positives is proportional t&(M;), the group of services (i.e., the module) accounting ferl#éingest
portion of the tra ¢ produces a number of false alarms that is by far larger thamne produced
by poorly represented services (i.e., those services wdnietrarely, or not so often used in the
network). This behavior is not adequate as the modules diBethat produce an overwhelming
number of false alarms could be “turned”dy the network administrator. The other drawback is
related to the relation betwedmPAR and the detection rate of theh service,DR,. We observed
experimentally that for a xed value df AR, the corresponding value @iR; strongly dipends on
P(M;). In particular, the largeP(M;) the largeDR;. This e ect can be explained as follows. Small
values ofP(M;) are related to services rarely used in the network, wheaebmaller training set
for M; can be extracted and the corresponding classi er(s) inrgémeéll not be able to adequately

model the normal trac.

According to the considerations reported above, given d KARwe propose to compufeAR

as
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1

AR (3.5)

This choice satis es Equation (3.4) and allows us to attairhigher overall detection raeR
than that attained by choosing a xed valt&R = FARfor each module.

In order to set an acceptance threshpldr the moduleM;, to obtain the false alarm rateAR
computed as in Equation (3.5), we propose the followingis&ar Let us rst note that for a given
value oft;, the fractionpy, (t;) of patterns rejected byl; may contain both patterns related to attacks
and false alarms. Let us denote wigh(t;) the fraction of rejected attack patterns using the thrieisho
t;, and with far;(t;) the related fraction of false alarms. It is easy to see thafallowing relation
holds:

Pri(t) = pa () + fari(t) (3.6)

We want to set; so thatfar;(t;) is equal to the desired false alarm r&t&R (computed by using
(3.5)). As for a given value df the only measurable quantity in Equation (3.6) is the rajadtate
pr, (i), we need some hypothesis pg(ti) so that we can estimater;(t) = pr(t)  pa(ti), and
therefore we can choggein order to obtainfar;(tj)) = FAR. We propose to assungg, (t) = P,
whereP,, is the expected attack probability for thén servicé. In other words, we assume that for
a given threshold value, the rejected patterns are made alb thie attacks related to that service
contained in the training set, plus a certain number of nbpatierns. Thus, having xed the value
of py(ti)) = P4, we can tung; in order to obtainfar;(t) = FAR.

It is easy to see that the computed threshaldestimated according to the heuristic described
above) produce the required over@\R (see Equation (3.4)) only if the fraction of patterns regeict
by each module actually contains all the attaoks P,, wheren; is the total number of training
patterns for the modul®l;. If this is not the case and the rejection rgigincludes just a portion
of the attacks, a larger number of false alarfas (t)) > FAR will occur. However, if the training

dataset is a good sample of the real network ttrawe expect most of the attacks will “look” derent

2In practice, if the network is already protected by “standaecurity devices (e.g., rewall, signature-based IDS,
etc.), we may be able to estimelg from historical data related to attacks to the network serivihat occurred in the
past.
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from normal tra ¢ and will be likely deemed outliers and rejected by the model

3.4.4 Service-Speci c MCS

Lee et al. [60] proposed a framework for constructing theuiies used to describe the connections
(the patterns). The derived set of features can be subdivite two groups: i) features describ-
ing each single connection; ii) features related to steistneasures on “correlated” connections,
namely di erent connections that have in common either the type ofcgetivey refer to or the des-
tination host (i.e., the server host). The latter subseg¢atifres is usually referred ia ¢ features

On the other hand, the rst group of features can be furthédsided into two subsets, namely
intrinsic featuresandcontent featuresThe intrinsic features are extracted from tieadersof the
packets related to the connection, whereas the contenirésatre extracted from thpayload(i.e.,
the data portion of the packets). We cilthe entire set of features ahdC andT the subsets of

intrinsic, contentandtra c features respectively, sothat=1[ C[ T.

As explained in Section 3.4.2, our IDS is subdivided into enbar of modules. Each module
implements a model of the normal tra related to a group of services, so that a module can be
viewed as &ervice-speci dDS. The problem of modeling the normal tra for each module of the
IDS can be formulated essentially in two drent ways: i) a “monolithic” classi er can be trained
using all the available features to describe a patternuldsets of features from the three groups
described above can be used separately to traierdnt classi ers whose outputs can be combined.
Depending on the dimensionality of the feature sphaad the size of the training set, one approach
can outperform the other. In particular, a multiple classiapproach can be ective when the use
of a “monolithic” classi er su ers from the “curse of dimensionality” problem, i.e. thdrinag set
n; is too small with respect td [29]. We propose to use, when needed, a MCS that consistthef ei
two or three classi ers, depending on the modiewe consider. When a two-classi ers MCS is
used, the module is implemented by training two classi ersweo di erent features subsets, namely
I[ CandI[ T. Onthe other hand, when a three-classi ers MCS is used, thauie is implemented
by training a classi er on each single subset of featuremeig one classi er is trained by using the

subset, one by usingC and one by using (see Figure 3.3).
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Figure 3.3: Feature subsets for service-speci c MCS

3.4.5 One-Class Classi cation

One-class classi cation (also referred to as outlier d#tay techniques are particularly useful in
those two-class problems where one of the classes of oligagtdl-sampled, whereas the other one
is severely undersampled due to the fact that it is toocdit or expensive to obtain a signi cant
number of training patterns. The goal of one-class classiaon is to distinguish between a set of
target objectsand all the other possible objects, referredbasiers [101, 100]. A number of one-
class classi cation techniques have been proposed in thafure. Following the categorization
of one-class classi ers proposed by Tax [100], they can lmlisided into three groups, namely

density methods, boundary methods and reconstructionatgth

We decided to use one classi cation method from each cageimplement the service-
speci ¢ MCS modules described in Section 3.4.4 in order tonpare di erent approaches that
showed good results in other applications. In particula chose the Parzen density estimation [29]
from the density methods, theSVC [92] from the boundary methods and the Kameans algo-
rithm [43] from the reconstruction methods. These onesotdassi ers exhibited good performance
on a number of applications [100]. Besides, the output oktheeans and-SVC classi ers can be
rede ned as class-conditional probability density funos, so that they can be correctly combined
with the output of the Parzen classi er (see Section 3.A/.also trained the clustering technique
proposed by Eskin et al. [31] in order to compare the resfifssocombination of “standard” pattern

recognition techniques with an algorithm tailored to théabeled intrusion detection problem.
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Parzen Density Estimation

The Parzen-window approach [29] can be used to estimateetisty of the target objects distribu-
tion
x X X

0= 5 37)

wheren is the total number of training patterns belonging to thgdarclass! ¢, X; is thei-
th training pattern, is a kernel functionh is the width of the Parzen-window armxj! ;) is the

estimated class-conditional probability density disttibn. When the Gaussian kernel

, 1. .
(¥ = Pahi Sii® (3.8)
2
is used,p(xj! ;) can be written as
Gy 1P K Xk . o g2
pxit 1) =7 TP Txm s=hr: (3.9)
1=

and the one-class Parzen classi er can be obtained by sisgiting a threshold whereby a

patternz is rejected (i.e., deemed an outlierypfzj! ;) < [100].

k-means

Thek-means classi er is based on the well-knokmeans clustering algorithm [43]. The algorithm
identi es k clusters in the data by iteratively assigning each pattertné nearest cluster. This
algorithm can be used as a one-class classi er by clustehiagraining set and then computing the

distanced(z;! ;) of a test patterz from the target distributiot ; as

dz! 0= miniz i (3.10)

where ; represents thieth cluster center. If the distance is larger than a threshdthe pattern
will be rejected [100]. It is hard to map the distard{g;! ;) into a probability density distribution

and thus the combination of ttkemeans one-class classi er with density-based classi(erg., the
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Parzen classi er) may produce unreliable results, as vélekplained in Section 3.4.6. In order to
allow this algorithm to produce an output that can be inegu as a probability density function,
we propose to use all tHedistances between the test patteiand the centroids; as follows

: R K
p(XJI t) = % =1 2 ;-)d=2 eXp 2s

(3.11)

s=avgjii il Bi=L2k
;]

In other words, we model the distribution of the target clagsa mixture ofk normal densities,
each one centred on a centroid An heuristic is used to compusas the average distance between
the k centroids. As for the one-class Parzen classi er, the dassck-means classi er based on
Equation (3.11) can be obtained by setting a thresholtlereby a patternis rejected ifp(zj! ;) <
It is worth noting that the same number of distanges jjj have to be computed both in (3.10) and
(3.11). Besides, the number of centroids is in general chtzsbe low, therefore can be e ciently
computed. This means that the proposed probability derstynate does not add appreciable

complexity to the classi er.

-SVC

The -SVC classi er was proposed by Scholkopf et al. in [92] asdhispired by the Support Vector
Machine classi er proposed by Vapnik [107]. The one-clakss cation problem is formulated
to nd an hyperplane that separates a desired fraction otriaing patterns from the origin of
the feature spacB. This hyperplane cannot always be found in the originaluieaspace, thus a
mapping function : B F° from F to a kernel spac&®, is used. In particular, it can be proven

that when the Gaussian kernel

I
jix yiP
2s

Ky)= () (y)=exp (3.12)

is used, itis always possible to nd a hyperplane that sollileseparation problem. The problem

is formulated as follows:
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|
(3.13)

W (%) ;i 0 8i=1l

wherew is a vector orthogonal to the hyperplaneepresents the fraction of training patterns
that are allowed to be rejected (i.e., that are not sepafedadthe origin by the hyperplane); is
thei-th training pattern| is the total number of training patterns= [ 1;::; (]" is a vector of slack
variables used to “penalize” the rejected patternsgpresents the margin, i.e., the distance of the

hyperplane from the origin.
The solution of (3.13) brings to the decision function, fayemeric test pattern, formulated as

|
W@ =1 Koz 5 T, =1 (3.14)

wherel is the indicator functioh and the parameters and are provided by the solution of
(3.13). According to (3.14), a pattemis either rejected iffs,(z) = 0 or accepted as target object if

fsvd2) = 1. When the Gaussian kernel (3.12) is used, the output of-BC can be formulated in

terms of a class conditional probability by

P P 1 i i
Sof i Kx) =Ty S e 2 (3.15)

p(! 1) =

R
which respects the constraing, p(xj! )dx = 1.
It is worth noting that in general only a small number of caéents ; will be di erent from

zero, thusp(xj! ) can be e ciently computed. The training patterrswhereby the related; , 0

represent the support vectors for th&VC. The acceptance threshold can be rewritten as

0= (3.16)

@ 9

so that a patterm will be considered an outlier (zj! ;) < °.
It is worth noting that Tax et. al [102] independently forrmagd a SVM-based one-class classi-

31(X) = 1if xis true, otherwisé(x) = 0
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er whose solution is identical to the one of theSVC when the Gaussian kernel is used.

3.4.6 Combining One-Class Classi ers

Traditional pattern classi ers can be combined by using yrdinerent combination rules and meth-
ods [57]. Among the combination rules, then, max meanandproductrules [50] are some of the

most commonly used. These combination rules can be eagiliedpvhen the output of the clas-
si ers can be viewed as aa posteriori probability Pi(! jjx), wherep; refers to the output of the

i-classi er, wheread j is the j-class of objects. In case of a two-class problem,ahgosteriori

probability can be written as

P0Gt PC ) _ pi(xjt P ) ,
pi(X) pi(xj! )P 1)+ p(x! 2)P(! 2)

Pi(! jjx) = =12 i=1:L 0 (3.17)
whereL is the number of classi ers. Unfortunately, in case of otess classi ers in general it
is not possible to reliably estimate the probability dimition of one of the two classes, namely the
probability density of the outlier objects (i.e., one of teems in the denominator in (3.17)). Tax et
al. [101] proposed to consider the distribution of the @uttd be constant in a suitable region of the
feature set, so that tleeposterioriprobability for the target class, for example, can be appnaied

as

pi(4! DP( 1) o
0 OP( 0+ Pl 1L (3.18)

where! ; represents the target class, represent the outlier class ands the uniform density

Pi(! ¢jx) =

distribution assumed for the outlier patterns. Let's cdasinow the traditionamneancombination

rule. We need to compute

(=1L P
(3.19)

. P )
(VI T ()

and the decision criterion is
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x is an outlier , (M gx) < (! gx) (3.20)

If we assumepi(x) ' p(x); 8i, we can write

: PL pt ) P( pe ) P .
(b= 2k, PR = 1R bt ) (3.21)
wherej = t; o (i.e., (3.21) is applied to both the target and the outliass). In this case we can
compute

iR

Yavg(X) = L pi(Xj! 1) (3.22)
i=1
o_Plo 1%

“Pi) L. (3.23)

i=1

and the decision criterion (3.20) becomes simply
Xis anoutlier ,  Yyayg(X) < ° (3.24)

which means that we can combine the class-conditional pilityadensity functions, instead
of the a posteriori probabilities estimated by each classi er. The obtaiggg(x) can be used as
a standard one-class classi er output and the threshotéin be independently tuned to attain the
desired trade-o between false positives (i.e., target objects classi edubers) and false negatives
(i.e., outliers classi ed as belonging to the target clagd)is approach is (almost) exactly like the
one proposed in [101] and [100] and can be extended tmthemaxandproductrules.

Another approach is to estimal(! jx) andP;(! ¢jx) so that the decision criterion (3.20) can
be used directly. For each one-class classi @e have

P
Pi! 4X) = 5o oPTo* T PTD)

(3.25)

. N i P(! o)
PI(! OJX) TP )P )+ i P(To)

and, setting; = %, the decision criterion for the classi ercan be written as

40



3.4 Performance Improvement Using a Modular MCS 41

xis anoutlier ,  pi(xj! ¢) < | (3.26)

It is worth noting that ; represents the decision threshold applied on the outpugssicer i.

According to (3.25) we can write

1y = Pt ) g
Pi(! tx) L =1L (3.27)
Pi(! ojx) = YT =1L (3.28)

In practice, we can set the thresholdso that a given rejection rate is produced by each single
one-class classi er. Once the thresholdsi = 1;::;L, have been set, the posterior probabilities
can be estimated using (3.27) and (3.28), and the rule (8&0)pe applied. This approach can be
extended to thenin, maxandproductrules by computing (! {jx) and (! ¢jx) according to the new

rule and then applying (3.20).

As mentioned in Section 3.4.5, it is not possible to directigke use of the output of one-
class classi ers that implement boundary or reconstracti@thods in (3.22), (3.27) and (3.28). In
order to solve this problem, Tax et al. [101] proposed anikgcrapproach to map the output of
“distance-based” classi ers to a probability estimate

0t )
S

P(xj! 1) = exp (3.29)

where (X! {) is the output to be mapped (e.g(xj! 1) = miniz1.kjjX  ijj, If the k-means
classi er is considered). However, in genefatloes not repsect the integral constraint for a density

probability distribution, whereby

z
P(xj! 1)dx, 1 (3.30)
Rd

This fact may produce some problems, especially when thmubat “distance-based” one-class
classi ers is combined with density-based classi ers (gllge Parzen classi er described in Section

3.4.5), which respect the integral constraint by de niti@n the other hand, the methods proposed
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in Section 3.4.5 to compute the output of #ieneans and-SVC classi ers do not suer from this

problem and the decision criterion (3.24) can be used withather output transformations.

3.5 Experimental Results

Experiments were carried out on a subset of the DARPA 1998&sdatistributed as part of the
UCI KDD Archive (http://kdd.ics.uci.edu/databases/kddcup99/kddcup99. html). The
DARPA 1998 dataset was created by the MIT Lincoln Laboragngup in the framework of the
1998 Intrusion Detection Evaluation Progratmtp://www.ll.mit.edu/IST/ideval ). This
dataset was obtained from the network taproduced by simulating the computer network of an
air-force base. It consists of seven weeks of walata for training purposes, and two weeks of data
for testing. A subset of the trac of the DARPA 1998 dataset has been mapped to a pattern recog-
nition problem and distributed as the KDD-Cup 1999 datagke training set is made of 494,020
patterns, and the test set contains 311,029 patterns. Edighnrprepresents a network connection
described by a 41-dimensional feature vector accordingeaset of features illustrated in Section
3.4.2. In particular, 9 features were of the intrinsic typ8,features were of the content type, and
the remaining 19 features were of the tatype. Each pattern of the data set is labelled as be-
longing to one out of ve classes, nameaiprmal tra ¢ and four di erent classes of attackrobe
Denial of ServicdDoS),Remote to LocalR2L), andUser to Roo{U2R). The attacks belonging to

a certain attack class are designed to attain the same by exploiting di erent vulnerabilities of
the computer network.

The DARPA dataset has been widely criticized [67, 70]. Thennaaiticism is related to the
fact that the tra c traces reported in the dataset are not representativesaf agtwork scenario. In
particular, it is worth noting that the prior probabilitiethe attack classes included in the DARPA
1998 dataset (and thus in the KDD-Cup 1999) cannot be camesidepresentative of the tra in
a real network. This fact has been clearly pointed out integoe of the DARPA corpus of data by
McHugh [70]. Although this dataset has been criticizeds iturrently used by researchers because
it is the only reference dataset that allows the designecsiiagpare results obtained using drent

intrusion detection techniques.
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In order to perform experiments witinlabeledintrusion detection techniques, we removed the
labels of all the training patterns to simulate thdabeledcollection of network tra c. Besides, we
relabeled the patterns of the test set as belonging eitlieetmrmal tra c class or to the “generic”
attackclass, thus discarding the dirent labels assigned to attack patterns related trdnt classes
of attack. Nominal features have been converted into nwalevalues according to the procedure
in [31]. Given a nominal feature witN possible distinct values, it is mapped to a vector of length
N, i.e., the vector contains one coordinate for every possiblue of the feature. When a particular
value of the feature is mapped on the vector, the coordirategponding to the value of the feature
is set to BN, whereas the other coordinates (i.e., the ones correspptalithe otheN 1 possible
values for the feature) are set to zero.

According to the description of the modular architecturespnted in Section 3.4.2, we divided
the tra c of the data set into six subsets, each one related to “sinsiéavices: HTTP, containing
the tra c related to the HTTP protocoETP, containing the trac related to the control ow and
data ow for the FTP protocol, and the tra related to the TFTP protocoNlail, containing the
tra crelated to the SMTP, POP2, POP3, NNTP, and IMAP4 prototGIgiP, containing the trac
related to the ICMP protocoPrivate% Other, containing the tra c related to TCRJDP ports higher
than 49,152;Miscellaneous containing all the remaining trac. For each module, the features
taking a constant value for all patterns have been discaniedided that these features have a
constant value by “de nition” for that service, and not byacite. For example, the intrinsic feature
“protocoltype” is always constant and equal to the value “TCP” for hitip, and mail services,
thus for those services it can be discarded. As a result,gch enodule we used a subset of the
41 available features, namely: 29 features for#H1elrP module; 34 features for thETP module;

16 features for théCMP module (in particular, the content features were discaedeithey have no
meaning for the ICMP trac); 31 features for th&lail module; 37 features for thdiscellaneous

module; 29 features for tHerivate& Other module.

3.5.1 Training Set Undersampling

As mentioned above, the prior probabilities of the attaelssés in the training portion of the KDD-

Cup 1999 dataset cannot be considered representative whthein a real network. The analysis
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HTTP FTP Mail ICMP Private & Others | Miscellaneous
Normal 61,885 4,172 9,677 1,288 12,998 7,257
(96.55%) | (78.16%) | (99.83%) | (0.46%) (81.27%) (98.33%)
Attacks 2,208 1,166 16 28,1250 2,996 123
(3.45%) | (21.84%) | (0.17%) | (99.54%) (18.73%) (1.67%)

Table 3.1: Composition of the training set before the undersamplirgsph

HTTP FTP Mail ICMP Private & Others | Miscellaneous
Normal 61,885 4,172 9,677 1,288 12,998 7,257
(99.83%) | (96.60%) | (99.83%) | (69.66%) (96.09%) (98.33%)
Attacks 106 147 16 561 529 123
(0.17%) (3.40%) (0.17%) | (30.34%) (3.91%) (1.67%)

Table 3.2: Composition of the training set after the undersamplingspha

of the training set con rmed that it contained a large frantdf attacks compared to normal tra
patterns, as show in Table 3.1. This violates the rst asdionfehind unlabeled techniques, i.e.,
connections containing attacks should account for a srodlign of the network tra c. As typical
network tra ¢ satis es this assumption [84], we Itered the training set that the selected data
satis ed this assumption. To this end, for each service waimed all the normal connections, while
we sampled the attack patterns so that they accounted fe @f3he total tra c. This sampling
procedure is similar to the one performed by other reseesdiéd, 31]. Let us recall that each
attack classs made up of connections related to a number okdentattack typeseachattack type
designed to produce the sameeet of all the attacks in the same class. For each type ofkatsac
di erent number of patterns is available because each attpekptpduces a derent number of
connections, and because of the simulations carried outgltire DARPA programme. A number
of techniques can be used to sample a set of data such thasthiémg subset is representative of
the whole data [15].

In the reported experiments we reduced the percentageaukatby reducing the number of
those attacks accounting for a number of connections largar 973, which is 1% of the total

normal connections. In particular we proceeded as follows:

a) 10 subsets, each one containing 101 patterns, are exnaridomly from eachttack type
(this “magic” number was chosen in order to attain a totaceetage of attacks equal to

1.5%);
b) for each subset, we trained é€8VC classi er, and computed the error attained by using the
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HTTP FTP Mail ICMP Private & Others | Miscellaneous
Normal 39,247 1,170 3,222 380 12,930 3,644
(95.04%) | (38.22%) | (25.50%) | (0.23%) (16.35%) (43.53%)
Attacks 2,050 1,891 9,412 164,591 66,145 4,727
(4.96%) | (61.78%) | (74.50%) | (99.77%) (83.65%) (56.47%)
Table 3.3: Composition of the test set
HTTP FTP Mail ICMP | Private & Others | Miscellaneous
-SVvC F 0.995 | 0.894 | 0.971 | 0.862 0.992 0.987
-SVC - max rule IfTC+I[ T 0.956 | 0.918 | 0.960 - 0.911 0.975
[+C+T 0.807 | 0.566 | 0.956 | 0.929 0.918 0.939
-SVC - min rule IfTC+I[ T | 0.948 | 0.967 | 0.855 - 0.921 0.953
I+C+T 0.773 | 0.973 | 0.954 | 0.913 0.904 0.944
-SVC - mean rule IfTC+I[ T 0.952 | 0.962 | 0.970 - 0.957 0.965
[+C+T 0.865 | 0.972 | 0.953 | 0.879 0.921 0.988
-SVC - product rule IfTC+I[ T | 0.951 | 0.961 | 0.857 - 0.919 0.963
I+C+T 0.865 | 0.971 | 0.953 | 0.879 0.921 0.945

Table 3.4: Performance attained by theSVC classi er on the six modules in terms of AUC. For each medthe best
performance is reported in bold.

remaining patterns of that attack type as a test set;

c) the subset with the smallest error is selected, as it carohsidered representative of the

entire set of available connections for that attack type.

Table 3.2 shows the composition of the training set obtaaftst the preprocessing phase. It can
be observed that attacks are not distributed uniformly agrainerent services. While the overall
percentage of attacks has been reduced so that it is equab%o df all the training tra c, the
percentages of attacks related to @lient services range from the 0.17% of th€TP and Mail
tra c, to the 30.34% of théCMP tra c. The high percentage of attacks in l@MP tra c can
be explained by observing that the available training satained a very small number of nhormal
ICMP connections compared to attacks, so that the proposedti@uwt the number of attack
patterns left théCMP tra c data unbalanced.

It is worth noting that the distribution of trac reported in Table 3.2 was used to compute
the prior probabilities related to the dirent modules of the IDS, according to the discussion in
Section 3.4.3.

Table 3.3 shows the composition of the test set. As showndrtahle, the test set contains
a very large fraction of attacks, as it was designed to tesp#rformance of IDS and not to be

representative of a realistic network tra. It is worth noting that we did not apply any changes on
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HTTP FTP Mail ICMP | Private & Others | Miscellaneous
k-means F 0.978 | 0.820 | 0.899 | 0.736 0.918 0.955
kmeans - max rule IfTC+I[ T | 0.864 | 0.874| 0.926 - 0.917 0.974
I+C+T 0.872 | 0.335| 0.930 | 0.913 0.917 0.889
kemeans - min rule IfC+I[ T 0.353 | 0.830 | 0.826 - 0.903 0.909
[+C+T 0.814 | 0.926 | 0.630 | 0.750 0.907 0.284
kmeans - mean rule IfTC+I[ T | 0.859 | 0.778 | 0.913 - 0.965 0.932
I+C+T 0.961 | 0.850 | 0.929 | 0.740 0.920 0.947
k-means - product rul IfTC+I[T 0.858 | 0.777 | 0.913 - 0.965 0.932
[+C+T 0.965 | 0.851 | 0.929 | 0.740 0.920 0.951

Table 3.5: Performance attained by themeans classi er on the six modules in terms of AUC. For eacilate, the best
performance is reported in bold.

HTTP FTP Mail ICMP Private & Others | Miscellaneous
Parzen F 0.977 | 0.878 | 0.932 | 0.743 0.921 0.982
Parzen - max rule IfTC+I[ T 0.854 | 0.904 | 0.568 - 0.905 0.900
[+C+T 0.858 | 0.368 | 0.581 | 0.872 0.903 0.909
Parzen - min rule IfTC+I[T 0.987 | 0.868 | 0.940 - 0.921 0.974
1+C+T 0.982 | 0.914 | 0.940 | 0.704 0.864 0.698
Parzen - mean rule IfTC+I[ T 0.854 | 0.904 | 0.828 - 0.991 0.900
[+C+T 0.858 | 0.867 | 0.582 | 0.872 0.910 0.909
Parzen - product rul IfTC+I[T 0.857 | 0.913 | 0.839 - 0.977 0.906
1+C+T 0.959 | 0.924 | 0.941| 0.725 0.888 0.898

Table 3.6: Performance attained by the Parzen classi er on the six tegdn terms of AUC. For each module, the best
performance is reported in bold.

the test set.

3.5.2 Performace Evaluation

We divided the performance evaluation experiments intoghases. In the rst phase, we evaluated
the performance of one module of the IDS at a time. In padicdibr each module the performance
of a “monolithic” classi er is compared to the performandeaed by combining classi ers trained
on distinct feature subsets (see Section 3.4.4). In thenslegioase, the modules related to elient
services are combined, and the performance of the overglis@valuated. Performance evaluation
has been carried out by ROC curve analysis, i.e., by congpthmdetection rate as a function of the
false alarm rate. Dierent ROC can be compared by computing the Area Under theeGAIC).
AUC measures the average performance of the related obaissp that the larger the value of AUC
of a classi er the higher the performance [100]. It is woritting that AUC usually measures the
average performance of classi ers considering the entinge of variation of the false positive rate.
For some ranges of the false alarm rate the classi er withsthallest AUC value may provide the

highest detection rate. Therefore, it may be better to mregke AUC in the interval [(g], where
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HTTP FTP Mail ICMP | Private & Others | Miscellaneous
Cluster F 0.967 | 0.839 | 0.891 | 0.739 0.847 0.973
Cluster - max rule ITC+I[ T | 0.965 | 0.705 | 0.949 - 0.843 0.253
I1+C+T 0.740 | 0.478 | 0.949 | 0.918 0.390 0.141
Cluster - min rule IfTC+I[ T 0.922 | 0.782 | 0.802 - 0.903 0.875
[+C+T 0.970 | 0.809 | 0.814 | 0.856 0.848 0.936
Cluster - mean rule IfTC+I[ T | 0.932 | 0.829 | 0.962 - 0.915 0.876
I1+C+T 0.983 | 0.874 | 0.970 | 0.872 0.847 0.958
Cluster - product rule IfTC+I[T 0.924 | 0.802 | 0.802 - 0.903 0.875
[+C+T 0.980 | 0.809 | 0.814 | 0.872 0.947 0.943

Table 3.7: Performance attained by the Clustering algorithm propasé¢8l1] on the six modules in terms of AUC. For
each module, the best performance is reported in bold.

HTTP FTP Mail ICMP Private & Others | Miscellaneous
-SVC -SVC -SvVC -SVC Parzen -SVC
Best F min rule F max rule min rule mean rule
I+C+T I1+T IfTC+I[ T I+C+T

Table 3.8: Summary of the best results in terms of AUC attained for eactiute.

a < 1 represents the maximum expected false positive rate. Howie is not always possible to
know in advance the working point (or the set of possible waylpoints) on the ROC curve that
will be actually used during the operational phase. Moreoveour application the overall false
positive rate is “distributed” in dierent percentages on drent modules in order to optimize the
performance of the IDS (see Section 3.4.2). In these casaskobwna the AUC measured in the

interval [0, 1] is a valuable indicator of the performance of the classi e

Evaluation of Service-Speci ¢ Modules

The rst phase of the performance evaluation consistedrektlexperiments for each of the six mod-
ules. The rst experiment was designed to assess the pearfarenof individual one-class classi ers,
i.e., the -SVC, the k-means, and the Parzen classi er when the patemendescribed by using the
entire set of available featur€s The performance of the clustering algorithm describe®1rj have
been also computed for comparison purposes. The secondregpewas designed to assess the
performance attained by combining classi ers trained oo distinct feature subsets, i.e. the subset
of intrinsic and tra c featured [ T, and the subset made of intrinsic and content features (see
Section 3.4.4). In particular, each classi er has beemé&aiusing the two feature subsets, and then
they have been combined by using four glient combination rules, i.e. tmeaxrule, theminrule,

themeanrule, and theproductrule. The third experiment was designed to assess the pefae
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Best Modules in terms of AUC -SVC Best -SVC modules in terms of AUC

False Alarm Rate | Detection Rate | False Alarm Rate | Detection rate | False Alarm Rate | Detection Rate
0.87% 75.34% 0.91% 67.31% 0.88% 79.27%
2.10% 80.35% 2.06% 75.61% 2.07% 89.45%
2.64% 80.80% 2.65% 77.10% 2.66% 89.67%
4.00% 85.67% 3.20% 86.31% 3.28% 89.92%
5.49% 94.12% 4.51% 92.25% 4.82% 93.02%
6.86% 94.27% 6.72% 93.91% 6.49% 94.16%
8.25% 94.32% 8.09% 94.12% 8.05% 94.26%
10.44% 94.38% 9.62% 94.25% 9.49% 94.31%

Table 3.9: Results attained by the proposed three modular systems.

attained by combining classi ers trained on three distiieetture subsets, i.e. the intrinsic features
I, the tra c featuresT, and the content featur€s(see Section 3.4.4) by using again four elient

combination rules.

When combining classi ers trained on dirent feature spaces, we used both the combination
approaches described in Section 3.4.6. We noted that for8\¢C, the k-means, and the clustering
algorithm proposed in [31], the best performance was obthlyy estimating the posterior proba-
bilities for the target class as in (3.27) and then compatiege probabilities to a varying threshold
in order to compute the ROC curves. For the Parzen classhercombination of class conditional

probabilities, using (3.22) and the decision criteria 43, ®roduced the best results.

In the following, we discuss the results obtained by apgyiimne best combination approach
for each single classi er. Therefore, we present the resoittained by combining the posterior
probabilities for the -SVC, the k-means, and the clustering algorithm, and thalteesbtained by

combining the class conditional probabilities for the Rarzlassi er.

Tables 3.4, 3.5, 3.6, and 3.7 summarize the performancégesuthe test set in terms of AUC,
for the -SVC, thek-means, the Parzen classi er, and the clustering algoritihaposed in [31],
respectively. For each algorithm, the parameters have heexd on the training set. It is worth
noting that in the case of tHE€EMP protocol only intrinsic and trac features were available, thus
only the third kind of experiment could be performed by comiig two one-class classi ers trained

on intrinsic and tra c features, respectively.

The obtained results are discussed in Section 3.6.
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Evaluation of Overall IDS

In order to analyze the performance of the overall IDS, wé buiee systems:

1) An“optimal” system made up, for each module, of the claasion techniques that provided

the highest value of AUC, according to Table 3.8.

2) A system made up of one “monolithic-SVC for each module. We chose to us&VC
classi ers because on average they provide better redidtsthe other considered classi ers,

as discussed in Section 3.6.

3) As in the second system, we chose to us8VC classi ers. Then, for each module we
chose between a “monolithic” versus a MCS approach, acogrdi best performance results
reported in Table 3.4. It is worth noting that for tMiscellaneousnodule the performance
of the “monolithic” classi er is really close to the best pemmance result. Therefore, it
is di cult to conclued which approach really performs better ttrenother. We chose to
construct a system made up of one “monolithieSVC for theHTTP, Mail, Miscellaneous
and Private& Other modules, and a MCS for theTP and ICMP modules (we will further
discuss the motivation for this choice in Section 3.6). FeRTP module we used an MCS
constructed by using threeSVC classi ers, namely one trained on the subset of featlre
one on the subsé and one on the subs&t For thelCMP module we constructed a MCS
using two -SVC classi ers, namely one trained on the subset of featur@nd one on the
subsefl. In particular, for the=TP module, theminrule was used, whereas theaxrule was

used for thdCMP module.

In order to evaluate the performance of the three IDS systemascomputed some working
points according to the heuristic proposed in Section 3.4.Be attained results are reported in
Table 3.9. The motivation for the choice of the three proddfxs systems and the attained results

are further discussed in Section 3.6.
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3.6 Discussion

The results reported in Section 3.5.2 clearly show that t#8/C algorithm provides the highest
AUC value for all services, when classi ers are trained gsitl the available features. The dir-
ence between the performance é5VC and that of the other algorithms is very small in the adse

theHTTPand theMiscellaneougra c, while it is larger for the other services.

Tables 3.4, 3.5, 3.6, and 3.7 show that combining classiteaged on distinct feature sets
does not always improve performance, with respect to thtiaéad by classi ers trained on the
entire feature set. In particular, it can be seen that for {8&C, k-means, and Parzen classi ers,
the use of distinct feature sets clearly outperforms theafighe entire feature set F only for the
FTP, andICMP modules. In the case of the clustering algorithm, the usestindt feature sets
clearly outperforms the use of the entire feature set F arlyhieMail, ICMP, andPrivate& Others
modules. In all other cases the drences in performance are small, thus the superiority ef on
technique against the others cannot be concluded. Ungiglyn results show no regularity. For
this reason, it is di cult to explain the behavior of derent classi ers and combination rules on
di erent modules. On the other hand, results clearly show #wdt module should be carefully and
independently designed by making a decision about theidassn algorithm to be used, and by

choosing between an individual classi cation techniqud #re MCS approach.

Summing up, reported results allow us to conclude that t8&/C algorithm performs better
than the other ones, on average. Further, it is easy to seéhthaombination of distinct feature
representations usually provides signi cantly higherfpenance, with respect to just one classi er
trained on the entire feature set, only for iEP andICMP modules. These observations have been

used in Section 3.5.2, where three dient overall IDS made up of six modules are described.

In order to compare the performance of the modular systemoped in Section 3.5.2 to the
approach used by Eskin et al. [31], we trained the clusteaiggrithm proposed in [31] and the
-SVC on the entire training set obtained after subsampling.worth noting that this approach is
the same used in [31]. Besides, our test set is the same asghesed in [31], and we also used an
approach similar to the one proposed in [31] to adjust thaitrg dataset. The performance results

obtained on the test set are reported in Tables 3.10 and r&dgdectively. It is easy to see that if
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Clustering
False Alarm Rate | Detection Rate
1% 18.37%
2% 26.80%
3% 27.21%
4% 92.21%
5% 92.24%
6% 92.25%
7% 92.25%
8% 92.29%
9% 92.29%
10% 92.68%

Table 3.10: Results attained by applying the “monolithic” approachgshe clustering algorithm proposed in [31].

-SVC
False Alarm Rate | Detection Rate
1% 17.91%
2% 66.44%
3% 78.40%
4% 78.85%
5% 86.07%
6% 92.53%
7% 92.57%
8% 92.60%
9% 92.63%
10% 92.91%

Table 3.11: Results attained by applying the “monolithic” approachgdhe -SVC classi er.

the false alarm rate is set to 1%, the algorithms trained ertiire training set provide a detection
rate near 18%, while the proposed modular approaches gralgtection rates from 67% to 79%
(see Table 3.9). As the ectiveness of IDS depends on the capability of providindhtdgtection
rates at small false alarms rates, the proposed modulanagipes are very ective compared to the
“monolithic” approaches. At 4% false alarm rate, the "mathat” clustering algorithm provides
better results than the modular approaches, in terms ottimterates. However, for higher false
positive rates, the clustering algorithm does not providdgumance improvements, whereas the
proposed modular IDS reaches de nitely better detectidasravith respect to the ones obtained at
low false positive rates. It is worth noting that, from a piread point of view, the working point of
anomaly detectors are usually tuned to produce a low fatsenalate (e.g., equal to 1% or lower).
Reported results clearly show that the proposed modulaoapb outperforms the “monolithic”
approaches in the range of low false positive rates, duestoapability of allowing dierent false
positive rates on dierent modules. This result is even more evident if we compiaeBayesian

detection rates for the derent approaches at a false positive fadj: 1) = 0:01. Thea priori
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probabilities areP(l) = 0:985 andP(: I) = 0:015. In case of the monolithic approach using the
clustering algorithm proposed in [31], the detection R{ajl) = 0:1837 and the Bayesian detection
rate isP(IjA) = 0:2186. In case of the monolithic-SVC, P(Ajl) = 0:1791 and the Bayesian
detection rate i®(1jA) = 0:2143. On the other hand, in case of the modular approach ws{iC
classi ers P(Ajl) = 0:6796', and the obtained Bayesian detection rat®(i§A) = 0:5085, which

is much higher than the Bayesian detection rate attainedyuke monolithic approach. Although
more work has to be done in order to further increase the Bayeatetection rate, the modular
approach is promising and should be considered as a basmscfor the development of more

accurate anomaly detection systems.

1This number was obtained by linear interpolation betweerptiints (00091, 0:6731) and (@206 0:7561)
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Chapter 4

Learning in Adversarial Environment

As discussed in Chapter 3, learning from unlabeled tralirectly extracted from a live network
is an inherently di cult pattern recognition problem. Besides the dilties that characterize the
unlabeled learning problem itself, we need to take into astbow an adversary (i.e., an attacker)
could interfere with the learning process. As the tcadoes not undergo any labeling process
(e.g., by a human expert) attackers may try to pollute thaitrg tra c with properly crafted data
(e.g., packets or connections) in order to mislead the ilegralgorithm and make the resulting
detection model, and therefore the IDS itself, uselesshdridllowing we present dierent strategies
the adversary may use to interfere with the learning prodbs# theoretical eects, and possible
countermeasures. We then present a case study which shostiag example of how an adversary
may a ect the accuracy of intrusion detection schemes which asigled to protect against fast
propagating worms. We analyze automatic signature geaeralgorithms which aim at learning
“worm signatures” from (unlabeled) examples of worm owshelgenerated signatures are used by
worm detection systems in order to stop the propagationeofvtirm. We show how the attacker may
inject properly crafted noise in the training dataset ineotd mislead the signature learning process
and make the generated signatures @wive. In particular, we present an instance of the noise
injection attack that can evade Polygraph [76], a recentbpgsed signature generation system.
Polygraph is of particular interest for two reasons: a) ialide to generate signatures for worms
that use a high level of polymorphism, and b) it constructay® signatures” which represent

a statistical model of worm trac and therefore can be used as the detection model for network
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IDS based on statistical pattern recognition. We also piegessible ad-hoc countermeasures to
the proposed noise injection attack and discuss the reagoynsve believe a thorough and robust

solution to this type of attacks remains an open researdbigmro

4.1 Learning in Presence of Malicious Errors

To the best of our knowledge, the most signi cant theoretilg on learning in adversarial environ-
ment is [47]. Within the context of Valiant's Probably Apprmately Correct (PAC) learning [106],
Kearns et al. [47] analyze the problem of learning in the gmee of an adversary that may introduce
malicious errors in the data. The authors studydpgmal malicious errori.e., the largest value
of the probability of error on the training data that can Héetated by any learning algorithm for
a certain representation cla8s[47]. They show that there exist representation classewlfibch
the optimal malicious erromrate can be achieved using simple polynomial-time algarith Their
analysis is based on two-class problems. They refer to orleeoflasses agositiveclass and to
the other asegativeclass, and prove that algorithms that learn from labeledngkas of both the
classes can tolerate more errors in the data compared tdtlfgs that learn form labeled examples

of only one of the classes [47].

In [14], Barreno et al. discuss the security of machine liegralgorithms applied to the devel-
opment of IDS. They rst propose a taxonomy of attacks agdewrning algorithms. According to
the proposed taxonomy, they distinguish betweausativeandexploratoryattacks [14]. Causative
attacks aim to alter the training process by in uencing tistribution of training data. Exploratory
attacks do not aim to alter the training process, but aim $oadier information about the learning
algorithm through probing techniques. Within the class afisative attacks, the authors further
distinguish betweeintegrity and availability attacks. The objective afausative integrityattacks
is to mislead the learning algorithm in order to prevent B8 ko detect future intrusions. On the
other handcausative availabilityattacks aim to force the IDS to make a stient amount of errors,
so that it becomes useless and will be likely turnedby the administrator. Afterwards, an exam-
ple of causative integrity attack against an anomaly detdzased on a simple anomaly detection

algorithm is described. The simplicity of the learning algfon allows the authors to analytically
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Attack
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Figure 4.1: Causative attack against a learning algoriti@randG° represent two dierent attack instances. The training
dataset is polluted by placing data points along the liné ¢tbanects the center of the sphere@andG°. Di erent
amounts of well crafted data points are needed to misleadlgfeeithm and shift the decision surface so tBatst, and
thenG?, are not detected as anomalous [14].

study the problem of learning from polluted tra and nd a bound on the eort required by the
attacker to mislead the IDS so that future attacks will notlbtected. The considered anomaly
detection algorithm constructs a hypersphere around titeal@ata. During the operational phase,
the instances that lay outside the sphere are classi ed @®aous [14]. As shown in Figure 4.1,
the objective of the attacker is to pollute the training datahat eventually an attack instar@evill

lay inside the sphere, which means that the attack is not@etdy the IDS. Assuming the attacker
knows the set of features used to describe thedrdahe learning algorithm, and the current state of
the IDS, the attack strategy is to inject properly craftestances in the trac in order to force the

hypersphere to shift towards, until it lays inside the decision surface [14].

Barreno et al. [14] also propose possible countermeasande icausative attacks. For example
they propose to implememlisinformationand randomizationstrategies. Disinformations consists
in somehow lying to the attacker, whereas randomizatioits@tdaroducing some level of random-
ization in the paprameters used to train the model of nornaald, so that it is di cult for the
attacker to learn or guess the actual state of the IDS (iJleerevthe decision surface is placed).
This may make launching causative attacks morecdit. However, we believe countermeasures

are application dependent and are not always applicableamtiee, as we discuss in Section 4.6.
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4.2 Case Study: Misleading Worm Signature Generators

In the last few years, large worm outbreaks have pointed fmiirtadequacy of today's network
security systems. The now famous Code Red worm, releasedlyirr001, infected more than
360,000 hosts in less than 14 hours [73], whereas the Slamorar, released in January 2003, was
able to infect more than 90% of the vulnerable populatioressthen 10 minutes [72]. More recent
worms are able to propagate through multiple vectors [8Ta8@ to use mutation techniques in
an attempt to create variants which are dult to detect by using traditional signature-based IDS
[108, 26]. In 2002, Staniford et al. discussed the riskgeel#o the realistic ability of an attacker to
gain control of an enormous number of Internet hosts andipated the concept of “ ash-worms”,

which would be able to infect the entire vulnerable popolain tens of seconds [97].

A number of techniques have been proposed in order to tryrib the propagation of aggres-
sive worms, including anomaly detection [103, 113], dyrmampuarantine [119, 115], automatic
signature generation [53, 48, 94, 76, 117, 78, 99], addmasesand instruction-set randomization
[16, 46]. Among these, automatic signature generatioresysthave recently gained substantial

interest within the computer security research community.

Signature generation is a key step in the defense againsh wmpagation. Most of the sig-
natures used by rewalls or signature-based intrusiondliste systems (IDS) are created using a
manual analysis of worm trac ows. This is usually a time-consuming process, and thusmoa
keep pace with rapidly spreading worms. Manual analysi®mes even harder and more time-
consuming if the worms use metamorphism and polymorphisrhnigues. Automatic signature
generation is a promising alternative. The goal is to autmaldy, and thus very quickly, learn

worm signatures by extracting the invariant parts of exasmpf worm ows collected in the wild.

Early approaches [53, 48, 94] are based on syntactic aralysiuspicious trac ows. These
approaches have limited abilities to learn (or extractiabdé signatures from truly polymorphic
worms. Newsome et al. recently proposed two approachesdresslithis problem [76, 78]. Poly-
graph [76] is based on syntactic analysis of suspiciousdraws, and implements three derent
types of signature generation algorithms. Taint analy&83 s a semantic analysis approach based

on the execution of possible vulnerable applications msighrotected environment.
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We will focus on signature generation systems that aim atraatically learning and deploying
signatures that could be used by rewalls or network IDS.&D#utomatic signature generators are
based on the extraction bibst-basedsignatures that need to access the execution or application
environment they are trying to protect in order to besetive, as proposed for example in [64].
We do not discuss these systems here. We will examine thidesbidf syntactic-based automatic
signature generators in the face of advanced polymorphioyaehat not only spread using a high
level of polymorphism but also deliberatetyisleadthe learning process in order to prevent the

resulting signatures from stopping its propagation.

Using Polygraph [76] as a case study, we introduce a classtarfka whereby a worm can
combine polymorphism and misleading behavior in order terfere with the learning process and
disrupt the generation of reliable signatures. We will shbat this result can be achieved by in-
tentionally injecting properly crafted noise into the fiaig dataset of suspicious ows used by
syntactic-based signature generators to learn worm sigggat We will present a speci ¢ instance
of the attack that can mislead Polygraph, and then we widudis how such noise injection attacks
are general in that derent attacks can be devised to mislead other recently peopautomatic
signature generators. According to the taxonomy in [144, dliacks we present are causative at-
tacks against signature-based IDS which use automatigatigrated worm signatures to stop worm

propagation.

The system architecture of Polygraph includes a ow classimodule and a signature genera-
tion module [76]. The ow classi er collects the suspicioaad the innocuous ows from which the
signatures are learned. The authors assumed that the @si@acan be imperfect and that it can
introduce some noise into the pool of suspicious ows, rdigs of the classi cation technique used
by the ow classi er. The authors then proposed some techesgto cope with the noise during the
signature generation process. This design characteigstismmon to most of the syntactic-based
automatic signature generators. That is, little or no &tiaris paid to ltering the noise during the
suspicious ow gathering process. This is a serious shariog that can be exploited by combining
polymorphism and misleading behavior. We will show hownisleading polymorphic worroan
create and senihke anomalousows during its propagation to deliberately pollute the sétows

used to extract the signatures. Polygraph's authors diatethieir system is resilient to (at least)
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80% of noise into the set of suspicious ows [76]. We will shtiwat by constructing well-crafted
fake anomalousows, a worm can mislead the signature generation algorithoy injecting much
less than 80% of noise into the set of suspicious ows, thesgmting the generation of useful sig-
natures. We would like to emphasize that although we dematadhe e ects of the noise injection
attack on Polygraph, which is used as a case study here, geseral attack on all the syntactic-
based signature generation systems proposed in thediteta¢cause they do not addresses directly
the problem of intentional pollution of the dataset of suigpis ows. In particular, we will discuss
how the attack can be generalized to defeat other recennatitosignature generation systems, and

why it cannot always be prevented by essamantic-basedpproaches similar to [78].

4.3 Noise Injection Attack

Alarms

Intrusion Detection System

Signature $1,52):44Sn Signature
- "
Learning Matching
7 N
Suspicious Innocuous
Flows Flows

Flow
Classifier

Crafted Noise

Live Network Traffic

Figure 4.2: Worm signature generation and detection scheme.

Noise injection attack works by polluting the training sesaspicious tra ¢ ows, or suspicious
ow pool [48, 76], used by automatic signature generators in theatiiga learning (or extraction)
process (see Figure 4.2). The attack aims to mislead thatsigngeneration algorithms by injecting
well-craftednoise to prevent the generation of useful signatures. Ifoll@ving sections we brie y
survey the most common techniques used by a “ ow classi ér”"cbllect the suspicious ows.

We then show how the worm can inject noise withaypriori knowledge about the classi cation
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technique in use. To accomplish the task of misleading theasiire generation algorithms, the
noise has to be crafted in a suitable manner. dpént noise injection attacks can be implemented
by crafting the noise in dierent manners. We rst demonstrate how this attack can béeimgnted
against Polygraph [76], and then analyze the possibie®s of noise injection attack on Nemean
[117], another recently proposed automatic signature rgéore Di erent implementations of the

attack can be devised to mislead other signature generators

4.3.1 Collecting Suspicious Flows

A few techniques have been proposed to accomplish the tasklleicting the suspicious ows,
which represent (part of) the training dataset used fomiagrthe signatures. Honeycomb [53]
uses a simulated honeynet. Any ow sent towards the honegrieserted into the suspicious ow
pool. Nemean [117] uses a similar approach combining redlsanulated hosts. In [99] a double
honeynet is proposed. In this case a rst-layer honeynetdgarof real hosts. Whenever a rst-
layer honeypot is infected by a worm, its outgoing trais redirected to a second-layer simulated
honeynet and inserted into the suspicious ow pool. Autpdr§d8] implements a classi cation
approach based on port-scanning detection. Each valid e By a scanner to a valid IP address
is inserted into the suspicious ow pool. Anomaly-based i@ also be used as ow classi ers. For
example, PAYL [112] uses the byte frequency distributiothefnormal packets to detect anomalies,
and can be used as a ow classi er.

There are other techniques that are not considered in ody.skarlybird [94] extracts all the
possible substrings of a given xed lengthfrom each packet to compute the content prevalence.
cannot be reduced to just a few bytes due to computationaplexity and memory consump-
tion problems. As shown in [76], a polymorphic worm can coniavariants that are just two or

three bytes long, potentially evading Earlybird. Since study focuses omisleadingpolymorphic
worms that try to mislead signature generators, we mushasshat the ow classi er can detect
polymorphic worm instances as suspicious ows. Approadleesun-time detection of injected
code, e.g., [78, 64, 46, 16] are not considered because thdgrgely limited toapplication-based
worms (e.g., CodeRed [73], Slammer [72], etc.) and are nettve againsDS-basedvorms (e.g.,

Sasser [88], Zotob [89], etc.). We are concerned with géipengpose worms. More importantly,
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these approaches are “host-based” while almost all theraaito signature generators presented in

literature use “tra c-based” ow classi ers.

4.3.2 Injecting Noise into The Suspicious Flow Pool

Suppose a worm has infected a host in netwldnd is now trying to infect some hosts in network
B. Suppose also that each time the worm sends a polymorphianoesto a host i, it also sends
afake anomalousow to the same host, as shown in Figure 4.3. Section 4.3.8iges details on
the creation ofake anomalousows. For now consider that thiake anomalousow does not need
to exploit the vulnerability and thus can be crafted in a verible manner to appear like the real
worm in all but the invariant parts (which are necessary @akthe vulnerability). For example
afake anomalousow can be crafted so that it contains the same protocol fraork as the worm
(e.g., a GET request) and the same byte frequency distriipuaind at the same time not containing
the real worm's invariants.

Suppose the network B is monitored by a “treebased” ow classi er. The worm and itkake
anomalousow must both be stored in the suspicious ow pool in order téstead the signature
generation algorithm. This is possible with the ow classis we consider (see Section 4.3.1). We

describe how this can be accomplished with each of the owsilars below:

Honeynet In this case the vulnerable host that the worm is trying fedhcan be a real or
simulated honeypot. Since both the real worm andféike anomalousow are sent to the
same destination at (roughly) the same time, they will baltdnsidered suspicious by the

honeypot and stored into the suspicious ow pool.

Double honeynet In this case the real worm will infect a rst-layer honeypothereas the
fake anomalousow will not, and will be disregarded. However, only the ooigg tra ¢ will

be redirected to the second-layer simulated honeypot aneldsinto the suspicious ow pool.
Given that the outgoing trac generated by the worm instance at the rst-layer honeyplbt w
again contain both a real worm ow and another fake anomalowsthey will be stored into

the suspicious ow pool together.
Port-scanning detection If the worm scans more thasunused IP addresses, the source of
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Figure 4.3: Worm propagation
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Figure 4.4: Structure of the ows (simpli ed)

the scanning (i.e., the infected hostAp will be considered a scanner. Therefore, each ow
sent by the infected host ivtowardsB after the scanning phase will be considered suspicious.
Given that the real worm and thake anomalousow originate from the same source host,

they will be both inserted into the suspicious ow pool.

Byte frequency-based classi er Thefake anomalousow can be easily crafted to match the
byte frequency distribution of the real worm ow (as discedsn Section 4.3.3). This means
that if the real worm ow is agged as anomalous, fieke anomalousow will very likely be
agged as anomalous, too. Thus, both the worm andfdlke anomalousow will be stored

into the suspicious ow pool.

Note that each copy of the worm could craft and send more thafaie anomalousow at the
same time. In this case the real worm ow and allfake anomalousows will be inserted into the
suspicious ow pool together. The discussion above suggést without a semantic-based analysis

it is not possible to distinguish between the real worm ovdats fake anomalous ows.

4.3.3 Crafting the Noise: A Case Study Using Polygraph

In this section we present a noise injection attack devisemhislead Polygraph [76]. In order to

explain how the noise can be crafted to mislead Polygraphratedescribe the high level structure
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of a polymorphic worm and how Polygraph extracts worm sigrest.

High Level Structure of A Polymorphic Worm
As discussed in [52] and in [76], a polymorphic worm is madéheffollowing components:

Protocol framework. In many cases the vulnerability is associated with a pagiexecution

path in the application code. In turn, this execution pathlsaactivated by one (or just a few)
particular request type(s). Therefore, the protocol fraork is usually common to all the
worm variants. However, in some cases it may still be posdibimodify the attack vector,

thus reducing the number of invariants.

Exploit's invariant bytes. These bytes have a xed value that cannot be changed because

they are absolutely necessary for the exploit to work.
Wildcard bytes. These bytes can assume any value withoatcéing the exploit.

Worm's body. It contains the instructions the worm executes once theevability has been
exploited. If the worm uses a good polymorphic engine, thBges can assume dérent

values in each worm copy. Common techniques to achieve tsithli¢ode) polymorphism
include register shuing, equivalent instruction substitution, instructiororgering, garbage
insertions, and encryption. Dérent keys can be used in encryption forelient instances of

the attack to ensure that the body's byte sequence Ereit every time.

Polymorphic decryptor. It contains the rstinstructions to be executed after thinerability
has been exploited. The polymorphic decryptor decodes ¢nenis body and then jumps toit.
Obviously, the decryptor itself cannot be encrypted. Havgpolymorphism of the decryptor

can be achieved using various code obfuscation techniques.

Note that this is a simpli ed view.

Polygraph's Signature Generation Module

Polygraph consists of several modules [76]. A ow classigerforms ow reconstruction and

classi cation on packets received from the network. The sodeemed suspicious are stored into
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a suspicious owpool, whereas the ows deemed innocuous are stored inttnaocuous ow
pool. The signature generator module uses both pools dtirengignature generation process. The
objective of Polygraph [76] is to extract the invariant paof a polymorphic worm using three

di erent signature generation algorithms. We brie y summeahiaw these algorithms work.

Conjunction signatures. During the preprocessing phase the substrings common tieal
ows in the suspicious ow pool are extracted. These sulpgfsi are calledokens A con-
junction signature is made of an unordered set of tokens. v neatches the signature if it

contains all the tokens in the signature.

Token-Subsequence signatuteAs with the conjunction signatures, the set of tokens in-com
mon among all the suspicious ows are extracted. Then, easpicious ow is rewritten as

a sequence of tokens separated by a special charact#rstring alignment algorithm cre-
ates an ordered list of tokens that is present in all the sisg[@ ows. A token-subsequence
signature consists of the obtained ordered list of tokensowAmatches the signature if the

ordered sequence of tokens is in the ow.

Bayes signatures All the tokens of a minimum length that are common to at lealtout of
the total numbeN of suspicious ows are extracted. Then, for each tokep(t;jS uspicious floyw
andp(tjinnocuous flow, the probabilities of nding the token in a suspicious owein an

innocuous ow, respectively, are computed. A score

" #
p(t;jS uspicious floy
p(tijjinnocuous flow

is then assigned to each tokenThe probabilityp(tjS uspicious floyis estimated over the
suspicious ow pool, whereag(tjjinnocuous flowis estimated over the innocuous ow pool.
During the match process, the scorgdor the tokeng; contained in the ow under test are
summed. The ow matches the signature if the obtained taiales exceeds a precomputed
threshold . This threshold is computed during the signature genergitocess. Given a
predetermined acceptable percentage of false positiveds chosen so that the signature

produces less thanfalse positives and minimizes the number of false negativélse same
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time.

The conjunction and token-subsequence signatures aresibémt to noise in the suspicious
ow pool. For example, if just one noise ow that does not caint the worm's invariants appears in

the suspicious ow pool, the worm's invariants will not beteacted during the preprocessing phase
because they are not presenalhof the ows. For this reason Polygraph [76] applies a hieharal
clustering algorithm during the generation of conjunctamd token-subsequence signatures in an
attempt to isolate the worm ows from the noise. Each clusttsists of a set of suspicious ows
fa; ap; :;;a,g and the signature, extracted from the set. That is, each cluster can be refsssen
as a pairfag; a2; :;;aq0 Sa)- The similarity between two clusters is based on gheci city of the
signatures, namely, the number of false positives (medsawer the innocuous ow pool) produced
by the new signature obtained by merging the two clusters. ekample, the similarity between
two clusters fai; ap; :;;ang Sa) and €bq; by; ::;bmg &) is computed as the number of false positives
produced by the signaturg., extracted from the merged set of owsay;ay; ::;an; b1; by; ::;bmg
The algorithm starts withN clusters, one for each suspicious ow, and then proceedstively to
merge pairs of the (remaining) clusters. At each step, ¢rdyohe pair of clusters that upon merging
produce the signature with the lowest false positive rageatually merged. The algorithm proceeds
until all the “merged” signatures produce an unacceptabieber of false positives or there is only
one cluster left.

From a statistical pattern recognition point of view, thketas represent the features used to
describe network ows. In case of conjunction and tokenssgfuence signatures a ow is described
using binary features which encode the presence or absétaeens in the ow, whereas in case of
Bayes signatures the value of each feature representseagmoputed according to the probability
of nding a token in normal and worm ows, as described abo#esignature represents a prototype

to which network ows are compared during the detection gmagnition) phase.

Misleading Conjunction and Token-Subsequences Signatuse

A signature is useful if it contains at least a subset of thariant substrings of the worm. The hi-

erarchical clustering algorithm implemented by Polygregpgreedy [76]. This choice is motivated
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by the fact that a non-greedy clustering algorithm would @@ jgutationally expensive. This prop-
erty can be exploited by injecting well-crafted noise toverd the generation of a useful signature.

Below, we describe how to craft the noise to mislead Polygrap

Suppose that a polymorphic worm propagates using the sceswgibed in Section 4.3.2 (see
Figure 4.3). Suppose also that ke anomalousow is crafted so that it has some substrings in
common with the real worm, but does not contain titue invariant parts of the worm, as shown in
Figure 4.4. We call' | (True Invariants) the set dfue invariant substrings, anél (Fake Invariants)
the set of substrings in common between the worm and its fakenalous ow. Suppose now
that the suspicious ow pool contains three copies of thermjaaind then also three corresponding
fake anomalousows. We call w; thei-th copy of the worm in the suspicious ow pool arfdits
fake anomalousow. Note that FI; is di erent for di erent pairs ofw; and f; because each fake
anomalous ow is crafted speci cally according to a worm ownd each worm ow is dierent

due to polymorphism.

The clustering algorithm starts (at step 0) by constructing signature for each (single) ow
in the suspicious ow pool. During the rst step of the cludtey process, whenever a worm ow
w; and the corresponding fake anomalous dware considered together, a signature containing
the common substringsl; will be generated. It is worth noting that the generated atigre in this
case will not contail |. Whenever two worm owsw; andw; are considered together, a signature
containingT | will be generated. Whereas, whenever two fake anomalous and f; or a worm
ow w; and a fake anomalous ow; (j , i, i.e, itis from a di erent worm ow) are considered
together, the generated signature will contain just siggtrextracted from the protocol framework
PF (and possibly other substrings that are in common just byiadla Obviously, a signature
containing mostly tokens extracted from the protocol frenmidx would produce a high number of
false positives because the norfiralocuous ows will also need to use the protaegplication and
thus can also contain substrings of the protocol framew®Herefore, pairs ofy; and f; and pairs
of fiandf; (i, j) will not be merged. Now, the question is whether a paiwpénd f; (resulting
in a signature containingl;) or a pair ofw; andw; (resulting in a signature containifigl) will be

merged.

Let p(false positivig=1;) andp(false positivel' 1) be the probabilities that a signature contain-
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ing Fl; and a signature containingl will produce a false positive, respectively. If the fakedriv
antsFl; had been “well-crafted” by the worm during propagation sai {h(false positivg-l;) <
p(false positive I), the “merged” signaturs,;, produced by the rst step of the clustering algo-
rithm (see above) will contaif|l; but will not containT|. That is, a worm ow and its correspond-
ing fake anomalous ow, say; and f; will be merged. Of course, the question is how to obtain
p(false positivi-1;) < p(false positivi I). In Section 4.3.3, we will describe how to produce,
in practice, a fake anomalous ow that corresponds to a troenw ow. For now, we state that
the FI; tokens are made of random bytes and that the total numbehandrtgths of tokens iRl;
are greater than the number and the lengths of tokefid.imMs a result,p(false positivg-l;) <
p(false positiv@l 1) will be very likely to hold. To show this, leps(b) be the probability of a byte
b, contained in a fake invariant token, to appear in an innasuow, and p(b) the probability of a
byte b, contained in a true invariant token, to appear in an innosuow. Let the cardinalities of
the setsl; andT1 be x = jFl;j andy = jTlj, respectively, and the lengths of a tokgn2 Fl; and

a tokent;, 2 T belk andhy, respectively. Assuming the bytes of a token to be extrafttad a

uniform random distribution and assuming the tokens to &kssically independent, we can write:

p(false positiviFl;) = Qﬁle'jkzl pr (b))

4.1)
Qy Q hk

p(false positivel'1) = ~;_, =1 pr(bx:j)

whereby; is the j-th byte of thek-th token. Now, if we assume that the byteg have the same
probability, p, to be present in an innocuous ow, so that(bj) = pi(bj) = P, 8k;j, it is easy to
see that ifx avg(ly) >y avg(hg) we can obtairp(false positiveg=1;) < p(false positivel l).

Now, returning to the clustering process. At this pointréhis one cluster, sayfws; f1g s1),
and two worm ows and two fake anomalous ows. Consider ab tandidates for merging. We
already know from the above discussion that if we only caarsithe four clusters containing a
single ow, the only acceptable merging will be between amvoow and its corresponding fake
anomalous ow, say, and f,, resulting in a signature containirfig». Butws, (or f») can also merge
with the existing cluster, resulting in a de&ty; f1; wog(or fwy; f1; f,09. By extracting the substrings

common to all the three ows the algorithm would obtain onbkéns belonging to the protocol
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framework (and possibly other small substrings that aremsomto all three ows just by chance).
We callCS;j the signature extracted frofw;; fi; wjg(or fw;; fi; fj0. Note thatT| * CS;;. Again,
p(false positivi-l;) < p(false positiviCS;;) will very likely hold given thatCS;; will mostly
contain just tokens from the protocol framework. Thereftine only acceptable clusterfia,; fog
The algorithm continues and nally there will be three chkrst, namelyfwy; f1g fws; f,gand
fws; f3g and three corresponding signatures. At this point, theteting algorithm will consider
merging the clusters, say, to forfftwy; f1g fw,; fogg But the set of substrings in common among all
the four ows will not containT 1. Once again, the signature will mostly contain invariaeiated
to the protocol framework, and as a result will likely produchigh number of false positives. Thus,
this cluster is not acceptable, and the clustering algoritlas to terminate.
In conclusion, the noise injection attack misleads Polghreo generate signatures containing

the fake invariant stringgH(;), rather than a useful signature containing the true iavasi{ |).

Misleading Bayes Signatures

To generate Bayes signatures, Polygraph rst extractsakenis of a minimum length that are
common to at leasK out of a total number oN suspicious ows. IfK = 0:2 N, as suggested
in [76], an attacker can mislead the Bayes signatures bylgiprpgramming the worm so that it
sends ve fake anomalous ows per worm variant because i ¢aise the true invariant$ () occur
in less than 20% of the suspicious ows and will not be extdetsed. It seems then that for a low
value ofK the worm needs to ood the suspicious ow pool with a large menof fake anomalous
ows. However, we show how the worm can craft the fake anomsl@ws so that just a few (one
or two) of them per worm variant will be swcient to mislead the generation of Bayes signatures.
If a worm crafts the fake anomalous ows as described in $ecii.3.3, the Bayes signature
generation algorithm will very likely generateuaefulworm signature containing tokens related to
the protocol frameworlPF and the true invariant tokesl. The tokend?F will be present in 100%
of the suspicious ows, whereas the tokehkwill be present in 50% of the suspicious ows if one
fake anomalous ow per worm variant is used. The fake invag#& | are specic for each worm
variant and its fake anomalous ow. This means e&dhwill, in general, be present less th&n

times in the suspicious ow pool (unlessis very small) and will not be used to generate the Bayes
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signatures. In short, the technique described in Secti®d 4annot mislead Bayes signatures.

As described in Section 4.3.3, during the generation of &Bajgnature a scorg is computed
for each token; in the signature. During the matching process, the scoresatéhed tokens are
summed. The technique we develop here is to insert a setigsin the fake anomalous ows in
such a way that the generated signatures contains tokenwithecore an innocuous ow higher
than a true worm ow, thus making it very hard to set a propeeshold value () to obtain both low

false positive and false negative rates.

Consider now a length string of bytesy = (v1;vo; ::vy) that appears in the innocuous ow pool
(but does not appear in the worm ows) with a probabilgyhat is neither too low nor too high, for
examplep; = 0:05 < p(vjinnocuous flow < 0:20 = py. If vis injected into the fake anomalous
ows generated by each variant of the worm, this string wilpaar in at least 50% of the suspicious
ows. This means that the stringwill be considered as a token in the Bayes signature. We have
p(vjsuspicious floyw 0:5 andp; < p(vjinnocuous floy < p», thus the tokew would receive a
score  betweerog(0:5=p2) andlog(0:5=p;). If we split the stringv to all the possible substrings of
lengthm < n, we will obtainn m+21di erent substringg;:m = (V1; V2; :Vim), Vo1 = (V2; V35 1V 1),
vV mrtn = (Vi me1s Vo me2; 2Vn). Suppose now the worm injects all of the m+ 1 substrings
randomly (with respect to the position for each substrimgg@ach fake anomalous ow, instead of
injecting the entire string. All of the substrings o¥ will be present in at least 50% of the suspicious

ows in the suspicious ow pool and will therefore be addedtakens into the Bayes signature.

If mis not much lower tham, we can expect thai(v;;j+m 1jlnnocuous floywwill be not much

higher thanp(vjlnnocuous flow. In turn, we expect the scorg associated with each of the

jijtm 1
n m+ 1 substrings o¥ to be not much lower than the scorg This results in a multiplying eect
on the score of because a ow that containsalso contains all of its substrings. We will refer to

the stringsv;j+m 1; j = L::(n  m+ 1) asscore multiplier strings

The Bayes signatures now incluBé&, T | and the score multiplier strings. During the matching

phase, the total score for a real worm ow is:

X X
S= PF + Tih (4.2)
| h
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Here 1), is the score of a worm's true invariant tok@n, and pf, is the score of a protocol
framework tokerPF, (note that the worm will not contaiw).
On the other hand, the total score for an innocuous ow coitigiv is at least

nym+1
= (4.3)

Vi:j+m 1
=1

The innocuous ow containy and thus all of its substrings, which are tokens in the Bayes
signatures (the ow can also contafPF tokens etc.) If the attacker choosesand m such that

> S, it will be impossible to set a thresholdfor the Bayes signatures that will produce a low
false positive rate and low false negative rate at the same tiThis is because if< S (and then
also < ) the signature will generate a high number of false pogtifeom around 5% to 20%
for the proposed example(® < p(vjlnnocuous flow < 0:20), due to the presence afand then
of all its substrings, into a non-negligible percentage aimal tra c. On the other hand, if>
(and then also> S) the Bayes signature will produce around 100% false neggmtiv

In conclusion, the attacking technique described heregntethe generation of a useful signa-

ture. We will discuss in Section 4.4 how the attacker canraatizally extract a set afandidate
stringsv (and therefore itscore multipliersubstrings) from network trac traces. The obtained

candidate strings can be used to obtain the multiplyingce explained above.

Crafting The Noise

Before propagating to the next victim the worm must rst ¢eea polymorphic copy of itsely;.

Then it can create the associated fake anomalousfiawsing the following algorithm:

a) fi(o) = clong(w;): Create a copy ofv;.

b) £* = randomlyPermuteByteg f): Permute the bytes of® but leaving the protocol

framework bytes unchanged.

c) a ] = extractFakelnvariants(w; ,k,1): Copyk substrings of length from w; into an arraya,
choosing them at random, but do not copy substrings thaatoptotocol framework or true

invariant bytes.
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PF1  PFz Vas

PFz

]

[ Protocol Framework [ Randomly permuted bytes
£ Fake Invariant [ Score multiplier strings

Figure 4.5: An example of fake anomalous ow

d) @ = injectFakelnvariants(f{",a[ ]): Copy the fake invariant substrings inf$"” but do not

overwrite bytes belonging to the protocol framework (segufé 4.4).

e) £ = injectScoreMultiplierStrings (£ v): Injectscore multiplier stringsn (2 by splitting
a stringv as explained in Section 4.3.3. The stringan be chosen from a set of candidate
strings obtained by means of an analysis of normal netwarkditraces performed using the
algorithm explained in [81]. The attacker could embed a sub&the candidate strings into
the worm's code. The decision on which strimgo use can be based on time. For example,
the worm could embed the time of its rst infection into itsd®and then use a derent
string v periodically (e.g., every 10 minutes for a fast-propaggiivorm). This is necessary
because the worm and its fake anomalous ows can arrive abthelassi ers from multiple
infected hosts. Given that trecore multiplier stringshave to be present in a high fraction
of the total number of fake anomalous ows into the suspisigol, the worm cannot just
pick v at random each time it propagates to a new victim. Insteadh \ehas to be used for a

period of time.

f) fi(4) = obfuscateTruelnvariants( fi(3)): This is necessary becaus@ could still contain some
true invariant strings, even though just by chance. Thesuafiion process assures tHf%\At)

will not contain the worm's true invariants.

Here £ represents an “update” df" »). The nal fake anomalous owf( and the worm
variantw; are sent together to the next victim. An example of the appba of the above algorithm
is reported in Figure 4.5. The fake anomalous ow has beeftattaisingk = 3 fake invariants of
lengthl = 4. The stringv is 6 bytes long and the length of teeore multiplier substringss m= 3.

It is worth noting that the resultinfpke anomalousow does not contain the true invariant tokens.
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If the byte frequency distribution of; and f; are not very close (due to the injection of the score
multiplier strings) a simple padding technique could beligdpto make the two byte frequency

distribution closer.

Combining Noise Injection and Red Herring Attacks

In Section 4.3.3 we presented how the fake anomalous owsbeacrafted to mislead the gener-
ation of Conjunction and Token-subsequences signatures.su€h attack to be successful, fake
anomalous ows generated by dérent worm variants should not contain common substringse. T
attacking method presented in Section 4.3.3 to misleadéhergtion of Bayes signatures violates
this constraint because all the fake anomalous ows in tlepisious ow pool have to contain the
samescore multiplier strings However, this turns out not to be a problem. During the aagilbn

of the hierarchical clustering algorithm, whenever twoefa@omalous owsf; and f; are involved

in a merge, the extracted tokens will be either part of theqma framework orscore multiplier
substrings. Therefore, the generated signature will ikeyyl produce a high number of false pos-
itives and the ows will not be kept in the same cluster. It et very likely to see (following
the analysis in Section 4.3.3) that the only acceptablgersisrefw;; fig Thus, the attack against
Bayes signatures described in Section 4.3.3 does noten¢arfith the attack against Conjunction or
Token-subsequence signatures. It follows that craftiaddke anomalous ows as described in Sec-
tion 4.3.3, the attack is ective against the three dérent types of Polygraph signature generation
algorithms.

However, the results of the attack are not deterministiqadédictable. As mentioned in Section
4.3.3 it is possible that a set of ows contains some subgsrithat are common just by chance to
all the ows in the set. For example it could happen that twawwariantsw; andw; present (by
chance) a common substrirg;, besides the protocol framework and true invariant tokeFtsis
means that to avoid; andw; being kept in the same cluster, the constraifftalse positivi-1) <
p(false positivel' I; ¢;;j) needs to be veri ed. Given that;; is unknown, it is not easy to craft the
set of fake invariant& | to assure that this constraint is satis ed. Besides, evéteifvorm crafts1
so thatp(false positivg1) is close to zero, it can also happen tipatalse positiveT I;c;;j) = 0.

In this case there is no way to determine which signature iserapeci ¢ than the other, and we
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assume the merged cluster to be kept is chosen at random.

We will show in Section 4.4 that in practice the probabiliiysoiccess for the noise injection
attack is fairly high. To further increase the success chanthe noise injection attack, it is possible
to combine it with thered herring attack discussed by Polygraph's authors in [76]. The worm
variants could include somemporary true invariantghat change over time. If the Conjunction
and Token-subsequence signature generation algorittodsige (by chance) a useful signature, this
signature would become useless over a certain period of #fter this period of time Polygraph
could try to generate again new Conjunction and Token-sju#s®e signatures to detect the worm.
Nevertheless, this time Polygraph may not be as “fortunasethe rst time in generating a useful
signature. Besides, if themporary true invariantsvere chosen among high frequency strings (e.g.,
extracted from network traces using the algorithm preskm¢81] setting the probability between
0.8 and 1), the related tokens would receive a low score gtin@ generation of the Bayes signature
and therefore would not interfere with the noise injectittack against Bayes signatures. The nal
result is that the attacker has a very high probability tacead in misleading all the three types of

signatures at the same time.

4.3.4 E ects of the Noise on Other Automatic Signature Generators

We have performed experiments only on Polygraph. Howeverpossible to evaluate the ects
of di erent noise injection attacks on other systems basing taksas on the description of the
signature generation algorithms. We present an analysiseopossible eects of noise injection
attack on Nemean [117].

Nemean is a recently proposed automatic signature gendhatibuses a semantic analysis of
the network protocols and two types of signatures, nameipeaction and session signatures [117].
It uses a honeynet to collect the suspicious ow pool. Thepjtlies a clustering algorithm to group
similar connections irconnection clusterand similar sessions igession clusters Each cluster
contains the observed variants of the same worm. Even thNeghean is suitable for generating
signatures for worms that use limited polymorphism [11f/ihtroduces interesting features such as
semantic protocol analysis and connection and sessiotecdhgs For this reason, it is interesting to

discuss how it could be misled using the noise injectiorcktta
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Nemean represents a connection by a vector containing #tebdiion of bytes, the request
type and the response codes that occurred in the networjtbth Thefake anomalousows
can be injected into the suspicious ow pool as explained éct®n 4.3.2. Given that thiake
anomalous ows can be crafted to have the same protocol framework ahddgt perfectly) the
same distribution of bytes as the worm variant they derigenfrthefake anomalousows and the
worm variants will be very likely considered in the same cartion cluster. If thdake anomalous
ows are crafted by applying a random permutation of the werbytes (see Section 4.3.3), the
signature generation algorithm will not be able to discosigni cant invariant parts common to
the ows in a cluster, and the extracted connection sigrastwrill be useless because they will
likely produce a high number of false positives. This noigedtion attack will aect the session
signatures as well, given that they are constructed basdideoresults produced by the connection

clustering process [117].

4.4 Experiments

In our experiments we tried to have an experimental setujiasito the one reported in [76] in
order to make the results comparable. Polygraph softwametipublicly available, therefore we

implemented our own version following the description af gigorithms in [76].

4.4.1 Experimental Setup

Polygraph setup We performed all the experiments setting the minimum toleeigth = 2
and the token-extraction threshold for Bayes signatureigeion to be 20% of the total size of the
suspicious ow pool. We also set the minimum cluster size &an@ the maximum acceptable false
positive rate for a signature to be 0.01 during the appbcatif the hierarchical clustering algorithm
for Conjunction and Token-subsequences signatures.

Polymorphic worm. We considered the Apache-Knacker exploit reported in §&fhe attack
vector for the worm. We simulated an ideal polymorphic eadiollowing the same idea used
by Polygraph's authors, keeping the protocol frameworkhef attack and the rst two byte of the

return address xed and lling the wildcard and code bytegammly at random. Each worm variant
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matches the regular expression:
GET .* HTTP/1.1\\n.*\r\nHost: .*\r\n.*\r\nHost: .*\xFF \XBF.*\r\n

Datasets We collected several days of HTTP requests taken from ticgbmme of a busy
aggregatedl16 and/17 academic network (i.e., CIDR [35] blocks of the foarb.0.0/16 and
c.d.e.0/17 ) hosting thousands of machines. The collected traontains requests towards thou-
sands of dierent public web-servers, both internal and external wagpect to our network. The
network tra c traces were collected between October and November 2004plivthe tra c traces
to obtain three dierent datasets which are described below.

Innocuous ow pool. The innocuous ow pool was made of 100,459 ows related toTHT
requests towards 898 dérent web-servets Among these, 7 ows matched the same regular ex-
pression as the polymorphic worm. Thus, in absence of noibeisuspicious ow pool, a generated
signature that matched the worm invariants would resultduad 0.007% of false positives on the
innocuous ow pool. These 7 ows were the only ones to conthenxFFxBF string. Very similar
to our tra c data, theFFWBF string was present in 0.008% of the evaluation ows usg&oly-
graph's authors to perform their experiments [76]. In [#6 txFFXBF token caused the Bayes
signature to produce 0.008% of false positives.

Test ow pools. We used two sets of test ows in our experiments. The rstwas made of
217,164 innocuous owsextracted from the trac traces. We inspected this test set to ensure that
it did not include any ow containing thexFFxBF string. The second test set was made of 100
simulated worm variants. We used the rst test set to meathgréalse positive rate and the second
to measure the false negative rate produced by the sigsatNme that we obtained the innocuous
ow pool and the test set made of innocuous ows from two éient slices of the network traces.

Score multiplier strings. We used a dataset made of 5,000 ows to extract the scorepinedt
strings. We analyzed the ows using the algorithm preseied81]. We extracted all the sub-
strings of length from 6 to 15 bytes having an occurrenceuieegy between 0.05 and 0.2, obtaining
around 300 dierent strings. Many of them were strings related to HTTRdbealds introduced by

certain browsers, such as “Cache-Control’, “Modi ed-Sic“Firefox/0.10.1”, “Downloadei6.3",

1The ows were “innocuous” in the sense that they did not contae considered worm.
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etc. The extracted strings are the candidate strings timbeaised to obtain a score multiplying

e ect to force Bayes signatures to generate a high numberss faisitives, as explained in Sec-
tion 4.3.3. It is worth noting that the ows used to extraat tore multiplier strings contained both
inbound and outbound HTTP requests taken from the perinoéteur network. The ows were
related to requests among a large number okgnt web-servers and clients. For these reasons
we expect the obtained strings and occurrence frequerncias general and not speci ¢ just to our
network.

Fake anomalous ows We crafted the fake anomalous ows using the algorithm e@mésd in
Section 4.3.3. We usekd= 2 fake invariants of length= 5 for all the fake anomalous ows. We
used several combinations of score multiplier strindgpy splitting them in di erent ways to obtain
a di erent number of substrings for each test. For each fake dnomaw, we choses of the

obtained substrings at random and injected them into theé’.ow

4.4.2 Misleading Bayes Signatures

In [15] Polygraph's authors state that Bayes signaturesemiient to the presence of noise into the
suspicious ow pool until the noise level reaches at lea$t81F the total number of ows. In our
experiments we found that if the fake anomalous ows are erlypcrafted, just 50% of noise in the
suspicious ow pool (i.e., 1 fake anomalous ow per worm \amnt) can make the generated signature
useless. We performed several experiments using 10 woiantgiand 1 or 2 fake anomalous ows
per variant in the suspicious ow pool. The fake anomalousvsowere crafted as explained in
Section 4.3.3 and 4.4.1. We report the results of two groupsi$ below.

Case 1 We obtained the best result using “Firef@x.0.1" (12.2%) and “shockwave- ash”
(11.9%) as score multiplier strings. The percentages lmtywarenthesis represent the occurrence
frequencies of the strings (see Section 4.4.1). We splitvtloescore multiplier strings to obtain all
the possible substrings of sine= 9 (e.qg., “FirefoX0”, “irefox/0.”, “refox/0.1", etc.).

As described above, we simulated two attack scenarios dsamgl 2 fake anomalous ows per

2The extracted strings could obviously presentdient occurrence frequencies over time. Neverthelesssiagonable
to assume that the attacker could perform a similar anatystsa c traces collected just a few weeks or even days before
launching the attack.

3Thus, the fake anomalous ows did not always contain the ssehef substrings.
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Figure 4.7: Case 1. The false positives are measured over the test
ow pool

worm variant, respectively. Therefore, the suspicious paol was made of 20 ows during the

rst attack scenario and of 30 ows during the second one. \Waarated the Bayes signature on
the suspicious ow pool and measured the false positivesratethe innocuous ow pool and the
test ow pool made of innocuous trac. The results are shown in Figure 4.6 and Figure 4.7. Please
note that the graphs are represented orint ranges of false positives to highlight theatience
between the two attack scenarios. The plots representlfiegfasitives and false negatives produced
by the signature while varying the thresholdstarting from 0.0 and incrementing it using a 0.5
increment step. A threshold equal to 0.0 obviously produd$o of false positives and 0% of
false negatives. By incrementing the threshold, the péagenof false positives decreases. The

arrows indicate the coordinates related to the maximumevalthe threshold that produces no false
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Figure 4.8: Case 2. The false positives are measured over the innocaeupool

negatives. The Bayes signature generated during the secendrio is reported in [81].

In Section 4.3.3 we discussed how Polygraph optimizes ttestiold for Bayes signatures. It
is easy to see from Figure 4.6 that the noise injection atteekents the thresholdto be optimized.
Consider for example the graph related to the injection @kefanomalous ow per worm variant.
If = 9:5, the signature generates 11.74% of false positives andf@&tse negatives. In order to
decrease the number of false positives the threshold wadd to be incremented further. However,
as soon as the threshold exceeds 9.5 the signature prodi@¥sdf false negatives.

Case 2 In this case “Pragma: no-cache” (9.4%) and “-powerpoiiit0%o) were used as score
multiplier strings. We split these two strings to obtainta# substrings of lengtim = 4. Again, the
suspicious ow pool contained 10 worm variants and 1 or 2 fakemalous ows per variant. The
results are reported in Figures 4.8 and 4.9. Please notealjain, the graphs are represented on
di erent ranges of false positives to highlight theatience between the two attack scenarios. The

Bayes signature generated during the second scenariogafamalous ows per worm variant) is

reported in [81].

4.4.3 Misleading All The Three Signatures at The Same Time

The objective of the noise injection attack is to prevent geaeration of useful signatures. In
order to achieve this result the attack needs to preventehergtion of useful conjunction, token-

subsequences, and Bayes signatures at the same time. Ass#iddn Section 4.3.3, the results of
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Figure 4.9: Case 2. The false positives are measured over the test oW poo

1 fake anomalous ow| 2 fake anomalous ows
Conjunction 73.3% 88.9%
Token-subsequences 60.0% 73.3%
Bayes 100% 100%
All three signatures 44.4% 62.2%

Table 4.1: Percentage of successful attacks (using “Forwarded-Fat™&lodi ed-Since”)

the attack are not deterministically predictable. In ondeestimate the probability of success we
simulated the noise injection attack multiple times. Wesidered an attack successful if Polygraph
did not generate a conjunction or token-subsequence signtiat would match the worm and if
the Bayes signature produced more than 1% of false positiessured over the innocuous ow
pool. Even though a false positive rate around 1% is seesningl, we consider it intolerable for
a blocking signature. We report the results with fake anomalous ovedted using two dierent
combinations of score multiplier strings. We divided thst$einto two groups. The rst group
of tests were performed using “Forwarded-For” (11.3%) aktbdi ed-Since” (15.2%) as score
multiplier strings, splitting them into substrings of léghgn = 5. The second group of test were
performed using “Cache-Control” (15.1%) and “Range: byf&$.9%), splitting them in substrings
of lengthm = 4. For each group of tests we simulated two noise injectitachktscenarios using
1 and 2 fake anomalous ows per worm variant, respectivelye ¥ged 5 worm variants in the
suspicious ow pool for both the rst and the second scenaviée generated the signatures 45 times
for the rst group of tests and 20 times for the second groupe Tesults are shown in Table 4.1

and Table 4.2. The reported percentages represent how nmaey the attack was successful in
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1 fake anomalous ow| 2 fake anomalous ows
Conjunction 65% 95%
Token-subsequences 40% 90%
Bayes 90% 100%
All three signatures 20% 85%

Table 4.2: Percentage of successful attacks (using “Cache-Contnol™Range: bytes”)

avoiding the generation of useful signatures. The rst¢hrews report the percentage of success
computed for each type of signatures, individually. Théda® represents the percentage of attacks
that succeeded in misleading Polygraph so that it could @oéate any useful signature, regardless
of the signature type. It is worth noting that in both expents, when using 2 fake anomalous ows
per worm variant, the attack has a higher probability to ead¢ and further, it prevents Polygraph

from generating a useful Bayes signature 100% of the time.

4.4.4 Analysis of the Results

Polygraph's authors showed that their system is resiliertheé presence of as much as 80% of
“normal” noise in the suspicious ow pool [76]. However, weaved that if the noise is properly
crafted, just 50% of noise could prevent Polygraph from getimeg useful signatures a majority
of the times. As shown above, if the detection threshold fayd® signatures is set in order to
produce a low amount of false positives, we obtain almosed 00 false negatives. According to
the attack taxonomy in [14], we can interpret this as theltefua successfutausative integrity
attack because the learning phase is in uenced so that futurekattaill not be detected. On the
other hand, if the detection threshold is set so that a lowbmisrof false negatives are produced, the
signatures generate too many false positives. If the sigestvere deployed they would produce a
self-Denial of Servicattack. We can interpret this as the result of a succesafigative availability
attack

In addition, as explained in Section 4.3.3, the noise ilgecittack can be easily combined with
the red herring attack discussed in [76]. The combinatich@fwo attacks increases the probability
that the worm will prevent the generation of a useful sigreatu

We also conducted preliminary experiments on NETBIOS trdo extract score multiplier

strings that can be used by a worm that uses this protocoltaskatector. We chose NETBIOS
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because it is an attack vector for most of @8-basedvorms. We analyzed more than 5,000 NET-
BIOS ows, searching for strings of length from 6 to 15 byteglaan occurrence frequency between
0.05 and 0.2. We found 29 candidate strings in “TCP-basedTBIDS tra ¢ and 58 candidate

strings in “UDP-based” requests. This experiment sugglatsour noise injection technique using

“score multiplier” strings can work for a variety of protdso

4.5 Attack Against Semantic-based Signature Generators

In [78] Newsome et al. propose dynamic taint analysis fopmugttic signature generation. The
idea consists in running (potentially) vulnerable netwapplications in a virtual machine. This
gives full control on the instructions executed by the aggilon. The method aims to detect the
memory location to which the execution of the applicatiohijacked while under attack. Assume,
for example, an application running in the virtual machioetgint analysis has a ber over ow
vulnerability [79]. Assume also a new worm has been devel@perder to exploit this vulnerability.
While running in the virtual machine, all the data arrivirythe vulnerable application from the
network are labeled as tainted, and every attempt to hifseRpplication's execution ow to execute
code contained in tainted data is detected. As soon as thm vawv tries to force the application
to execute the worm's code, the application is stopped aeddimt analysis engine registers the
address where the worm code resides in memory. As there sira jimited number of possible
address locations the worm could use, part of the registedeldess (e.g., the rst two bytes) is
likely shared by all the (polymorphic) variants of the wormdamay be used to help Polygraph
in generating a more robust worm signature [78]. Accordmthe description of fake anomalous
ows given above, the noise injection attack we presentedld/oot work in this case, because the
fake anomalous ows do not attempt to exploit the vulneiigbénd are then ltered out by the taint
analysis engine. On the other hand, we can imagine of a nujsetion attack for which the fake
anomalous ows are constructed to actually exploit the ewdility and hijack the application's
execution ow to a random memory address. In this case it iscdit to distinguish between a real
worm and a fake anomalous ow. This means that the fake anmmsabws cannot be easily Itered

out, unless further and more expensive semantic analygisrfermed. The only shortcoming of
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this attack is represented by the fact that the worm propagatould slow down. Given that each
new worm instance and its fake anomalous ows are sent to éxé victim in a random order, it

might happen that the rst ow to be received by the applicatiis a fake anomalous ow. In this

case, because the fake anomalous ow actually exploits tih@evability, the attacked application
may crush due to the attempt to hijack the execution to a rntemory address. This prevents
the worm ow, which arrives later, to be executed and infdee machine. On the other hand,
whenever the worm ow is the rst to be received, the machisénfected and contributes to the

worm propagation.

4.6 Possible Countermeasures

A possible defense against our implementation of the nojgetion attack is to use a white list to
attempt to lter out ows that contain the score multiplientsstrings. However, this is not straight-
forward and may not even be possible. As shown in Sectiod 4tdere are a very large number
of strings that a worm can potentially use. The set of candidtrings extracted from the tra
are determined by the occurrence frequency ranges, andtthefsubstrings are determined by the
string length value. These are chosen by the attacker andoatenowna priori to the signature
generator. Further, the strings actually used by a wornauist to create fake anomalous ows can
change over time. As a result, a reliable way to lter out th&d anomalous ows is to look for
occurrences of all possible substrings of a very large sestrofgs. This can be very expensive.
Further, such aggressive ltering may prevent the systasmfproducing useful worm signatures
that happen to contain such substrings.

Another possible countermeasure against the score meitgitings technique is to modify the
detection algorithm for Bayes signatures. For exampleyyeime a test ow matches a token, the
related bytes in the ow should be marked to prevent them ffparticipating” in matching another
token of the same signature. This means that the score ferltgp ect described in Section 4.3.3
cannot be achieved anymore. However, the attack may stik wanultiple candidate stringy
(see Section 4.3.3) are carefully chosen and if they are wfilhout overlap, although now the

induced false positive rate may be much less than the on@edtduring the experiments reported
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in Section 4.4.2.

Even if the above countermeasures happen to work in soms, ¢thsdundamental problem still
exists: without an accurate and robust ow classi er that gaevent the injection of fake anomalous
ows, syntactic-based automated signature generatorgudnerable. The noise injection attack we
have described above is proof-of-concept. We suspect drerenany other similar attacks which
may also defeat semantic-based signature generatorss@gbee in Section 4.5, and believe that a

robust solution to the noise injection attack is still anmpesearch problem.
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Chapter 5

Operating in Adversarial Environment

In the previous chapter we discussed how an adversary méy imerfer with the learning process
used by IDS. In this chapter we describe another challengsuiie no interference was present
during the training of the IDS. After deployment, the adagysmay still try to launch sophisticated
attacks which are crafted in order to “evade” the IDS, so tfwatlarm is raised. In the following
we focus onevasive attacksgainst anomaly-based IDS. Evasive attacks of this typeaisually
referred to as mimicry attacks. We present a recently pexpaosimicry attack against payload-
based anomaly IDS, rst, and then we present a possibleisoltt make payload-based anomaly

IDS more robust by means of a Multiple Classi er System (MCS)

5.1 Payload-based Anomaly Detection

Recent work on unlabeled anomaly detection focusedigh speedtlassi cation based on simple

payload statistics [55, 66, 112, 113, 111]. For example, PAYL [1123]lextracts 256 features

from the payload. Each feature represents the occurrergedncy in the payload of one of the
256 possible byte values. A simple model of normal ttas then constructed by computing the
average and standard deviation of each feature. A payloeshisidered anomalous ifsimpli ed

Mahalanobis distancéetween the payload under test and the model of normalctrexceeds a

1The payload is the data portion of a network packet.
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predetermined threshold. Wang et al. [112] also proposedra generia-grant version of PAYL.
In this case the payload is described by a pattern vector B6&@mensional feature space. The
n-grams extract byte sequence information from the payladdch helps in constructing a more
precise model of the normal trac compared to the simple byte frequency-based model. The ex-
traction ofn-gram statistics from the payload can be performediently and the IDS can be used
to monitor high speed links in real time. However, given tkpamentially growing number of ex-
tracted features, the higheithe more di cult it may be to construct an accurate model because of
the curse of dimensionality and possible computationalptexrity problems. In order to overcome
the high dimensionality problem, Wang et al. recently pggatbANAGRAM [111], an anomaly IDS
that uses Bloom lIters to “compress” the dimensionality bé tfeature space. First they propose a
single Bloom Iter to model only (unlabeld) normal tra, and then they propose a second lter
which models known attacks. During detection, tligrams are extracted from the payload and
matched against both the normal and attack models. Therautlsn discuss the ability of ANA-
GRAM to detect polymorphic blending attacks (which we dgcin Section 5.2.3) constructed to
evade 1-gram PAYL.

Other anomaly detection systems based on more complexdsdbave been proposed [103,
21]. These anomaly detectors involve the extraction ofasyind semantic information from the
payload, which is usually a computationally expensive tdslerefore, it may not be possible to use

this approaches in order to analyze network ttaon high speed links in real time.

5.2 Evading Detection

Since IDS started to become popular, researchers begarirgjutie robustness of IDS against so-
phisticated attacks which are constructed with the ohjeatf exploiting the targeted vulnerability
without being detected. This type of attacks are usuallgrretl to agvasive attacksResearchers
in this area have used T@P transformations to demonstrate IDS evasions [85], addesd weak-
nesses created by ambiguities in network protocols [39]m&hous tools have been created for

evading IDS, includingragroute [96], snot [95], andmucus[75]. Some authors have inves-

2Here anmn-gram represents consecutive bytes in the payload
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tigated techniques to automate the generation of evasiaekat For example, in [108], the au-
thors identi ed mutation operations to generate variation known exploits. Similarly, the authors

in [91] modeled attack transformations to derive new vaet on known attacks.

5.2.1 Polymorphic Attacks

In Section 4.3.3 we presented a high level structure of arpolphic worm. Polymorphism can be

applied to generic attacks using the same high level streictAs a consequence, a polymorphic
attack is an attack that is able to change its appearancecwdtly instance. Therefore, there may
be no xed or predictable signature for the attack which doog used by signature-based IDS. As
a result, polymorphic attacks have a high chance of evaditgction because most of the current

intrusion detection systems and anti-virus systems aragige-based.

5.2.2 Mimicry Attacks

It has been demonstrated that many anomaly detection systam be evaded bgimicry at-
tacks [109, 54, 26, 34]. A mimicry attack is an evasive attagkinst a network or system vul-
nerability. The attack is carefully crafted so that the cittpattern, i.e., the representation of the
attack used during the classi cation process, lies insigedecision surface that separates the nor-
mal patterns from the anomalous ones (i.e.,dh#iers. A successful mimicry attack is able to
exploit the targeted vulnerability while causing the anbmBS to produce a false negative (i.e.,
no alarm is raised). Mimicry attacks by meansevfasive polymorphisrave been recently ex-
plored [26, 34]. These attacks aim to evade payload-basethaly detectors. CLET [26], an
advanced polymorphic engine, performs spectrum analysih® payload in order to evade IDS.
Given an attack payload, CLET adds padding bytes in a sepear@inming bytezone (of given
length) to make the byte frequency distribution of the &ttelose to the model of normal trec.

In [34], Fogla et al. showed how to construct a mimicry atfa@ledpolymorphic blending attack
that can evade 1-gram (i.e., thimgle-byte frequencyersion) and 2-gram PAYL. Using byte substi-
tution and padding techniques, the polymorphic blenditgcktencodes the attack payload so that
the obtainedransformedattack is classi ed as normal by PAYL, while still being aliteexploit the

targeted vulnerability. We discuss the details of the pagphic blending attack in Section 5.2.3.
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5.2.3 Polymorphic Blending Attack

Polymorphic attack instances usually look very elient from normal trac. For example, the
polymorphic decryptor and encrypted shellcode (Secti@33.may contain characters that have
very low probability of appearing in normal packets. Thusaaomaly-based IDS may detect the
polymorphic attack instances by recognizing their deerafrom the normal pro le. For example,
Wang et al. [112, 113] showed that the byte frequency digidh of an (polymorphic) attack is
quite di erent from that of normal trac, and can thus be used by PAYL to detect polymorphic
attacks.

Clearly, if a polymorphic attack can “blend in” with (or lodike) normal, it can evade detection
by an anomaly-based IDS. Normal tra contains a lot of syntactic and semantic information, but
only a very small amount of such information can be usedhigh speechetwork-based anomaly
IDS. This is due to fundamental dculties in modeling complex systems and performance oeerhe
related to real-time monitoring. For example, the netwoak t pro le used by PAYL [112, 113]in-
cludes simple statistics such as maximum or average sizeagadf packets, frequency distribution
of bytes in packets, and range of tokens atedent o sets. The simplicity of PAYL makes it fast
and suitable for real-time detection in high speed linkswier, very low structural information is
extracted from the payload and used to construct the modwrofial tra c.

Given the incompleteness and imprecision of the normallpsbased on simple trac statis-
tics, it is quite feasible to launch what we cptilymorphic blending attackS'he main idea is that,
when generating a polymorphic attack instance, care caakies o that its payload characteristics,
as measured by the anomaly IDS, will match the normal profer example, in order to evade
detection by PAYL [112, 113], the polymorphic engine carebally choose the characters used in
encryption and pad the attack payload with a chosen set chctesis, so that the resulting byte fre-
guency of the attack instance will closely match the normal@ and thus be considered as normal
by PAYL.

From the point of view of statistical pattern recognitiohe fpolymorphic blending attack can
be seen as a transformatidnwhich modi es an attack in order to move its representatioe. (
its pattern vector) inside the decision surface constcubtethe IDS, as depicted for example in

Figure 5.1.
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Figure 5.1: Polymorphic Blending Attack. After transformation theaatt lies inside the decision surface constructed
around normal trac.

Attack Scenario

Figure 5.2 shows a possible scenario for the polymorphiaditey attack. There are a few assump-

tions behind this scenario:

The attack program has already compromised a Kdaside a networkA which communi-
cates with the target ho3tinside networkB. Network A and hostX may have poor security

so that the attack can penetrate without getting detectdtiece is a colluding insider.

The attack program has knowledgel@fSg. This might be possible using a variety of ap-
proaches, e.g., social engineering (e.g., company saj@scnase data), or ngerprinting, or

trial-and-error. We argue that one cannot assume that tBeddployment is a secret and se-
curity by obscurity is never reliable. We assuhi¥Sg is a payload-based anomaly detection

system (e.g., PAYL [112]).

Given some packet data froi to Y, the attack program will be able to generate its own
version of the statistical normal pro le used bpSg. This is feasible if we assume that the

IDSg is known and hence its algorithm for learning a normal pradealso known.

A typical anomaly IDS has a threshold setting that can besteljluto obtain a desired false
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Figure 5.2: Polymorphic Blending Attack scenario [34]

positive rate. We assume that the attack program does nat treexact value of the thresh-
old used byiDSg, but has an estimation of the generally acceptable falsgivyeand false
negative rates. With this knowledge, the attack programestimate the error threshold when

crafting a new attack instance to match the IDS pro le.

Once the attack program has control of h&stt observes the normal trec going fromXtoY.
The attacker builds (estimates) a normal pro le for this tcausing the same modeling technique
that IDSg uses. This pro le is calledarti cial prole [34]. With it, the attack program creates
a mutated instance of itself in such a way that the statistidhie mutated instance matches the
arti cial pro le. When IDSg analyzes these mutated attack packets, it is unable tordisioem
from normal tra ¢ because the arti cial pro le can be very close to the actpid le in use by
IDSg. Thus, the attack successfully in ltrates the netw@&knd compromises host

The polymorphic blending attack has three basic steps:e@dhlthe IDS normal pro le; (2)
encrypt the attack body; (3) and generate a polymorphicygéar.

Learning the Normal Pro le

The task at hand for the attack program is to observe the ndranac going from a host, sa¥, to
another host in the target network, sdyand generate a normal pro le close to the one used by the

IDS at the target network, salpSg, using the same algorithm used by the IDS.
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A simple method to get the normal data is by sng the network tra ¢ going from networkA
to hostY. This can be easily accomplished in a bus network. In a segt@nvironment it may be
harder to obtain such data. But the attack program knowsytiedf service running at the target
host. It may then simply generate normal request packetseand the arti cial pro le using these
packets.

In theory, even if the attack program learns a pro le fromtjassingle normal packet, and
then mutates an attack instance so that it matches thetistat$ the normal packet perfectly, the
resulting polymorphic blended attack packet should not dgged as an anomaly BbipSg if the
normal packet does not result in a false positive in the tatp. On the other hand, it is bene cial
to generate an arti cial pro le that is as close to the normped le used bylDSg as possible so that
if a polymorphic blended attack packet matches the arti pra le closely, it has a high chance of
evadinglDSg. In general, if more normal packets are captured and usellebgittack program, it

will be able to learn an arti cial normal pro le that is closéo the normal pro le used byDSg.

Attack Body Encryption

After learning the normal pro le, the attack program creasenew attack instance and encrypts (and
blends) it to match the normal pro le. For simplicity, a stlatforward byte substitution scheme
followed by padding can be used for encryption. The main likya is that every character in the
attack body can be substituted by a character(s) obsemettfre normal tra ¢ using a substitution
table. The encrypted attack body can then be padded with soane garbage normal data so
that this polymorphic blended attack packet can match thmalopro le even better. To keep the
padding (and hence the packet size) minimal, the subdiwitack body should already match the
normal pro le closely. We can use this design criterion togurce a suitable substitution table.

To ensure that substitution algorithm is reversible (farrgpting and running the attack code), a
one-to-one or one-to-many mapping can be used. A singledustitution is preferred over multi-
byte substitution because multi-byte substitution wilhbe the size of attack body after substitution.
An obvious requirement of such encryption scheme is thaetteeypted attack body should con-
tain characters from only the normal tra. Although this may be hard for a general encryption

technique (because the output typically looks random} &n easy requirement for a simple byte
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substitution scheme. However, nding an optimal substituttable that requires minimal padding
is a complex problem. In [34], the authors show that for ¢ertases this is a very hard problem.
Therefore, a greedy method is proposed to nd an acceptaibistitution table. The main idea is to
rst sort the statistical features in the descending ordé¢he frequency for both the attack body and
normal tra c. For each unassigned entry with the highest frequencyeimattiack body, map it to an

available (not yet mapped) normal entry with the highesjdency. Repeat this until all entries in
the attack body are mapped. The feature mapping can beatratidb a character mapping. Then
a substitution table can be created for encryption and géory purposes. For the details of the

greedy algorithm see [34].

Polymorphic Decryptor

Once the vulnerability has been exploited, the decryptst removes all the extra padding from the
encrypted attack body and then uses a reverse substitatibe (or decoding table) to decrypt the
attack body to produce the original attack code (shellcode)

The decryptor is not encrypted but can be mutated using pheilierations of shellcode poly-
morphism processing (e.g., mapping an instruction to arvelgnt one randomly chosen from a
set of candidates). To reverse the substitution done dibterging, the decryptor needs to look up
a decoding table that contains the required reverse magpifige decoding table for one-to-one
mapping can be stored in an array whereitie entry of the array represents the normal charac-
ter used to substitute attack charadteSuch an encoding table contains only normal characters.
Unused entries in the table can be used for padding. On tlkee b#nd, storage of decoding tables
for one-to-many mapping or variable-length mapping is clicaped and typically requires larger

space [34].

Incorporating Attack Vector and Polymorphic Decryptor in B lending

The attack vector, decryptor and decryption table are notypted. Their addition to the attack
packet payload alters the packet statistics. The new tatatimay deviate signi cantly from the
normal pro le. If the changes are signi cant, the normal peohas to be adjusted through an

iterative blending process [34].
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5.3 Hardening Payload-based Anomaly Detection Systems

In order to make it harder for the attacker to evade the ID$napcehensive model of the normal
tra cis needed. Furthermore, the modeling technique needsdtsberactical and ecient. We
address these challenges using an ensemble of classi dessi@r ensembles, often referred to
as Multiple Classi er Systems (MCS), have been proved tdeaghbetter accuracy in many ap-
plications, compared to the best single classi er in theeemsle. A number of security related
applications of MCS have been proposed in the literature. ekample, MCS are used in multi-
modal biometrics for hardening person identi cation [19]).4and in misuse-based IDS [37, 36] to
improve the detection accuracy. To the best of our knowledgewvork has been presented so far
that explicitly addresses the problem of increasinghfiglness of evasioof anomaly-based IDS
using multiple classi er systems. We propose a new apprdaatonstruct éhigh speedpayload-
based anomaly IDS by combining multiple one-class SVM ckss Our approach is intended to
improve both the detection accuracy and the hardness abevashigh speed anomaly detectors.
MCS attain accuracy improvements when the combined clessiare “diverse”, i.e., they make
di erent errors on new patterns [28]. A way to induce diversityoi combine classi ers that are
based on descriptions of the patterns inadent feature spaces [57]. We propose a new technique
to extract the features from the payload that is similar ®o2kgram technique. Instead of measur-
ing the frequency of the pairs of consecutive bytes, we @epo measure the features by using a
sliding window that “covers” two bytes which arepositions apart from each other in the payload.
We refere to this pairs of bytes as-@rams. The proposed featrue extraction process do not add
any complexity with respect to the traditional 2-gram téghe and can be performed eiently.
We also show that the proposed technique allows us to “suineighe occurrence frequency of
n-grams, withn > 2, thus capturing byte sequence information while limitthg dimensionality

of the feature space. By varying the parametewe construct a representation of the payload in
di erent feature spaces. Then we use a feature clusteringthigasriginally proposed in [27] for
text classi cation problems to reduce the dimensionalifythe di erent feature spaces where the
payload is represented. Detection accuracy and hardnesasibn are obtained by constructing our

anomaly-based IDS using a combination of multiple onesclB¥M classi ers that work on these
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di erentfeature spaces. Using multiple classi ers forcesattacker to devise a mimicry attack that
evades multiple models of normal tra at the same time, which is intuitively harder than evading
just one model. We compare our payload-based anomaly IDBetotiginal implementation of
1-gram PAYL by Columbia University, to an implementationzs§ram PAYL, and to an IDS con-
structed by combining multiple one-class classi ers basedhesimpli ed Mahalanobis distance

used by PAYL.

In the following, we present two derent one-class classi cation algorithms that we used to
perform our experiments, namely a classi er inspired to$tupport Vector Machine (SVM) [107],
and a classi er based on the Mahalanobis distance [29]. Adisgiss in Section 5.3.3, there is an
analogy between anomaly detection based-gnam statistics and text classi cation problems. We
chose the one-class SVM classi er because SVM have beenrstmachieve good performances in
text classi cation problems [93, 62]. We also describe thahdlanobis distance based classi cation
algorithm because it is the same classi cation algorithradusy PAYL [112], a recently proposed

anomaly detector based orgram statistics.

5.3.1 One-Class SVM

We use the classi er described in Section 3.4.5, which wap@sed by Scholkopf et al. in [92].
Because we combine multiple classi ers using the simpleanitgjvoting rule, as described in Sec-
tion 5.3.3, here we do not use Equation 3.15 to transform thpub of the classi er into class

conditional probabilities estimates. Therefore, we simygle the Gaussian kernel

Ky)= (X)) () =exp jx Vi (5.1)

and compute the output of the classi er according to Eque8d 4.
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5.3.2 Mahalanobis Distance-based Classi er

Given a training datasdd = fx1;X»; ::;Xmg the average; and standard deviation; are computed

for each feature as

=)
i~ % ket Xk
q (5.2)
=
i = ﬁ rknzl(xk. i)2

wherex is thei-th feature of a patterr2D andmis the total number of training patterns. We call
M(; ) the model of normal trac, where =1 1; 2 (Jand =1 1; 2;:; 1]. Assuming
the features to be uncorrelatedsienpli ed Mahalanobis distance[112] (z; M(; )) between a

generic patterz = [z;; z; ::;z] and the modeM(; ) can be computed as

@MG )= J (5.3)

where is a constansmoothing factorintroduced in order to avoid division by zero. Given a

threshold , the decision rule for the classi er can be written as
(zzM(; ))> ) zisanoutlier (5.4)

The threshold can be computed during training so that a chosen rejectier raf patterns inD
is left outside the decision surface, i.e., the classi avduces a false positive rateon the training

dataseD, if we assuméD contains only examples extracted from the target class.

5.3.3 Payload Classi cation
Feature Extraction

The detection model used by PAYL [112] is based on the frequdistribution of then-grams (i.e.,

the sequences af consecutive bytes) in the payload. The occurrence frequehthe n-grams is

3The simpli ed Mahalanobis distanceo not involve square operations, which would slow down h@jgutation of
the distance.
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measured by using a sliding window of length The window slides over the payload with a step
equal to one byte and counts the occurrence frequency iretylegal of the 256 possiblen-grams.
Therefore, in this case the payload is represented by apagetor in a 256-dimensional feature
space. It is easy to see that the highethe larger the amount of structural infomation extracted
from the payload. However, using= 2 we already obtain 65,536 features. Larger values arfe
impractical given the exponentially growing dimensiotyabf the feature space and the curse of
dimensionality problem [29]. On the other hand, by measgutire occurrence frequency of pairs
of bytes that are positions (i.e., bytes) apart from each other in the payload, it is still passio
extract some information related to thegrams, withn > 2. We call such pairs of bytes -grams
In practice, the occurrence frequency of thegams can be measured by using &2) long sliding
window with a “gap” between the rst and last byte.

Consider a payloa® = [by; by;::;ly], whereb; is the byte value at position The occurrence

frequency in the payloaB of ann-gram =1 1; 2;:; n], with n<, is computed as

# of occurrences of in B
|l n+1

f(jB) = (5.5)

where the number of occurrences ah B is measured by using the sliding window technique, and
(I n+ 1)is the total number of times the window can “slide” o®rf( jB) can be interpreted as
an estimate of the probabilitg( jB) of nding the n-gram (i.e., the sequence of consecutive bytes

[ 1; 2;:; nl)in B. Accordingly, the probability of nding a 2gramf 1; .»gcan be written as

p(f 15 +20B) = : P 1 2015 +15 +2]iB) (5.6)
2 41
It is worth noting that for = 0 the 2-gram technique reduces to the “standard” 2-gram technique
When > 0, the occurrence frequency in the payload of y&amf ;; .,»gcan be viewed as a
marginal probability computed on the distribution of theH 2)-grams that start with; and end
with  4». In practice the frequency of a-gram somehow “summarizes” the occurrence frequency
of 256 n-grams, withn =+ 2,
From the occurrence frequency of thegrams it is possible to derive the distribution of the

(n 1)-grams, § 2)-grams, etc. On the other hand, measuring the occurreaqadncy of the
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2 -grams does not allow us to automatically derive the distidim of 2 1)-grams, 2 2)-grams,
etc. The distributions of 2grams with di erent values of give us di erent structural information
about the payload. The intuition is that, ideally, if we absbmehow combine the structural infor-
mation extracted using derent values of = 0; ::;N we would be able to reconstruct the structural
information given by the distribution af-grams, withn = (N + 2). This motivates the combination
of classi ers that work on dierent descriptions of the payload obtained using thgram technique

with di erent values of.

Feature Reduction

Payload anomaly detection based on the frequencygrms is analogous to a text classi cation
problem for which the bag-of-words model and a simple univeid raw frequency vector represen-
tation [62] is used. The dierent possible-grams can be viewed as the words, whereas a payload
can be viewed as a document to be classi ed. In general forctaxsi cation only the words that
are present in the documents of the training set are comsiderhis approach is not suitable in
case of a one-class classi cation problem. Given that thmitng set contains (almost) only target
examples (i.e., “normal” documents), we cannot concludé dhword that have a probability equal
to zero to appear in the training dataset will not be disgrani. As a matter of fact, if we knew of
a wordw that has probabilityp(wjd;) = 0; 8d;2C;, of appearing in the class of target documetits
and p(wjdy) = 1; 8d,2C,, of appearing in documents of the outlier cl&s it would be su cient
to measure just one binary feature, namely the presence of mgin the document, to construct a
perfect classi er. This is the reason why we choose to take account all the 286n-grams, even
though their occurrence frequency measured on the tragehis equal to zero. Using the-gram
technique we still extract 256eatures. This high number of features could make itatilt to con-
struct an accurate classi er, because of the curse of dimealty [29] and possible computational
complexity problems related to learning algorithms.

In order to reduce the dimensionality of the feature spacpdgload anomaly detection, we ap-
ply a feature clustering algorithm originally proposed hyillon et al. in [27] for text classi cation.
Given the number of desired clusters, the algorithm iteeitiaggregates the features until the infor-

mation loss due to the clustering process is less than arcént@shold. This clustering algorithm
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has the property to reduce the within cluster and amongearsisiensen-Shannon divergence [27]
computed on the distribution of words, and has been showaljpdbtain better classi cation accu-
racy results with respect to other feature reduction tegres for text classi cation [27]. The inputs

to the algorithm are:

1. The set of distributionsp(Cijw;) : 1 i m; 1 j lg whereGC; is thei-th class of documents,
m is the total number of classes; is a word and is the total number of possible dérent

words in the documents.

2. The set of all the priorsp(w;); 1 j Ig

3. The number of desired clustdes

The output is represented by the set of word cludtérs fWy; Wy; ::;Wkg Therefore, after clustering
the dimensionality of the feature space is reduced fréok. The information loss is measured as
X X _ _
Q(Whd-,) = P(wWj)K L(P(Ciw;); P(CIVh) (5.7)
h=1 w;j2Wh,
whereC = fCig=1..m, andKL(py; p2) is the Kullback-Leibler divergence between the probapbili

distributionsp; and p,.

In the originall-dimensional feature space, thh feature of a pattern vectay represents the
occurrence frequencf(w;jd;) of the wordw; in the documenti;. The new representatiO(ﬁ’ of d;i in

thek-dimensional feature space can be obtained by computinigéteres according to

X
f(Whjdi) = f(wjjd); h=1:k (5.8)
w;j2Wh

where f (Whjd;) can be interpreted as the occurrence frequency of theeclostwordsW, in the

document,.

In case of a one-class problem= 2 and we can calT; the target class ard, the outlier class.
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The posterior probabilitiefp(Cijw;) : i =t;0; 1 j Igcan be computed as

YA P(w;iCi)p(Ci)
PCilW)) = FwicopC ) PWICIRCS)
(5.9)
i=to; 1 j I
and the priorgp(w;j); 1 j lgcan be computed as
p(w;j) = pw;iC)p(Cy) + p(WjiCo)p(Co); 1 j | (5.10)

The probabilitiesp(w;jC;) of nding a word w; in documents of the target cla€g can be reliably
estimated on the training dataset, whereas it isogit to estimatgp(w;jCo), given the low number
(or the absence) of examples of documents in the outlies ElgsSimilarly, it is di cult to reliably
estimate the prior probabilitieg(C;) = % i = t;0, whereN; is the number of training patterns of
the classCi andN = N; + N, is the total number of training patterns. Given thiat N; (or even
No = 0), the estimated priors aC,) ' 0 andp(C;) ' 1, which may be very dierent from the
real prior probabilities.

In our application, the words; are represented by the Z5peossible di erent 2-grams (with a
xed ). In order to apply the feature clustering algorithm, weneate p(w;jC;) by measuring the
occurrence frequency of the-gramsw; on the training dataset and we assume a uniform distribu-
tion p(w;jCo) = Il of the 2 -grams for the outlier class. We also assup(€,) to be equal to the

desired rejection rate for the one-class classi ers, amo@tingly p(C)) =1  p(Co).

Combining One-Class Classi ers

Multiple Classi er Systems (MCS) have been proved to imjgrolassi cation performaces in many
applications [28]. MCS achieve better performance thamést single classi er when the classi ers
of the ensemble are accurate and diverse, i.e., malara@ht errors on new patterns [28]. Diversity
can be intuitively induced for example by combining classs that are based on descriptions of the
patterns in di erent feature spaces [57].

Several techniques have been proposed in the literatureofabining classi ers [57]. To the
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best of our knowledge, the problem of combining one-classsilers has been addressed only
by Tax et al. in [101] and in [100]. We use a simple majorityingtrule [57] to combine one-
class classi ers that work on derent descriptions of the payload. Suppose we have a dathset
payloadsT =f 1; »;::; mg Given a payloady, we extract the features as discussed in Section 5.3.3
obtainingL di erent descriptionstxf(l);x(kz); ::;x(kL)g of k. L one-class classier are constructed.
The h-th classi er is trained on a datasBX" = fx(lh);x(zh); =:xMg obtained fromT using theh-th
description for the payloads. During the operational phaspayload is classi ed as target (i.e.,
normal) if it is labeled as target by the majority of the class, otherwise it is classi ed as outlier

(i.e., anomalous).

5.4 Experiments

In this section we compare and discuss the classi catiofiopmance of four dierent anomaly
IDS. We compare the performace obtained using the originplémentation of 1-gram PAYL [112]
developed at Columbia University, an implementation ofr@ag PAYL, and two anomaly IDS we
built by combining multiple one-class classi ers. One oésle two IDS was implemented using an
ensemble of one-class SVM classi ers, whereas the otherimvplemented using an ensemble of
Mahalanobis Distance-based (MD) one-class classi ersalse show and discuss the performance
of the single classi ers used to construct the ensemblesth@dest of our knowledge, no public
implementation of 2-gram PAYL exists. We implemented oundsimpli ed) version of 2-gram

PAYL in order to compare its performance to the other comsidl@nomaly IDS.

5.4.1 Experimental Setup

It is easy to see that the accuracy of the anomaly detect&tersyg we consider can be considerably
in uenced by the values assigned to a number of free paramefiuning all the free parameters
in order to nd the optimal con guration is a dicult and computationally expensive search task.
We did not perform a complete tuning of the parameters, buugexl a number of reasonable
values that should represent an acceptable suboptimalgooation. For 1-gram PAYL we used

the default con guration provided along with the softwareor all the MD classi ers and our 2-
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gram PAYL we set the smoothing factor= 0:001, because this is the same default value for
used by 1-gram PAYL (which also uses the MD classi cationoaidnm). We used.ibSVM[20]
to perform the experiments with one-class SVM. For all the-olass SVM classi ers we used
the gaussian kernel in (5.1). Some techniques for the opditioin of the parameter have been
proposed in the literature [13]. Simple tuning is usuallyfpened iteratively changing the value of
and retraining the classi er [20], which results in a congtignally expensive process in case of
multiple classi ers. Therefore, in order to choose a suéalalue for we performed a number of
pilot experiments. We noted that setting: 0:5 the one-class SVM classi ers performed well in all
the di erent feature spaces obtained by varying the parametard the number of feature clusters
k during the feature extraction and reduction processepgctisely (see Section 5.3.3). Having
xed the values for some of the parameters as explained alveg@erformed several experiments
varying the “gap” and the number of feature clustdes The values we used for this parameters

and the obtained results are discussed in detail in Sect#b.5

We performed all the experiments using 5 days of HTTP reguiestards our department's
web server collected during October 2004. We assumed tlébeled tra ¢ to contain mainly
normal requests and possibly a low fraction of noise, i.eon@alous packets. We used the rst
day of this tra c to train the IDS and the last 4 days to measure the falseiysite (i.e., the
false alarm rate). In the following we refer to the rst day tvh c astraining dataset and to
the last 4 days atest dataset The training dataset contained 384,389 packets, wheheatest
dataset contained 1,315,433 packets. In order to estirhatedtection rate we used 18 HTTP-
based buer over ow attacks. We collected the rst 10 attacks from ttmernet (e.g., exploits
for IIS 5.0 .printer ISAPI Extension [8], ActivePerl perlllIS.dll [7], UnixWare's
Netscape FastTrack 2.01a [9], and also [6, 2, 4, 3, 1, 5, 73]). Each of these attacks idana
up of a di erent number of attack packets. The latter 8 attacks weregepted by some of the at-
tacks used in [34], where Fogla et al. constructed a numhbmirafcry attacks against PAYL. These
attacks were derived from an exploit that targets a vulnifyalin Windows Media Services
(MS03-022) [33]. In particular, we used the origin&Vindows Media Services exploit used
in [34] before transformation, 6 mimicry attacks derivedrir this original attack using a polymor-

phic shellcode engine called CLET [26], and one polymorgiiending attack obtained using the
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single byte encodingcheme for the 2-grams presented in [34]. The 6 mimicry ledtabtained
using CLET were created setting @rent combinations of packet length and total number otltta
packets. The polymorphic blending attack consisted of &ktpackets and the payload of each
packet was 1460 bytes long. In the following we will refer e tset of attacks described above as

attack datasetOverall, the attack dataset contained 126 attack packets.

5.4.2 Performance Evaluation

In order to compare the performace of PAYL, the construciedls classi ers, and the overall
anomaly IDS, we use the Receiver Operating CharacterRQ) curve and the Area Under the
Curve (AUC). We trained PAYL and the single classi ers for drent operational points, i.e., we
constructed dierent “versions” of the classi ers setting a dirent rejection rate on the training
dataset each time. This allowed us to plot an approximate R@e for each classi er. Assuming
the training dataset contains only normal HTTP requestsrdjection rate can be interpreted as a
desired false positiveate. In the following we refere to this desired false pusitiate as DFP. If
we also assume the test dataset contains only normal HTTRRstx) we can use it to estimate the
“real” false positive rate, or RFP. Each point on an ROC curve represents the RFRfR@ddtection
rate (DR) produced by the classi er. The detection rate imsneed on the attack dataset and is
de ned as the faction of detected attack packets, i.e., tinebrer of attack packets that are classi ed
as anomalous divided by the total number of packets in tlaelattataset (regardless of the speci ¢
attack the detected packets come from).

We measured the performance of the classi ers for Zdent operational points to compute an

(partial) ROC curve for each classi er. These points arait#d by training each classi er using 7

DFP(%) | RFP(%) | Detected attacks| DR(%)
0.0 0.00022 1 0.8
0.01 0.01451 4 17.5
0.1 0.15275 17 69.1
1.0 0.92694 17 72.2
2.0 1.86263 17 72.2
5.0 5.69681 18 73.8
10.0 11.05049 18 78.6

Table 5.1: Performance of 1-gram PAYL.
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k
10 20 40 80 160
0 | 0.9660 (0.4180E-3)  0.9664 (0.3855E-3)  0.9665 (0.4335E-3).9662 (0.2100E-3) 0.9668(0.4686E-3)
1 | 0.9842 (0.6431E-3) 0.9839 (0.7047E-3) 0.9845(0.7049E-3)  0.9833 (1.2533E-3)  0.9837 (0.9437E-3)
2 | 0.9866 (0.7615E-3) 0.9867 (0.6465E-3)  0.9875 (0.6665E-3) 9887(2.6859E-3)  0.9862 (0.7753E-3)
3 | 0.9844 (1.2207E-3) 0.9836 (1.1577E-3) 0.9874(1.0251E-3) _ 0.9832 (1.0610E-3) _ 0.9825 (0.6835E-3)
4 | 0.9846 (0.5612E-3) 0.9847 (1.5334E-3)  0.9846 (0.9229E-3).9849 (1.5966E-3) 0.9855(0.4649E-3)
5 | 0.9806 (0.8638E-3)  0.9813 (0.0072E-3) _ 0.9810 (0.5590E-3).9813 (0.8494E-3) 0.9818(0.3778E-3)
6 | 0.9800 (0.7836E-3)  0.9806 (1.1608E-3)0.9812(1.6199E-3)  0.9794 (0.3323E-3)  0.9796 (0.4240E-3)
7 | 0.0810 (1.6807E-3) 0.9854 (0.8485E-3)  0.0844 (1.2407E-3).9863 (1.9233E-3) 0.9877(0.7670E-3)
8 | 0.0779 (1.7626E-3) 0.9782 (1.O797E-3)  0.9787 (2.0032E-3) 9793(1.0847E-3) _ 0.9785 (1.7024E-3)
9 | 0.0733 (3.19048E-3) 0.9775(1.9651E-3) 0.9770 (1.0B03E-3)  0.0743 (2.4879E-3)  0.Q122258E-3)
10 | 0.9549 (2.7850E-3)  0.9587 (3.3831E-3) _ 0.9597 (3.8000E-3).0608 (1.2084E-3) 0.9681(7.1185E-3)

Table 5.2: Performance of single one-class SVM classi ers. The numibebold represent the best average AUC for a
xed value of . The standard deviation is reported between parentheses.

DFP, namely 0%, 0.01%, 0.1%, 1.0%, 2.0%, 5.0% and 10.0%. THe i& estimated by integrating
the ROC curve in the interval of RFP between 0% and 10.0%. btereed result is then normalized
so that the maximum possible value for the AUC is 1. Accordomgow the AUC is computed, the
higher the value of the AUC, the better the performance otthssi er in the considered interval
of false positives. For each DFP, we also measured the nuailmitected attacks. We consider
an attack as detected if at least one out of the total numbpackets of the attack is detected as
anomalous. It is worth noting that the number of detecteatkst is di erent from the detection rate

used to computed the ROC curve.

1-gram PAYL. Our baseline is represented by the performance of 1-graniPAY mentioned
before, PAYL measures the occurrence frequency of byteegdluthe payload. A separate model
is generated for each dérent payload length. These models are clustered togethiee &nd of
the training to reduce the total number of models. Furtheemthe length of a payload is also
monitored for anomalies. Thus, a payload with an unseenrgrloe frequency length is agged as
an anomaly [112].

We trained PAYL using the entire rst day of collected HTTRjuests. We constructed the
ROC curve by estimating the RFP on the entire test datasetihie other 4 days of collected HTTP
requests, and the detection rate on the attack dataset. btamed AUC was equal to 0.73. As
shown in Table 5.1, for DFF0.1% PAYL produced an RFE®.15% and was able to detect 17 out of
18 attacks. In particular it was able to detect all the agaoicept the polymorphic blending attack.
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Table 5.1 also shows that the polymorphic blending attagiaieed undetected until REP1:86%.
By performing further experiments, we found out that theimimm amount of RFP for which PAYL
is able to detect all the attacks, included the polymorpleading attack, is equal to 4.02%, which

is usually considered intolerably high for network intarsidetection.

Single One-Class SVM Classi ers. We constructed several one-class SVM classi ers. We ex-
tracted the features as described in Section 5.3.3 varlggngdrameter from 0 to 10, thus obtaining
11 di erent descriptions of the patterns. Then, for each xpde applied the feature clustering al-
gorithm described in Section 5.3.3 xing the prior probéilP(C,) = 0:01 and setting the number
of desired clusterk equal to 10, 20, 40, 80 and 160. We used a random initializdtiothe algo-
rithm (i.e., at the rst step each feature is randomly ass@yto one of thé clusters). The feature
clustering algorithm stops when the information loss ii7Y®Becomes minor than 16

For each pair ( k) of parameter values we repeated the experiment 5 timeseasatr round
we applied the feature clustering algorithm (using a nevdoam initialization), and we trained a
classi er on a sample of the training dataset obtained froendriginal training dataset by applying
the bootstrap technique without replacement and with a Baghatio equal to 10%. We estimated
the AUC by measuring the false positives on a sample of thedttaset obtained using again the
bootstrap technique with sampling ratio equal to 10%, andsueng the detection rate on the entire
attack dataset. Table 5.2 reports the estimated average AbCnumbers between parentheses
represent the standard deviation computed over the 5 rodMidgliscuss the obtained results later
in this section comparing them to the results obtained uiadvD classi cation algorithm.

k

10 20 40 80 160

0 | 0.9965(0.5345E-3)  0.9948 (1.4455E-3)  0.9895 (3.9813E-3)  0.9BEBO2E-3)  0.9718 (9.9020E-3)
1 | 0.9752(0.5301E-3) 0.9729 (0.7921E-3) 0.9706 (1.0940E-3)  0.9862050E-3)  0.9653 (0.3681E-3)
2 | 0.9755(0.2276E-3) 0.9743 (0.4501E-3) 0.9741 (0.9121E-3) 0.967P0BAE-3)  0.9661 (0.4246E-3)
3 | 0.0749(0.7496E-3)  0.9736 (0.8507E-3)  0.9726 (1.8217E-3) 0.112729E-3)  0.9708 (2.6994E-3)
4 | 0.9761(0.4260E-3) 0.9743 (0.3552E-3)  0.9735 (0.7998E-3)  0.9033B27E-3)  0.9722 (0.9637E-3)
5 | 0.9735(1.0645E-3) 0.9692 (0.3607E-3)  0.9694 (1.0499E-3) 0.9826574E-3)  0.9606 (1.9866E-3)
6 | 0.9737(0.6733E-3) 0.9709 (1.5523E-3)  0.9687 (2.9730E-3)  0.9@9BI22E-3)  0.9717 (0.5427E-3)
7 | 0.9687(3.3302E-3)  0.9545 (9.6519E-3)  0.9505 (7.3100E-3) _ 0.9258923E-3)  0.8672 (50.622E-3)
8 | 0.9731(0.7552E-3) 0.9721 (0.6001E-3) 0.9717 (0.6799E-3)  0.9016367E-3)  0.9678 (1.5209E-3)
9 | 0.9719(1.5743E-3) 0.9695 (1.9905E-3)  0.9700 (2.2792E-3)  0.9@62066E-3)  0.9611 (1.5542E-3)
10 | 0.9641 (1.6604E-3) 0.9683(2.5370E-3) 0.9676 (1.2692E-3) 0.9635 (1.1016E-3)  0.909R209E-3)

Table 5.3: Performance of single MD classi ers. The numbers in boldespnt the best average AUC for a xed value
of . The standard deviation is reported between parentheses.
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0 1 2 3 4 5 6 7 8 9 10
0.9744 0.9665 0.9711 0.9393 0.9170 0.8745 0.8454 0.8419 0.8381 556.9 0.9079

Table 5.4: Performance of single MD classi ers for varying No feature clustering is applied. The number in bold
represents the best result.

Single MD Classi ers. Similarly to the experiments with the one-class SVM classs, we con-
structed several MD classi ers. For each pajrk of parameter values, we applied the feature
clustering algorithm with random initialization, and waitred a classi er on a 10% sample of the
training set (using again the bootstrap technique witheplacement). The AUC was estimated by
measuring the false positives on a 10% sample of the tedetaad the detection rate on the entire
attack dataset. We repeated each experiment 5 times. T&8aledworts the average and the standard
deviation for the obtained AUC. The MD classi er performgrexnely well for = 0 andk = 10.

In this case the MD classi er is able to detect all of the 1&els for an RFP around 0.1% and
reaches 100% of detection rate for an RFP around 1%. Howtbeeuse of only one classi er does

not improve the hardness of evasion, as discussed in Sécton

We also estimated the performance of the MD classi ers witlapplying the feature clustering
algorithm. In this case each pattern is described by 65,6386ufes. We trained a classi er for
each value of = 0;::;10 on the entire training dataset and estimated the AUC miegsiine false
positives and the detection rate on the entire test andkattataset, respectively. The obtained
results are reported in Table 5.4. As can be seen from Tablarsl Table 5.4, the best performance
for a xed value of are always reached usikg= 10. The only exception is when= 10. In
this case the best performance is obtained ukirg20. The good performance obtained for low
values ofk are probably due to the fact that the MD classi cation aljor su ers from the curse
of dimensionality problem. By reducing the dimensionatifythe feature space the MD classi er is
able to construct a tighter decision surface around thetatgss. For each xe# the best results
in terms of AUC were obtained using= 0. The only exception is whelk= 160. In this case the
best AUC is obtained for = 4. Nevertheless, the AUC obtained for 4 and for = 0 are really
close, and considering the standard deviation it is notiplasto say which classi er performs better

than the other. As we discuss in Section 5.5, the amountuwtsiral information extracted from the
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payload decreases whemrows. The MD classi er seems to be sensitive to thise.

By comparing the best results in Table 5.2 and 5.3 (the nusnibdpold), it is easy to see that
SVM classi ers perform better than MD classi ers in all thases except when= 0 and = 10.
When = 10 the best performance are really close, and consideragtémdard deviation it is not
possible to say which classi er performs better than thepth is also easy to see that, drently
from the MD classi cation algorithm, the one-class SVM seenot to suer from the growing
dimensionality of the feature space obtained by incredsiridnis is probably due to the fact that by
using the gaussian kernel the patterns are projected in@itekglimensional feature space, so that

the dimensionality of the original feature space becom&silaportant.

2-gram PAYL. The MD classi er constructed without applying the featuhestering and setting
= 0 represents an implementation of 2-gram PAYL that uses amdehior all the possible packet
lengths. Table 5.5 reports the results obtained with thassiler. It is easy to see that 2-gram
PAYL performs better that 1-gram PAYL, if we consider theed¢ion rate DR. This is due to the
fact that the simple distribution of 1-grams (i.e., the milisition of the occurrence frequency of the
byte values) does not extract structural information frémm payload, whereas the distribution of
2-grams conveys byte sequence information. Neverthelegeam PAYL is not able to detect the
polymorphic blending attack even if we are willing to toleran RFP as high as 11.25%. This is

not surprising given that the polymorphic blending attackwged was speci cally tailored to evade
2-gram PAYL.

DFP(%) | RFP(%) | Detected attacks| DR(%)
0.0 0.00030 14 35.2
0.01 0.01794 17 96.0
0.1 0.12749 17 96.0
1.0 1.22697 17 97.6
2.0 2.89867 17 97.6
5.0 6.46069 17 97.6
10.0 11.25515 17 97.6

Table 5.5: Performance of an implementation of 2-gram PAYL using alsildD classi er, = 0 andk = 65;536.

Classi er Ensembles. We constructed several anomaly IDS by combining multipkessi ers

using the simple majority voting rule. We rst combined odess SVM classi ers. For a xed
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Ensemble of One-Class SVM
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Figure 5.3: ROC curves obtained by combining One-Class SVM classi siagithe majority voting rule. Each curve is
related to a dierent value ok. Notice that the scales have been adjusted in order to pigtte di erences among the
curves.

value of the number of feature clustégghe output of the 11 classi ers constructed for 0;::;10
were combined. The experiments were repeated 5 times forwedoe ofk. We also applied the
same approach to combine MD classi ers. The obtained RO@esuare reported in Figure 5.3
and Figure 5.4. The average and standard deviation for ttaénaidl AUC are reported in Table 5.6.
The last row reports the results obtained by combining eid@D classi ers for which no feature
clustering was applied (i.e., all the 65,536 features aesllus The combination works really well

k Ensemble of SVM | Ensemble of MD
10 0.9885 (0.3883E-3) 0.9758(0.4283E-3)
20 0.9875 (2.0206E-3) 0.9737 (0.1381E-3)
40 0.9892(0.2257E-3) | 0.9736 (0.2950E-3)
80 0.9891 (1.6722E-3) 0.9733 (0.5144E-3)
160 0.9873 (0.4209E-3) 0.9701 (0.6994E-3)

65,535 - | 0.9245

Table 5.6: Average AUC of classi er ensembles constructed using thrita voting rule. The numbers in bold represent
the best result for varying. The standard deviation is reported between parentheses.

in case of one-class SVM. As shown in Table 5.6, the overall tdnstructed using ensembles of
one-class SVM always performs better than the best singksickr. The only exception is when
k = 160, but in this case the results are so close that considéra standard deviation it is not
possible to say which one is the best. On the other hand, tinbioation of MD classi ers is not
as e ective as for the ensemble of one-class SVM, and does nobimghe performance of the

single best classi er. This is probably due to the fact tHtaigh we constructed MD classi ers
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Ensemble of Mahalanobis Distance based classifiers
T T T
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Figure 5.4: ROC curves obtained by combining MD classi ers using thearigj voting rule. Each curve is related to a
di erent value ok. Notice that the scales have been adjusted in order to gigtthe di erences among the curves.

that work on di erent feature spaces, the obtained classi ers are notigmtly diverse and make

the same errors for new patterns.

DFP(%) | RFP(%) | Detected attacks| DR(%)
0.0 0.0 0 0
0.01 0.00381 17 68.5
0.1 0.07460 17 79.0
1.0 0.49102 18 99.2
2.0 1.14952 18 99.2
5.0 3.47902 18 99.2
10.0 7.50843 18 100

Table 5.7: Performance of an overall IDS constructed using an enseafldee-class SVM and settiig= 40. The DFP
is referred to the single classi ers of the ensemble.

Table 5.7 shows the results obtained with an overall IDS emgnted by combining the 11
single one-class SVM constructed using 0;::;10 andk = 40. The IDS is able to detect all the
attacks except the polymorphic blending attack for an RKMRtdhan 0.004%. The IDS is also able
to detect all the attacks, including the polymorphic blegdattack, for an RFP lower than 0.5%.

In conclusion, the experimental results reported abovevghat our IDS constructed using an
ensemble of one-class SVM classi ers and udirg 40 performs better than any other IDS or single
classi ers we considered. The only exception is the sing[® ¢lassi er obtained setting = 0 and
k = 10. However, as mentioned before and as discussed in Séchothis single MD classi er

may still be easy to evade, whereas our MCS based IDS is muderhia evade.
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5.5 Discussion

2 -grams. We discussed in Section 5.3.3 how to extract the featuresy tise 2-gram technique.
We also argued that the occurrence frequency aframs somehow “summarizes” the occurrence
frequency ofn-grams. This allows us to capture some byte sequence infaman order to show
that the 2-grams actually extract structural information from thglpad, we can consider the bytes
in the payload as random variables and then we can computel#iiee mutual information of bytes

that are positions apart from each other. That is, for a xed value @fe compute the quantity

o I (Bi; Bi+ +1)
RMI.; = W (5.11)

wherel (B;j; Bi+ +1) is the mutual information of the bytes at positioand { + + 1), andH(B;) is
the entropy of the bytes at positionBy computing the average f&MI.; over the index = 1; :;;L,
with L equal to the maximum payload length, we obtain the averdgtvemutual information for
the 2 -grams along the payload. We measured this average retatital information on both the
training and the test set varyingrom 0 to 20. The results are shown in Figure 5.5. It is easgéo s
that the amount of information extracted using thegeam technique is maximum for= 0 (i.e.,
when the 2-gram technique is used) and decreases for growiHgwever the decreasing trend is
slow and the average RMI is always higher than 0.5 un#l 10. This is probably due to the fact
that HTTP is a highly structured protocol. Preliminary fesshow that the same property holds for

other text based protocols.
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Figure 5.5: Average relative mutual information for varying
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Polymorphic Blending Attack. The polymorphic blending attack we used for our performance
evaluation was presented in [34] as an attack against 2-Bfafh. The polymorphic blending attack
encodes the attack payload so that the distribution of gigiia the transformed attack “looks” like
normal, from the point of view of the model of normal tra constructed by PAYL. As discussed
in [34], a polymorphic attack against 2-gram PAYL is alsoeatd evade 1-gram PAYL. This is
because the distribution of 1-grams can be derived from itellition of 2-grams. Thus, if the
distribution of 2-grams in the attack payload “looks” likermal, so does the distribution of 1-
grams.

In order to construct the attack, rst of all the attacker @& monitor part of the trac towards
the network protected by the IDS [34]. By monitoring this t@ a polymorphic blending engine
constructs an approximate normal pro le for the 2-grams @adsforms the attack payload accord-
ingly. It has been proved that a “perfect” single byte enngdransformation of the attack payload
in order to re ect the estimated normal pro le is NP-com@dB4]. Therefore, Fogla et al. [34]
proposed an approximate solution to the problem. High feequ 2-grams in the attack payload
are greedily matched via one-to-one byte substitution @itframs that have high frequencies in
normal tra c. This approximate substitution does not guarantee to trdsformation that brings
the attack payload close to the distribution of normal ttd34]. The proposed approach could also
be generalized to evade argram version of PAYL. However, because of the way the allyori
greedily matches-grams in the attack payload withgrams in normal trac [34], the single byte
encoding algorithm proposed is less and less likely to gidaex successful attack payload transfor-
mation, as grows. This means that although the polymorphic blenditecktmay still work well

forn= 2, itis likely to fail forn 2.

Hardness of Evasion. In Section 5.4.2 we showed that an MD classi er constructsidgt = 0
(i.e., using the 2-gram technique) akd= 10 achieves very good classi cation performances (see
Table 5.3). However, the use of only one classi er does nii hrehardening the anomaly detector
against evasion attempts. The attacker may easily modifyptilymorphic blending attack against

2-gram PAYL in order to evade this one particular classi er.

We constructed our anomaly IDS using multiple classi et tivork on di erent descriptions of
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the payload. In this case the polymorphic blending attaek thimics the normal distribution of 2-
grams does not work anymore because it can already be defecte percentage of false positives
as low as 0.5%, as shown by the experimental results report8ection 5.4.2. In order for the
attacker to evade our IDS, she needs to devise a substitakimmithm that evades the majority
of the classi ers at the same time. Therefore, the attackeds to transform the attack payload
in order to mimic the distribution of 2grams for di erent values of. Because of the way the
features are extracted using thegtam technique, this result may be achieved by a polymorphi
transformation that encodes the attack payload to re egtdilstribution of then-grams in normal
tra c, with n greater thaﬁw. Heremax ) represents the maximum value ofised during
the feature extraction process. Thus, in order to evade @8rthe attacker needs to encode the
attack payload mimicking the distribution in normal tra of 7-grams. This makes it much harder
to evade our IDS, compared to 1-gram and 2-gram PAYL. In thadnypothetical 7-gram PAYL
would be as hard to evade as our IDS. However, this hypodiatigram PAYL would easily suer
from the curse of dimensionality and memory consumptiorbleras due to the huge number of

features (equal to 235 Our anomaly IDS is much more practical.
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Chapter 6

Conclusion

Statistical pattern recognition techniques have beenesstally applied in many elds. Relatively
recently, researchers have stared to apply pattern rdemgno computer and network security,
and in particular to network intrusion detection system® Mlieve statistical pattern recognition
will play a more and more important role in the developmenfutdire network IDS. Motivated by
this belief, in this thesis we have studied the main chaksngnd possible solutions related to the
application of statistical pattern recognition technigjdier designing network IDS. Our objective
was to point out strengths and weaknesses of such systedis) strmulated further research on the

problems and solutions discussed throughout the thesis.

6.1 Our Contribution

In this thesis we focused our attention on three main prosiem

a) Learning from unlabeled tra c. We discussed the state of the art in unlabeled network
anomaly detection and the inherent dulties related to learning from unlabeled data. We
also discussed the base-rate fallacy and how écés anomaly detection systems, showing
that it is critical to optimize the accuracy of network andyndetectors in order to increase
the detection rate and, in particular, to decrease the fais#@ive rate as much as possible.
To this end, we studied the application of a modular MCS canttd by combining multiple

one-class classi ers. Experiments performed on the KDD@plataset showed that the
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b)

c)

proposed approach improves the accuracy performance,arethfp “monolithic” unlabeled

network anomaly detectors proposed by other researchers.

Learning in adversarial environment. We studied the consequences of learning from un-
labeled tra ¢ in presence of an adversary who may try to mislead the legmiocess to
make the obtained IDS inective. We brie y discussed some theoretical work on leagni

in presence of an adversary that introduces malicious imothe training dataset. Then,
we presented a case study and showed that this kind of ataeksossible in practice. We
showed how an attacker can inject noise into the trainingsgdtused by automatic signature
generators during the signature learning process, and thigvattack may negatively &ct

the accuracy of IDS which use the generated signatures potlségopropagation of worms.
We also discussed possible ad-hoc solutions to the noisetio attack, although a generic
solution to the problem of learning in presence of this kihdnisleading attack is still to be

found.

Operating in adversarial environment. We also studied the problem of launching and de-
tecting mimicry attacks. Mimicry attacks are evasive &saagainst anomaly detection sys-
tems. We presented an attack called Polymorphic Blendingckt(PBA), which is able to
evade recently proposed network anomaly detectors basethtstical pattern recognition
techniques. We analyze the reasons why the attack worksrapdge a new and robust net-
work anomaly IDS intended to make the PBA unlikely to succe®dr IDS is constructed
by combining multiple one-class SVM classi ers. Experintewere performed on several
days of normal HTTP trac of an academic network and on 18 attacks, including “statida
polymorphic attacks and the PBA. The results show that tbpgsed IDS is more robust to
the PBA, compared to other recently proposed network anotba.

6.2 Future Work

Future work is needed on all of the three problems we additassthis theses. Further improve-

ments are needed regarding the accuracy performance dfaledbanomaly IDS. We plan to study

di erent modular MCS schemes in order to further reduce the fadsitive rate while keeping
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a high detection rate at the same time, thus alleviating #se{rate fallacy problem presented in
Chapter 3. However, in order to achieve this result more virieeded on estimatirgyposteriori
class probabilities using one-class classi ers and oecéively combining them to construct a more
accurate multiple one-class classi er system.

Regarding the problem of learning in adversarial enviromimtihe e ort the attacker has to do
in case of real applications is mostly unknown. For exampty di cult is it for the attacker
to “move” the decision surface constructed by complex tlass(e.g., SVM, Arti cial Neural
Networks, etc.)? Can the attacker approximate the stateed)S, i.e., its decision surface, without
having access to the entire training dataset used by the Hi8?much “misleading” tra ¢ does
the adversary has to inject? An answer to these importargtigns is needed. Moreover, work
is needed on the practical applicationd$informationand randomizationtechniques to make it
di cult for the attacker to successfully interfere with thethéiag process implemented by IDS.

Further work is also needed for making anomaly-based n&tilx® more robust against mimicry
attacks. The combination of multiple models, as propose@hapter 5, is de nitely promising.
However, we need to make mimicry attacks as unlikely to seit@s possible. Because one of the
fundamental assumptions for the success of mimicry attakd in particular for the polymophic
bleding attack, is the adversary's knowledge about thectletealgorithm implemented by the IDS,
disinformationandrandomizationtechniques similar to those proposed for the problem oflagr
in adversarial environment may be implemented in comtnatid ensemble methods. This would
make much harder for the adversary to approximate the mddarmal tra ¢ used by the IDS,

thus making mimicry attacks very dcult.
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