
RESEARCH ARTICLE

Selective use of primate CD4 receptors by

HIV-1

Cody J. WarrenID
1, Nicholas R. Meyerson1, Obaiah DirasanthaID

1, Emily R. Feldman1,

Gregory K. WilkersonID
2, Sara L. SawyerID

1*

1 BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of

Colorado, Boulder, Colorado, United States of America, 2 Department of Comparative Medicine, Michale E.

Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer

Center, Bastrop, Texas, United States of America

* ssawyer@colorado.edu

Abstract

Individuals chronically infected with HIV-1 harbor complex viral populations within their

bloodstreams. Recently, it has come to light that when these people infect others, the new

infection is typically established by only one or a small number of virions from within this

complex viral swarm. An important goal is to characterize the biological properties of HIV-1

virions that seed and exist early in new human infections because these are potentially the

only viruses against which a prophylactic HIV-1 vaccine would need to elicit protection. This

includes understanding how the Envelope (Env) protein of these virions interacts with the T-

cell receptor CD4, which supports attachment and entry of HIV-1 into target cells. We exam-

ined early HIV-1 isolates for their ability to infect cells via the CD4 receptor of 15 different pri-

mate species. Primates were the original source of HIV-1 and now serve as valuable animal

models for studying HIV-1. We find that most primary isolates of HIV-1 from the blood,

including early isolates, are highly selective and enter cells through some primate CD4

receptor orthologs but not others. This phenotype is remarkably consistent, regardless of

route of transmission, viral subtype, or time of isolation post infection. We show that the

weak CD4 binding affinity of blood-derived HIV-1 isolates is what makes them sensitive to

the small sequence differences in CD4 from one primate species to the next. To substanti-

ate this, we engineered an early HIV-1 Env to have high, medium, or low binding affinity to

CD4, and we show that it loses the ability to enter cells via the CD4 receptor of many primate

species as the binding affinity gets weaker. Based on the phenotype of selective use of pri-

mate CD4, we find that weak CD4 binding appears to be a nearly universal property of HIV-

1 circulating in the bloodstream. Therefore, weak binding to CD4 must be a selected and

important property in the biology of HIV-1 in the body. We identify six primate species that

encode CD4 receptors that fully support the entry of early HIV-1 isolates despite their low

binding affinity for CD4. These findings will help inform long-standing efforts to model HIV-1

transmission and early disease in primates.
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Introduction

Individuals chronically infected with HIV-1 harbor complex viral populations within their

bloodstreams. Recently, it has come to light that when these people infect others, the new

infection is typically established by only one or a small number of virions from within this

complex viral swarm [1]. This appears to be true for transmission mediated by all modes,

including sexual transmission, mother-to-child transmission, and intravenous infection via

needle sharing [1–9]. The virus populations in newly infected individuals often start off as

genetically homogenous and match a strong consensus sequence during the first days and

weeks after transmission [3,9]. Only over time does viral diversity begin to bloom. The critical

question is whether the virions that seed and establish new infections possess unique biological

properties or whether transmission is simply so inefficient that it produces an extreme (but

random) genetic bottleneck. Indeed, recent studies show that virions isolated from early in

infection do have some unique biological properties, and this is still an active area of research

[3,5,10–15]. If it continues to be substantiated that early isolates have unique properties, pro-

phylactic vaccines will only need to overcome this special subset of HIV-1, curtailing the sig-

nificant problem that global viral diversity presents to vaccine design. This simplification of

the problem has fueled new hope for the long-elusive HIV-1 vaccine.

Primates have played a critical role in the history of HIV-1 [16]. HIV-1 originated from the

zoonotic transmission of a simian immunodeficiency virus (SIV) to humans [17], and HIV-1

disease and transmission is now modeled in primates in the lab [18]. The natural reservoir of

SIV in African primates is ancient, with over 40 primate species being endemically infected

with unique SIVs [17,19]. It has been proposed that the long-term coevolutionary history

between primates and SIVs may have affected the evolutionary trajectory of the CD4 gene

[20,21], which encodes the main cell surface receptor for both HIV and SIV. The CD4 gene

has experienced numerous rounds of natural selection in favor of new allelic versions, specifi-

cally favoring sequence change at the virus-binding surface of the molecule [20,21]. The most

rapidly evolving residues in CD4 fall at the interaction interface with the HIV-1 surface protein

Envelope (Env) (Fig 1A). One model to explain this evolutionary signature is that primate

individuals harboring CD4 alleles resistant to SIV infection have a selectable advantage com-

pared to their peers. While SIV can probably mutate to bypass most receptor blocks, there will

not be significant pressure to do so until a substantial number of hosts harbor CD4 alleles

resistant to SIV infection. In this way, evolutionary arms races can unfold even though hosts

and viruses have starkly different evolutionary rates (for a review on this topic, see [27]).

Indeed, we and others have observed that many host receptors have evolved under intense

selective pressure to modify virus–host interaction interfaces [16, 22–26]. Despite speculation

regarding the significance of the unusual evolutionary signatures in CD4 [20,21], a compre-

hensive functional comparison of CD4 from different primate species has not been conducted

since an appreciation has been gained for the special properties of early HIV-1 isolates.

Here, we evaluate the ability of primate CD4 proteins to function as receptors for various

classes of HIV-1. We are particularly interested in primary HIV-1 isolates derived from the

blood of newly infected people, in light of the new appreciation for the special properties that

relate to transmission [29]. One primate genus (macaques; both rhesus and pig-tailed species)

has previously been evaluated for the ability of its CD4 receptor to support entry of early HIV-1

isolates. Unfortunately, the macaque CD4 receptor does not support entry of the vast majority

of early HIV-1 isolates, frustrating attempts to model transmission and early HIV-1 infection in

these animals [30–32]. On the other hand, we found that most allelic forms of owl monkey CD4

do support entry of early HIV-1 isolates [33]. Beyond these species, the compatibility of early

HIV-1 isolates with primate CD4 receptors has not been explored. We reasoned that HIV-1
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compatibility with primate CD4 receptors might be dynamic, given that CD4 is highly diverged

in its protein sequence at the interaction interface with HIV-1 Env (Fig 1A).

Results

Primate CD4 receptors are functionally diverse in supporting HIV-1 entry

We began by cloning the CD4 genes of 15 primate species, plus human CD4. Using retroviral

transduction, we stably introduced these genes into Cf2Th cells (dog thymocytes) that had also

been engineered to express the human C-C motif chemokine receptor 5 (CCR5) coreceptor

for HIV-1 entry (S1 Fig). Expression levels of these CD4 receptors on Cf2Th cells were similar

to endogenous expression levels of CD4 seen on human immortalized T cells and on primate

primary T cells that we isolated directly from blood (S1 Fig). Our goal was then to infect these

cells with an early HIV-1 isolate. For the sake of this study, we refer to all viruses or Env clones

that were isolated <150 days post infection as “early” and those isolated >150 days post infec-

tion as “chronic” isolates. This nomenclature is consistent with the Fiebig scale classification,

for which Fiebig stages I–V (typically lasting until 70 to 150 days post infection) capture early

infection stages and Fiebig stage VI indicates progression into chronic infection [34,35]. This

is also consistent with other studies on transmitted or early HIV-1, which have used viruses

Fig 1. Some primate species encode a CD4 that functions as an entry receptor for an early isolate of HIV-1. (A) Cryo-

EM structure of the Envelope (Env) trimer (blue) from a prototypic early HIV-1 isolate (BG505 [9]) in complex with human

CD4 (tan) (PDB:5U1F) [28]. Only the D1 and D2 domains of CD4 are included in this structure, and the D1 domain

mediates interaction with Env. Amino acids highlighted in red spheres were previously shown to be evolving under

recurrent positive selection and fall at the interaction interface with Env [20,21]. (B) Dog thymocytes (Cf2Th cells) stably

expressing human CCR5 and the indicated CD4 receptors (x-axis) were infected with Q23ΔEnv-GFP pseudotyped with

BG505 Env, isolated from a newly infected infant [9]. The percent cells infected (GFP-positive) was enumerated by flow

cytometry and normalized to the percent infected with human CD4. Error bars represent the mean + SEM from four

independent experiments, each with two to three technical replicates. Values above error bars represent fold decrease in viral

entry relative to human CD4, only indicated for those samples that passed significance thresholds (one-way ANOVA for

repeated measures effect, Dunnett’s test; P< 0.05). Data associated with this figure can be found in the supplemental data

file (S1 Data). (Top) Cladogram of species used in this experiment, with the number of amino acid differences in the D1

domain of CD4 (compared to human CD4) noted at the branch tips as well as the amino acid encoded at position 39. CCR5,

C-C motif chemokine receptor 5; cryo-EM, cryogenic electron microscopy; GFP, green fluorescent protein; PDB, Protein

Data Bank.

https://doi.org/10.1371/journal.pbio.3000304.g001

Selective use of primate CD4 receptors by HIV-1

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000304 June 10, 2019 3 / 26

https://doi.org/10.1371/journal.pbio.3000304.g001
https://doi.org/10.1371/journal.pbio.3000304


isolated from human blood weeks to months after infection [5,9,31,36,37]. The properties of

all of the HIV-1 Env isolates used in this study are summarized in S1 Table.

The HIV-1 Envelope clone “BG505” has risen to prominence in the study of early HIV-1.

The Overbaugh group amplified BG505 Env from an infant approximately 6 weeks after deliv-

ery and showed that this Env sequence was nearly identical to the two other Env sequences

amplified from this baby at the same time point [9]. This indicated that the infection probably

started from a single virion and that the captured Env sequence closely resembles the Env of

this transmitted virion. A cocrystal of BG505 Env has been solved in complex with CD4 (Fig

1A) [28,38–40], and the alternate folding conformations of BG505 Env have been character-

ized in depth [41]. We prepared HIV-1 pseudotyped with the BG505 Env by cotransfecting

293T cells with two plasmids: one expressing the BG505 Env, and another expressing an HIV-

1 green fluorescent protein (GFP) reporter virus genome (Q23ΔEnv-GFP, representing a

blood-derived clade A isolate from 1 year after seroconversion [30,42]). Cell lines expressing

human CCR5 and different primate CD4 receptors were then infected with this BG505 virus

(similar infection results were obtained in cell lines expressing matched CD4 and CCR5 from

each species; S2 Fig). Forty-eight hours post infection, cells were harvested and analyzed by

flow cytometry. Samples were first gated for live cells and further gated such that all samples

were narrowed to the same log decade of CD4 receptor expression (S1 Fig). GFP-positive (i.e.,

infected) cells were then enumerated within this population. We identified three categories of

CD4 receptors that support HIV-1 entry to varying degrees (Fig 1B). The CD4 receptors of

some species (shown with purple bars: white-cheeked gibbon, olive baboon, gelada, black

snub-nosed monkey, colobus, and owl monkey) behave similarly to human CD4 when chal-

lenged with BG505 HIV-1. These species are not our closest relatives but rather are distributed

throughout the primate phylogeny (Fig 1B). A second class of species (shown with gray bars:

chimpanzee, gorilla, orangutan, and sooty mangabey) encodes CD4 receptors that support

entry of this virus but at a level that is approximately 2-fold lower than human CD4. A third

class of species (macaques, mandrills, sabaeus monkeys, and squirrel monkeys) encodes CD4

receptors that support entry at a level 25-fold or more reduced compared to human CD4.

With some of the CD4 receptors in the latter class, infection was reduced by more than

100-fold compared to human CD4. While the chimpanzee CD4 allele tested here has a semi-

permissive phenotype, we have recently shown that some chimpanzee CD4 alleles are highly

resistant to HIV-1 entry [48]. As a control, we determined that infection did not change the

surface expression level of human or any primate CD4 receptor (S1 Fig). This allows us to con-

clude that the observed differences in infection are due to defects in entry and that our gating

strategy did not exclude infected cells because they no longer express CD4. From this data, we

can conclude that CD4 receptors are functionally variable from one primate species to the next

with regards to supporting entry of an early HIV-1 isolate. Prior to this, there was only one pri-

mate species known to encode a CD4 receptor compatible with early HIV-1 isolates, owl mon-

keys [33], but now we can add five additional species to that list: white-cheeked gibbon, olive

baboon, gelada, black snub-nosed monkey, and colobus monkey.

HIV-1 entry requires engagement of the amino-terminal “D1” domain of the CD4 receptor

(residues 1–98). This is evidenced by numerous Env–CD4 cocrystals [43–45] and mapping of

D1-domain residues that affect interaction with HIV-1 Env [43,46–48]. For instance, the

macaque CD4 receptor can be rendered functional for HIV-1 entry by introducing a single

amino acid substitution in the D1 domain (isoleucine “39I” mutated to the human residue,

asparagine “39N”) [31]. Likewise, owl monkey populations circulate CD4 alleles that are both

non-functional (39I) and functional (39N) for HIV-1 entry [33]. From the panel of primate

CD4s that we have tested, we can now build on this observation that residue 39 in CD4 is par-

ticularly important for HIV-1 engagement. In Fig 1B, the residues encoded at CD4 position 39
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in each species are listed at the tips of the phylogeny, along with the total number of amino

acid differences in the D1 domain compared to human CD4. From this, it appears that CD4

must encode an asparagine (“N”) at position 39 in order to have any appreciable function as a

receptor for BG505 HIV-1. Indeed, position 39 in CD4 has experienced positive selection dur-

ing primate speciation [20,21], and this may be because mutations that replace the asparagine

protect individuals against infection. However, there are clearly sequence determinants outside

of position 39 that also matter because not all receptors with an asparagine at position 39 func-

tion equally well.

The selective use of primate CD4 receptors is a property of HIV-1 from the

bloodstream, including early HIV-1 isolates

We next sought to determine whether the selective use of only some primate CD4 receptors is

a property specific to early HIV-1 isolates. From this point forward, we focused on CD4 recep-

tors from a subset of primate species, in particular the African primate species involved in the

zoonotic transmissions of HIV-1 (chimpanzees and gorillas) and HIV-2 (sooty mangabeys)

[17], and the macaque species that serve as the current laboratory model for HIV-1 (expression

histograms for these cell lines are shown in S2 Fig). All of these receptors were partially or

highly defective for entry mediated by BG505 Env (Fig 1B). We next tested Envs isolated from

the blood of four individuals chronically infected with HIV-1 at time points more than 6

months after the original infection [49]. These Envs were pseudotyped onto Q23ΔEnv-GFP, as

described above. These viruses were then used to infect stable cell lines expressing human

CCR5 and CD4 from different primate species. Two of the four Envs demonstrated the specific

use of human CD4 that we have described (Fig 2A, left two panels). The other two demon-

strated a weakening of this selective CD4 phenotype but still a preference for human CD4 (Fig

2A, right two panels). This suggests that the phenotype of selective CD4 usage may be retained

during later stages of disease and may not be unique to early HIV-1 isolates.

To address this further, we looked at how CD4 receptor usage may change over time as

infection progresses from early- to late-stages of disease. To test this, we made use of sets of

molecular clones that had been amplified by single-genome amplification from patient blood

early after infection and then again from the same patient 6 months later [3,14,50,51]. From

four such sets of molecular clones, we cloned the rev-env cassettes into a mammalian expres-

sion vector, which was then used to pseudotype each Env onto Q23ΔEnv-GFP, as described

above. These viruses were tested for their ability to enter cell lines stably expressing human or

primate CD4 receptors, along with human CCR5. We observed no significant difference in

receptor usage between the early Env (grey bars) and its matched 6-month counterpart (black

bars) (Fig 2B). In fact, for each patient, the Envs derived from the two different time points (6

months apart) behaved almost identically. Infection mediated by all of these Envs was reduced

in cells expressing chimpanzee or macaque CD4 receptors when compared to human CD4.

One exception was seen with virus from patient CH40, whose Env did mediate entry some-

what better via chimpanzee and macaque CD4 compared to other Envs, although still less well

than with human CD4. Therefore, selective use of primate CD4 receptors appears to describe

many HIV-1 isolates from the blood, including those isolated just after infection (weeks), later

at 6 months (Fig 2B), or even during chronic stages of infection (Fig 2A).

We next examined the transmission bottleneck directly by testing matched donor–recipient

HIV-1 Env pairs. HIV-1 was pseudotyped with Envs from mother–infant pairs, of which the

mother was chronically infected and her baby was newly infected (<6 weeks) [9]. For seven

such pairs, we found that mother HIV-1 Envs (black bars) were not different from infant HIV-

1 Envs (grey bars), in that all demonstrated the selective use of human CD4 (Fig 2C). In fact,

Selective use of primate CD4 receptors by HIV-1
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corresponding mother and baby Envs behaved very similarly. When the seven pairs were

grouped, no significant differences were noted between maternal (chronic) and infant (early)

Envs in terms of their ability to infect cells bearing chimpanzee or rhesus macaque CD4 recep-

tors (Mann–Whitney test, P> 0.05). The tested pairs represented most major HIV-1 group M

subtypes, suggesting that selective use of CD4 may describe all or most globally circulating

forms of HIV-1. We next verified this by challenging cell lines expressing different CD4

Fig 2. Selective use of primate CD4 receptors is not a result of the transmission bottleneck and instead is seen in many isolates of HIV-1 taken from human blood.

Cells stably expressing human CCR5 and human or primate CD4 (x-axis) were infected with Q23ΔEnv-GFP bearing (A) chronic Envelopes (Envs) [49], (B) early (newly

infected; grey bars) and chronic (6 months post infection; black bars) Env pairs derived from the same patient [3,14,50,51], shown for one patient in each panel, or (C)

Envs derived from maternal (chronic; black bars)/infant (newly infected; grey bars) transmission pairs [9], with one mother–baby pair shown in each panel. The percent

cells infected (GFP-positive) was measured by flow cytometry and normalized to the percent infected with human CD4. Error bars represent the mean + SEM from two

independent experiments, each with two to three technical replicates. Data associated with this figure can be found in the supplemental data file (S2 Data). CCR5, C-C

motif chemokine receptor 5; GFP, green fluorescent protein.

https://doi.org/10.1371/journal.pbio.3000304.g002
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receptors with early HIV-1 isolates representing each of the four major group M (pandemic)

HIV-1 subtypes. These four Envs, isolated from patient blood shortly after initial infection

[36,52,53], were pseudotyped onto the Q23ΔEnv-GFP virus, as described before. While

human CD4 supported entry of all of these viruses, primate CD4 orthologs supported levels of

HIV-1 entry that ranged from 2- to 58-fold lower (Fig 3A). Collectively, our study has explored

a breadth of HIV-1 isolates taken from patient blood, representing all of the major subtypes

found globally, and has found that they can all be phenotypically described by their selective

use of only certain primate CD4 receptors.

Selective use of only certain primate CD4 receptors results from weak CD4

binding affinity

Next, we wanted to understand more about why blood-derived HIV-1 Env isolates demon-

strate this selective use of only some primate CD4 receptors. Thus far, all of the Envs that we

have tested are from CCR5-tropic viruses isolated from the blood. There are three types of

HIV-1 in the body of an infected person: CCR5 T cell-tropic (the most abundant form in the

blood, utilizing the CCR5 coreceptor), CXCR4 T cell-tropic (in the blood but using an alter-

nate coreceptor, C-X-C chemokine receptor type 4 [CXCR4]), and CCR5 macrophage-tropic

(rare in the blood, usually found in the central nervous system) [29,54–56]. Only the first of

these transmits to new individuals, whereas the latter two types arise in special evolutionary

niches within the human body during the course of chronic infection and rarely transmit [57–

63]. In this study, we did not consider or test CXCR4-utilizing viruses. We next tested HIV-1

pseudotyped with Envs from four macrophage-tropic viruses [31,64–72] for their ability to

infect cells bearing primate CD4 receptors (Fig 3B). In stark contrast to the blood-derived iso-

lates tested above (Figs 1, 2 and 3A), macrophage-tropic viruses were promiscuous in their use

of all CD4 receptors tested. For each primate CD4 tested, the median relative infection for all

early HIV-1 Envs (Fig 3A) was significantly lower than macrophage-tropic Envs (Fig 3B;

P< 0.05; Mann–Whitney U test).

Macrophage-tropic HIV-1 Env is known to bind CD4 with higher affinity compared to

other forms of HIV-1 Env [73–75]. This is a selected property that these virions possess

because macrophages have lower densities of CD4 molecules on their surface [74]. Based on

this, we hypothesized that weak CD4 binding affinity is what makes most blood-derived HIV-

1 Envs sensitive to small sequence differences in CD4 receptors from different primates. To

test this, we first purified a soluble version of the human CD4 receptor for use in neutralization

assays (sCD4, consisting of the D1 and D2 domains of CD4) (S3 Fig). When sCD4 is preincu-

bated with HIV-1, it is known to competitively inhibit virus interaction with the CD4

expressed on the cell surface and block virus entry [76]. Our purified human sCD4 behaved

identically to a commercially available version (S3 Fig). HIV-1 pseudotyped with early or mac-

rophage-tropic Envs was preincubated with increasing concentrations of sCD4 and then used

to infect TZM-bl indicator cells (HeLa CD4/CCR5 cells that express luciferase in response to

HIV-1 tat expression). HIV-1 pseudotyped with either of two different early Envs (BG505 or

AC10.0.29) was neutralized in a dose-dependent manner by human sCD4 (Fig 3C). As

expected, HIV-1 pseudotyped with either of two macrophage-tropic Envs (BaL or SF162) was

neutralized by human sCD4 to an even greater extent, consistent with these viruses having a

higher affinity for CD4 (Fig 3D). The IC50 values are shown within each panel and are approxi-

mately 4-fold higher for early Envs than for macrophage-tropic Envs. In conclusion, the

broadened ability to enter cells through the CD4 receptors encoded by all primates tested (Fig

3A and 3B) correlates with tighter CD4 binding (Fig 3C and 3D).

Selective use of primate CD4 receptors by HIV-1
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Fig 3. Macrophage-tropic HIV-1 isolates, which are known to bind human CD4 more tightly, are promiscuous in their use

of primate CD4 receptors. (A, B) Cells stably expressing various primate CD4 receptors (x-axis), along with human CCR5,

were infected with Q23ΔEnv-GFP pseudotyped with (A) early HIV-1 Envelopes (Envs) or (B) Envs from common macrophage-

tropic HIV-1 isolates. The percent cells infected (GFP-positive) was measured by flow cytometry and normalized to the percent

infected with human CD4. Error bars represent the mean + SEM from two independent experiments, each with two to three

technical replicates. Values above error bars represent fold decrease in viral entry relative to human CD4, only indicated for

those samples that passed significance thresholds (one-way ANOVA for repeated measures effect, Dunnett’s test; P< 0.05). (C

and D) Infection of TZM-bl cells with Q23ΔEnv-GFP pseudotyped with early (C) or macrophage-tropic (D) Envs. Each virus

was preincubated with increasing concentrations of human soluble CD4 (sCD4) as a competitive inhibitor. TZM-bl cells are

HeLa CD4/CCR5 cells that express luciferase in response to HIV-1 tat expression, read in relative light units (RLUs). Error bars

represent the mean + SD from one biological replicate (n = 3 to 4 technical replicates), representative of two independent

experiments. Error bars are not plotted in instances in which the size of the error bar is less than the symbol size. IC50 values

from the soluble CD4 neutralization assays are shown within each panel, for which the mean and SD values reflect the variation

of the IC50 calculations from two independent experiments. (E and F) Same as C and D, only neutralization assays were

performed with chimpanzee and rhesus macaque sCD4 instead of human sCD4. Data associated with this figure can be found in

the supplemental data file (S3 Data). CCR5, C-C motif chemokine receptor 5; GFP, green fluorescent protein.

https://doi.org/10.1371/journal.pbio.3000304.g003
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We next wanted to confirm that weak binding to human CD4 receptors results in a loss of

binding to primate CD4 receptors. We purified chimpanzee and rhesus macaque sCD4 (S3

Fig) and tested the ability of these proteins to neutralize different classes of HIV-1. Viruses

bearing macrophage-tropic Envs (BaL or SF162) were neutralized by chimpanzee and

macaque sCD4 (Fig 3F), while viruses bearing Envs from early HIV-1 isolates (BG505 or

AC10.0.29) were not neutralized to an appreciable degree (Fig 3E). Collectively, these data sug-

gest that most early HIV-1 isolates from the blood, which have lower affinity for human CD4

compared to macrophage-tropic viruses, do not bind well to chimpanzee and macaque CD4.

This shows that our entry assay for selective versus promiscuous use of primate CD4s is essen-

tially a readout of CD4 binding affinity.

To further test this premise, we next created a panel of Envs engineered to have high,

medium, or low binding affinity for CD4. BG505 Env, the prototypic early Env discussed

above, was engineered to have two different point mutations, one at position 281 and the other

at position 375. These mutations in Env have been previously shown to increase binding affin-

ity to CD4, although only one of them has been characterized within the BG505 Env back-

ground [77,78]. Consistent with these previous reports, the A281V mutation subtly increased

binding to human sCD4 relative to wild type (demonstrated by increased neutralization by

sCD4), while the S375Y mutation resulted in a more substantial increase (Fig 4A). While both

of these mutations were originally characterized because they increase entry via macaque CD4

[77,78], we found that both mutations also improve entry via all of the primate CD4 receptors

tested, with increasing improvement as the binding affinity for CD4 increases (left to right in

Fig 4B). This pattern of increased binding affinity for human CD4 and increased ability to

enter cells via primate CD4s also correlated to increased binding affinity for primate CD4

receptors, as read in a neutralization assay with purified chimpanzee and rhesus macaque

sCD4 proteins (left to right in Fig 4C). Finally, we engineered two additional mutations into

HIV-1 BG505 Env that have been shown to increase CD4 binding and to increase entry via

macaque CD4 [77]. These mutations also make Env able to more efficiently mediate entry via

all primate CD4s tested, not just that of macaques (Fig 4D). These data support the general

premise that promiscuous use of primate CD4s can be created by mutations in Env that

increase CD4 binding affinity. Further, the promiscuous use of primate CD4 receptors is not

just a property of macrophage-tropic viruses but instead may be a common property of viruses

engineered or adapted to bind CD4 more tightly. The fact that virtually no blood-derived

HIV-1 isolate that we have tested has this phenotype (promiscuous use of primate CD4 recep-

tors) suggests that this phenotype is strongly selected against in the human body. The reasons

for this are unknown.

We then employed a virus-free approach to confirm that the mechanism of selective use of

certain primate CD4 receptors stems from weak CD4 binding, as opposed to other interactions

between HIV-1 and CD4 that may occur during the course of an infection. Cells expressing

HIV-1 Env on their surface were mixed with cells expressing human CCR5 and various pri-

mate CD4 receptors (Fig 5A). Cellular fusion was assessed using a split luciferase reporter sys-

tem in which, upon cell–cell fusion, the two halves of luciferase merge and produce a

functional enzyme [79]. We used this assay to test the interactions between four different Envs

and six different CD4 receptors, as shown in Fig 5B. In this system, the phenotypes seen in our

previous infection assays were largely recapitulated despite the fact that this assay is virus-free

and only requires three proteins (Env and CD4/CCR5). The early Envs mediated fusion most

efficiently with cells expressing human CD4, while the macrophage-tropic Envs broadly

engaged and fused with diverse primate CD4 receptors. This assay, when taken together with

the experiments employing purified CD4 described above, reveal that weak binding to CD4 is
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Fig 4. An early Env engineered to have weak, medium, or tight binding to CD4 becomes progressively more promiscuous

in its use of primate CD4 receptors. (A–C) Amino acid substitutions were introduced into the BG505 Envelope (Env) at

position 281 and 375. The headers at the top describing these mutations pertain to panels A, B, and C. In each column, the

indicted Env was pseudotyped onto Q23ΔEnv-GFP. (A) Each of the three viruses was preincubated with increasing

concentrations of human soluble CD4 (sCD4) and then used to infect TZM-bl cells, which are HeLa CD4/CCR5 cells that

express luciferase in response to HIV-1 infection and tat expression, read in relative light units (RLUs). Error bars represent

the mean + SD from one biological replicate, representative of two independent experiments. Error bars are not plotted in

instances in which the size of the error bar is less than the symbol size. IC50 values are listed on each panel, for which the mean

and SD values reflect the variation of the IC50 calculations from two independent experiments. (B) Cells stably expressing the

indicated CD4s (x-axis) and human CCR5 were infected with each virus. The percent cells infected (GFP-positive) was

measured by flow cytometry and normalized to the percent infected with human CD4. Error bars represent the mean + SEM

from two independent experiments, each with three technical replicates. Values above error bars represent fold decrease

relative to human CD4 for those samples that passed significance thresholds (one-way ANOVA for repeated measures effect,

Dunnett’s test; P< 0.05). (C) Same as panel A but with chimpanzee and rhesus macaque sCD4 instead of human sCD4. (D)

Two additional single point mutations were introduced into the BG505 Env, which have also been shown to increase binding

affinity for CD4 [77]. These Envs were pseudotyped onto Q23ΔEnv-GFP and used to infect cells stably expressing the

indicated CD4 (top of each graph) and human CCR5. The percent cells infected (GFP-positive) was measured by flow

cytometry and normalized to the percent infected with human CD4. Error bars represent the mean + SEM from two

independent experiments, each with two to three technical replicates. Values above error bars represent fold increase relative
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what makes most blood-derived HIV-1 isolates (i.e., those fueling the global pandemic) selec-

tive in their use of only certain primate CD4 receptors.

Early HIV-1 isolates are blocked from entry by multiple allelic versions of

macaque CD4

Interestingly, macaques (both rhesus and pig-tailed) encode a CD4 receptor that is not permis-

sive for entry of most blood-derived HIV-1 isolates (Figs 1, 2, 3 and 4), consistent with previ-

ous reports [30,77,78]. Since macaques (predominantly rhesus macaques) serve as the current

animal model for HIV-1, we sought to determine whether some allelic variants of rhesus

macaque CD4 might encode receptors that better support HIV-1 infection. We sequenced the

CD4 gene from 52 captive Indian-origin rhesus macaques and identified alleles encoding five

unique CD4 protein variants (Fig 6A). All of these allelic versions of rhesus macaque CD4

behaved identically and were nonfunctional for entry of virus pseudotyped with BG505 Env

to wildtype BG505 Env for those samples that passed significance thresholds (one-way ANOVA for repeated measures effect,

Dunnett’s test; P< 0.01). Data associated with this figure can be found in the supplemental data file (S4 Data). CCR5, C-C

motif chemokine receptor 5; GFP, green fluorescent protein.

https://doi.org/10.1371/journal.pbio.3000304.g004

Fig 5. Early isolates of HIV-1 from the blood are deficient in binding and/or fusion with CD4 from some primate species. (A) 293T cells transiently expressing

various Envelope proteins (Envs), and dog thymocytes (Cf2Th cells) stably expressing various primate CD4 receptors and human CCR5, were each transfected with

plasmids encoding half of a split Renilla luciferase [79]. These two cell types were then cocultured to induce membrane fusion, which was detected by a luminescent

product following the addition of the Renilla luciferase substrate. (B) The percentage of fusion was calculated relative to what was observed with human CD4. Error bars

represent the mean + SEM from three to four independent experiments, each with four technical replicates. Values above error bars represent fold decrease relative to

human CD4 for those samples that passed significance thresholds (one-way ANOVA for repeated measures effect, Dunnett’s test; P< 0.05). Data associated with this

figure can be found in the supplemental data file (S5 Data). CCR5, C-C motif chemokine receptor 5.

https://doi.org/10.1371/journal.pbio.3000304.g005
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and also with Env from another early HIV-1 isolate, CAP210.2.00.E8 (Fig 6B). Therefore,

while owl monkey and chimpanzee populations circulate CD4 alleles with dramatically differ-

ent functions as receptors for HIV/SIV entry [33,48,80], it appears that the function of

macaque CD4 is identical from one allele to the next.

In this study, we have shown that Envs from over 30 early and chronic HIV-1 isolates from

human blood (mother–infant pairs, etc.) all demonstrate selective entry via only some primate

CD4 receptors. We next tested 29 additional Envs (n = 33 total, four of which were previously

tested in infection assays herein; S1 Table) using the cell–cell fusion assay described above.

These Envs were universally poor at mediating fusion with cells expressing rhesus macaque

CD4 and CCR5 proteins (Fig 6C). Similar data have been generated in other large screens of

early HIV-1 Envs [31,32]. Collectively, it seems that virtually no HIV-1 isolated from the

bloodstream is compatible with the macaque version of CD4. If we now understand the inabil-

ity of HIV-1 to use macaque CD4 to be a reflection of weak CD4 binding, this leads us to

understand that virtually all early- and late-stage HIV-1 isolates in the human bloodstream

experience continual selection to retain weak CD4 binding.

Fig 6. Rhesus macaque CD4 alleles are universally defective for HIV-1 entry. (A) Total RNA was isolated from the blood of 52 rhesus macaque individuals. CD4 was

amplified from cDNA, and PCR products were sequenced to yield genotype information for each individual (104 chromosomes). Genotype information was used to

phase SNPs using Phase 2.1 [81,82] in DNAsp v5 [83]. The table summarizes the unique CD4 alleles identified. For each allele, the residue encoded at each variable amino

acid positions is noted. Unique alleles were cloned and further verified by Sanger sequencing. (B) Dog thymocytes (Cf2Th cells) stably expressing human CCR5 and the

indicated rhesus macaque CD4 alleles (x-axis) were infected with HIV-1 (Q23ΔEnv-GFP) bearing a subtype A (BG505) or subtype C (CAP210.2.00.E8) Envelope (Env).

The percent cells infected (GFP-positive) was measured by flow cytometry 48 hours post infection. Error bars represent the mean + SEM from two independent

experiments, each with three technical replicates. Values above error bars represent fold decrease relative to human CD4 for those samples that passed significance

thresholds (one-way ANOVA for repeated measures effect, Dunnett’s test; P< 0.05). (C) 293T cells transiently expressing diverse HIV-1 Envs (see S1 Table) and Cf2Th

cells stably expressing the indicated CD4/CCR5 receptors were each transfected with plasmids encoding half of a split Renilla luciferase [79]. These two cell types were

then cocultured to induce membrane fusion, which was detected by a luminescent product following the addition of the renilla luciferase substrate. A total of 33 Envs

were tested from the following major HIV-1 subtypes: subtype A (n = 12), subtype B (n = 7), subtype C (n = 6), subtype D (n = 6), and subtype A/D (n = 2). The

percentage of fusion was calculated relative to what was observed with human CD4/CCR5. Error bars represent the mean + SD, for which n = 2 (two technical replicates

from one experiment). Data associated with this figure can be found in the supplemental data file (S6 Data). nt, nucleotide; aa, amino acid; CCR5, C-C motif chemokine

receptor 5; GFP, green fluorescent protein.

https://doi.org/10.1371/journal.pbio.3000304.g006
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Discussion

We find that many HIV-1 isolates from the blood, including early HIV-1 isolates, enter cells

poorly through a subset of primate CD4 receptors. This finding is highly analogous to what

has been observed with primate restriction factors that block HIV-1 infection, in that they too

are highly species-specific in their interaction with HIV-1 [84,85]. Like CD4, most restriction

factors are also evolving under intense positive selection in primates [86–89], explaining why

these proteins vary in protein sequence on virus-binding surfaces from one host species to the

next. It appears that SIVs, and probably other viruses as well, have put intense selective pres-

sure on these genes to evolve in a way that changes the protein sequence on virus-binding sur-

faces. The selection and retention of new CD4 alleles that block virus entry could protect a

species from infection, at least until the virus population counter adapts. When this type of

arms race is playing out in multiple host species independently, it drives divergence in protein

sequence at host–virus binding interfaces and has the long-term effect of making it difficult for

viruses to move between species [16]. Indeed, a prevailing theme that has emerged in recent

years is that receptor sequence divergence serves as a potent barrier to the movement of viruses

between species [16,90–94]. Likewise, this study suggests that HIV-1 entry is blocked by the

CD4 receptor of some primate species that it might encounter, whether that be in the wild or

in the lab. On the other hand, we identify several primate species that encode CD4 receptors

compatible with unmodified isolates of HIV-1 from the human bloodstream, including early

isolates. These species could possibly be useful as animal models of HIV-1 transmission and

infection, assuming that restriction factor blocks can be overcome in these species.

We show that selective use of only certain primate CD4 receptors occurs when HIV-1 Env

has weak binding affinity for CD4. This weak affinity makes HIV-1 Env sensitive to sequence

differences in the CD4 molecule. The strongest evidence in favor of this model is that viruses

that have been selected or engineered to have tight CD4 binding affinity become agnostic to

sequence differences in primate CD4 and can more efficiently enter cells using all CD4 ortho-

logs that we have tested. While neutralization assays to assess the CD4 binding affinity of a

given virus are laborious, our assay for selective or promiscuous primate receptor usage

allowed us to screen a large number of HIV-1 isolates from human blood. Based on this, we

show that weak CD4 binding is a nearly constant property of HIV-1 circulating in the human

bloodstream, including but not specific to early-stage virions. This underscores the need to

further understand the significance of CD4 binding affinity to HIV biology. While it has long

been known that different HIV types have different affinities for CD4, the functional conse-

quences of this are unclear. This is important to understand because weak CD4 binding seems

to be selected for in the human bloodstream, yet some of our current primate models use Envs

that are engineered for tight CD4 binding affinity so that they more efficiently engage the non-

permissive macaque CD4 receptor. For example, mutations at HIV-1 Env 375, when engi-

neered into SHIVs, render virons compatible with macaque CD4 [77]. However, mutations at

this position do not emerge in vivo when HIV-1 Envs are adapting to macaque CD4, whereas

mutations at Env 281 do [78]. Based on our data, we can now speculate that Envs with high

binding affinity to CD4 have a fitness penalty in vivo.

Given that nearly all HIV-1 in the human bloodstream seems to be selected to bind CD4

weakly, why would this be preferable? Although the reasons for this are currently unclear,

there have been numerous speculations put forward [29]. It is possible that more efficient use

of CD4 requires changes in Env conformation that would increase susceptibility to antibody

neutralization. Indeed, Arrildt and colleagues have shown that when compared to patient

matched T-cell tropic isolates from the blood, macrophage-tropic isolates appear to be more

sensitive to certain CD4 binding site antibodies [95]. Thus, any conformational change that
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increases antibody neutralization sensitivity would likely be purged from the viral population.

Alternatively, tighter CD4 binding is known to enhance HIV-1 tropism for cells of the mono-

cyte–macrophage lineage [73,95,96]. However, replication of HIV-1 in these cells appears to

be slowed due to cell type–specific blocks, including the restriction factors SAMHD1 and

APOBEC3A [97,98], delayed reverse transcription and integration [99,100], and transcrip-

tional repression [101]. These blocks to replication in macrophages may put high-affinity CD4

binders at an evolutionary disadvantage during early stages of infection. Finally, highly effi-

cient macrophage infection may directly promote disease via inflammatory processes. HIV-1

infection of central nervous system macrophages coincides with severe inflammation and neu-

ronal impairment [102–105]. Additionally, respiratory and cardiac dysfunction during late-

stage HIV-1 infection has been associated with chronic inflammation, of which macrophages

may be playing a central role [106,107]. Viral infection is a delicate balance between replicating

efficiently enough to transmit, yet limiting disease to maintain the health of the host. Altering

cellular tropism via high-affinity CD4 binding may be disadvantageous to the virus, dispropor-

tionately skewing infection toward a more diseased state.

Herein, as in many other studies, comparative genetics between humans and primates has

revealed to us new lessons about HIV’s interaction with its host. This has been a tremendously

powerful tool in the HIV field, having led to the original identification of, and mechanistic

insights into, many of the host factors that control HIV-1 biology (for only a few examples, see

[86,108–112]). As primate research becomes more tenuous [113], we need to keep in mind

how powerful these comparative approaches have been in the study of HIV-1 and in the study

of other viruses as well (for only a few examples, see [114–117]).

Materials and methods

Cells

HEK 293T (ATCC CRL-11268), TZM-bl (NIH ARP # 8129), and canine thymocytes (Cf2Th)

(ATCC CRL-1430) were cultured in Dulbecco’s modified Eagle medium (Invitrogen) with

10% FBS, 2 mM L-glutamine, and 1% Pen Strep (complete medium). All cells were maintained

at 37˚C and 5% CO2.

Isolation of primate CD4+ T cells from whole blood

Whole blood from owl monkey (Aotus vociferans) or rhesus macaque (Macaca mulatta)

donors was received in plastic BD Vacutainer Plus K2EDTA tubes (Cat#366643, lavender cap).

The blood samples were obtained from animals housed at the Keeling Center for Comparative

Medicine and Research (KCCMR) in Bastrop, TX. Blood was diluted in an equal volume of

balanced salt solution (one part solution A [5.5 x 10−3 M Anhydrous D-glucose, 5.0 x 10−5 M

CaCl2-2H2O, 9.8 x 10−4 M MgCl2-6H2O, 5.4 x 10−3 M KCl, 0.145 M TRIS] to nine parts solu-

tion B [0.145 M NaCl]). Then, diluted blood was separated in density gradient media (Ficoll-

Pacque PLUS GE17-1440-02) by 400 x g centrifugation for 40 minutes. The peripheral blood

mononuclear cell layer (i.e., PBMCs or buffy coat) was removed and washed twice in three vol-

umes of balanced salt solution per sample. Each donors’ PBMCs were then immediately sub-

jected to a CD4-positive selection kit (EasySep Human CD4 Positive Selection Kit II Cat

#17852) to isolate CD4+ T cells. Rhesus macaque and owl monkey CD4+ T cells were then

activated for three days in RPMI supplemented with 100 U IL2/ml (recombinant human-IL2;

Sigma #11011456001) and 5 μg/ml or 0.5 μg/ml PHA-P (Sigma L1668), respectively. CD4+ T-

cell cultures were subsequently maintained in RPMI + 100 U IL2/ml media.
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Detection of CD4 receptor expression on T cells by flow cytometry

CD4+ T cells isolated from rhesus macaque or owl monkey whole blood (as described above)

or human T cells (Hut78 cells) were analyzed for CD4 expression by flow cytometry (Beckman

Coulter CyAn ADP High-Performance Flow Cytometer). Cells were first incubated in Fc

receptor (Cd16 monoclonal antibody (3G8), eBioscience Cat #16-0166-82) blocking buffer

(PBS + 2% FCS + 1mM EDTA + 0.5% BSA) on ice for 1 hour. These cells were then fixed in

1% PFA and stained for cell surface expression of CD4 (BD CD4 mouse anti-human, APC,

clone: L200). On the cytometer, only live cells were gated and histograms of CD4 expression

determined by unstained and isotype (BD Mouse IgG1, , Cat #555751) controls.

Envelope clones and mutagenesis

The following Env clones were obtained from the NIH AIDS Reagent Program, Division of

AIDS, NIAID, NIH: Env clones from early infection (QF495.23M.Env.A1 #11890 and

QB857.23I.Env.B3 #11915 [52,118] [Dr. Julie Overbaugh], AC10.0.29 #11024 [53] [Drs. David

Montefiori and Dr. Feng Gao], CAP210.2.00.E8 #11317 [36] [Drs. L. Morris, K. Mlisana, and

D. Montefiori]), chronic/lab-adapted Env clones commonly used in SHIVs (SF162 #10463

[64–66] [Drs. L. Stamatatos and C. Cheng-Mayer], BaL.26 #11446 [69] [Dr. Mascola], and 89.6

#12485 [71] [Drs. Kathleen Collins and Ronald Collman]), Env clones from chronic infections

#12670 (CNE55, CH119, CNE8, X1632 #12670 [49] [Dr. David Montefiori]), and Env clones

from maternal and infant/baby transmission pairs #11674 (M/B535, M/BG505, M/BJ613, M/

BL274, M/BK184, M/BJ412, M/BI206 [9] [Dr. Julie Overbaugh]). BG505.W6M.B1 [9] and

YU2 [31,68] Envs were gifts from Dr. Julie Overbaugh. Single-genome amplification-derived

molecular clones of T/F and 6-month chronic viruses (CH40, CH58, CH77, CH470

[3,14,50,51]) were gifts from Dr. Beatrice Hahn. We amplified the Rev-Env cassettes from

these by PCR, TA-cloned them into pCR8 (Clontech), and then used Gateway cloning to move

them into a gateway converted pCDNA3.1 (Invitrogen) mammalian expression vector. Fur-

ther description of these Env clones, and those used in the fusion assay screens, are described

in S1 Table. Nucleotide changes producing S375Y/W/H and A281V were introduced into

BG505.W6M.B1 by site directed mutagenesis using overlapping PCR primers containing the

mutation of interest, following standard methods.

Receptor expression constructs and generation of stable cell lines

CD4 and/or CCR5 was amplified from RNA isolated from the following sources: Jurkat T cells

(human CD4, Genbank MK170450), immortalized B-lymphocytes (rhesus macaque CCR5, Gen-

bank NM_001309402.1), whole blood (rhesus macaque CD4 alleles 1–5, Genbank

MF632286-MF632290; owl monkey CD4, Genbank MK205145), and fibroblasts (gorilla CD4,

Genbank MK170451). Pig-tailed macaque CD4 and CCR5 were subcloned into the pCR8/GW/

TOPO TA plasmid from pBabe retroviral vectors provided by Dr. Julie Overbaugh [30]. Human

CCR5 was obtained through the NIH AIDS Reagent Program, Division of AIDS, NIAID, NIH

(Human CCR5 expression vector pcCCR5 #3325 from Dr. Nathaniel Landau) and subcloned

into the pCR8/GW/TOPO TA plasmid. The remaining constructs were purchased as gene block

fragments (IDT), PCR amplified (Phusion HiFi Master Mix; Thermo Fisher), and TA cloned

into the pCR8/GW/TOPO TA plasmid (Thermo Fisher). The Genbank sequences used for gene

block synthesis are as follows: chimpanzee CD4 (NM_001009043.1) and CCR5 (U89797.1),

sooty mangabey CD4 (NM_001319342.1) and CCR5 (XM_012033360.1), gorilla CCR5

(AF177901.1), sabaeus CD4 (XM_007967415.1), gelada CD4 (XM_025401282.1), mandrill CD4

(XM_011982990.1), colobus CD4 (XM_011952099.1), baboon CD4 (XM_003905871.3), black

snub-nosed monkey CD4 (XM_017891844.1), white-cheeked gibbon CD4 (XM_004092147.1),
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squirrel monkey CD4 (AF452617.1), marmoset CD4 (AF452616.1), and orangutan CD4

(XM_024256502.1; incomplete CDS, missing 30 sequence (15 nucleotides) was substituted with

human CD4 residues). Following TA cloning, an LR Clonase II reaction (Invitrogen) was used

to shuttle inserts into Gateway-converted pLPCX (CD4) or pLHCX (CCR5) retroviral packaging

vectors (Clontech).

To produce retroviruses for transduction, HEK293T cells plated in antibiotic free media (1

x 106 cells/well in a 6-well plate) were transfected with a 2 μg of transfer vector (pLPCX [CD4]

or pLHCX [CCR5] retroviral vector), 1 μg pCS2-mGP (MLV gag/pol), and 0.2 μg pC-VSVG

(VSV-G envelope) using a 3:1 ratio of TransIT 293 (Mirus) transfection reagent to micrograms

of DNA, according to manufacturer’s directions. Forty-eight hours post transfection, retrovi-

rus VLPs were collected, filtered through 0.22-μm cellulose acetate filters, and stored at −80˚C

in single-use aliquots. Cf2Th cells were plated at 3 x 104 cells/well of a 12-well dish (approxi-

mately 15% confluent) and 24 hours later, transduced with 500 μl of retroviral supernatant by

spinoculation at 1,200 x g for 75 minutes in the presence of 5 μg/ml polybrene. The following

day, the cells were placed in complete medium containing antibiotic (3 μg/ml puromycin for

pLPCX or 250 μg/ml hygromycin-B for pLHCX) and cultured until stable outgrowth was

noted (>1 week). Stable cell lines were maintained indefinitely in selection media.

Single-cycle HIV-1 infections

To produce HIV-1 reporter viruses, 13 x 106 HEK293T cells were seeded into a 15-cm dish in

antibiotic free media and 24 hours later transfected with 5.3 μg of Q23ΔEnv-GFP and 2.7 μg of

Env plasmid. Q23ΔEnv-GFP, encoding an approximately 400-bp deletion in Env, and with

GFP inserted into the nef gene (therefore destroying the function of nef), was obtained from

Dr. Julie Overbaugh and described previously [30]. Fourty-eight hours post transfection, the

cell supernatant was harvested, concentrated (approximately 100-fold) using Amicon Ultracell

100K filters (Millipore), and stored at −80˚C in single use aliquots. Virus titers were deter-

mined by FACS analysis for GFP-positive cells, using a range of virus dilutions on Cf2Th cells

stably expressing human CD4 and CCR5. For infection assays, Cf2Th cells stably expressing

CD4 and CCR5 were plated at 3 x 104 cells/well of a 48-well plate (approximately 60% conflu-

ent) 24 hours prior to infection. The cells were then infected with HIV-1 pseudoviruses at a

multiplicity of infection (MOI) of approximately 0.6 in the presence of 5 μg/ml of polybrene

by spinoculation at 1,200 x g for 75 minutes. Fourty-eight hours post infection, the cells were

harvested from the plate and fixed in 2% paraformaldehyde for 10 minutes. The fixed cells

were washed three times with PBS and resuspended in 50 μl FACS buffer (1X PBS buffer con-

taining 2% FBS and 1 mM EDTA) antibody cocktail. All antibody pairs were used at 1:200

dilutions, and incubated at 4˚C with cells for 30 minutes as follows: for primate CD4/primate

CCR5 (S2 Fig), PeCy7 mouse α-human CD4 clone L200 (BD #560644) and APC mouse

α-human CD195 (CCR5) clone 3A9 (BD #560748); for all other studies, the combination of

APC mouse α-human CD4 clone L200 (BD #551980) and PeCy7 mouse α-human CD195

(CCR5) 2D7 (BD #557752) was used. Stained cells were analyzed on a CyAn ADP (Beckman

Coulter) flow cytometer. Following live-cell gating, CD4 and CCR5 expressing gates were

drawn and then the percent GFP positive cells was enumerated within the double positive pop-

ulation. The data from approximately 1 x 104 live cells was analyzed using FlowJo version 10.

Genotype and allele determination of Indian-origin macaque CD4

PAXgene (BD #762165) preserved whole blood was obtained from animals housed at the

KCCMR per blood collection protocols approved by the University of Texas, MD Anderson

Cancer Center IACUC. Total DNA/RNA was extracted using the AllPrep DNA/RNA mini kit
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(Qiagen). Extracted RNA was used as a template for oligo (dt) primed reverse transcription

(SuperScript III RT; Thermo Fisher). PCR amplification of CD4 was performed using PCR

Supermix HiFi (Thermo Fisher) containing 1–10 ng of cDNA and 0.2 μM final concentration

of each PCR primer CD4-Forward 50 AAGCAGCGGGCAAGAAAGACG 30 and CD4-Reverse

50 CAAGTTCCTGCCCTCTGTGG 30 in a final volume of 25 μl. PCR cleanup was performed

using Exonuclease-I and Shrimp Alkaline Phosphatase treatment (Affymetrix) for 15 minutes

at 37˚C, and then the cleaned-up products were Sanger sequenced using the following

CD4-Forward 50 GGAGTTCAAAATAGACATCG 30 and CD4-Reverse 50 CAGACACTTCCT

TGTTCTTC 30 sequencing primers. The resulting genotype information was used to phase

SNPs using Phase 2.1 [81,82] in DNAsp v5 [83]. Five unique rhesus macaque CD4 alleles were

identified, TA cloned into the pCR8 gateway Topo TA cloning vector (Thermo Fisher), and

then subcloned into the gateway converted pLPCX retroviral vector (Clontech). All constructs

were further verified by Sanger sequencing. Allele 1 represented the major allele circulating in

this population and was used in all experiments except where designated otherwise.

Production of sCD4 and virus neutralization assays

Human, chimpanzee, and rhesus macaque CD4 cloned into the pCR8 plasmid (described

above) served as a template for soluble CD4 (sCD4) PCR. The D1/D2 domain (nucleotide

positions 75–603, minus signal peptide) was amplified by PCR and cloned into pHL-sec [119]

(Addgene #99845), which has been optimized for protein production in mammalian cells.

13 x 106 293T cells (three 15-cm dishes) were transfected with 25 μg of sCD4 expression plas-

mids using TransIT-293 (Mirus), and cell supernatant containing secreted sCD4 was harvested

at days three and six post transfection. Cell supernatant was spun down at 1,200 x g for 5 min-

utes to remove cell debris, filtered using a 0.45-μm cellulose acetate membrane, and mixed 1:1

with wash buffer (25 mM Na3PO4 pH 7.4, 500 mM NaCl, 20 mM imidazole). Cleared cell

supernatant was then incubated with 1-ml bed volume of Ni-NTA agarose beads (Qiagen,

#30210) equilibrated in wash buffer for 2 hours at 4˚C. The mixture was then added to a grav-

ity flow chromatography column and the flow-through was passed through the column a sec-

ond time. The Ni-NTA beads were washed with 50 ml of wash buffer. Bound protein was

eluted with wash buffer containing 250 mM imidazole in 1-ml fractions. Fractions containing

sCD4 were pooled, washed three times with PBS, and concentrated to 500 μl using an Amicon

Ultra-15 ml centrifugal filter with a 10 kDa molecular weight cutoff (EMD Millipore,

#UFC901008). The sample was purified to homogeneity on a Superdex 75 Increase 10/300 GL

(GE Healthcare, #29-1487-21) in PBS. Purified samples were concentrated to 1 mg/ml using

an Amicon Ultra 0.5-ml centrifugal filter with a 10-kDa molecular weight cutoff, aliquoted for

single use, and flash-frozen in liquid nitrogen.

For the neutralization assays, each virus (normalized by equivalent TDU/ml) was incubated

with serial 2-fold dilutions of sCD4 (range 30 μM to approximately 1 μM final concentration)

at 37˚C for 1 hour. Human, chimpanzee, and rhesus sCD4 were produced in this study (meth-

ods above), and commercially available human sCD4 was obtained through the National Insti-

tutes of Health AIDS Reagent Program: sCD4-183 #7356 (from Pharmacia, Inc.). Following

incubation, the sCD4 treated and untreated viruses were spinoculated (1,200 x g for 75 min-

utes) onto 1 x 104 TZM-bl cells plated in 96-well plates, in the presence of 5 μg/ml of poly-

brene. Following spinoculation, the cells were washed three times with PBS and given fresh

media. At 48 hours post infection, infectivity was measured by firefly luciferase assays follow-

ing the manufacturers protocol (Promega). Luminescence was determined using the BMG

Clariostar plate reader.
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Cell-cell fusion assay

Cf2Th cells stably expressing human or primate CD4 and human CCR5, and 293T cells, were

plated at 3 x 105 and 1 x 106 cells/well of a 6-well dish, respectively. The next day, 1) Cf2Th

cells were transfected with 2.5 μg of DNA (1.25 μg of ½ renilla luciferase [79] and 1.25 μg of

pCDNA3.1 filler DNA) using Lipofectamine 3000 (Invitrogen) and 2) 293T cells were trans-

fected with 2.5 μg of DNA (1.25 μg of ½ renilla luciferase and 1.25 μg of the Env expression

plasmid) using TransIT 293 (Mirus). Twenty-four hours post transfection, the cells were

removed from the plate using an enzyme free 1X citric saline solution (10X solution, 1.35M

KCl, 0.15M Sodium Citrate) diluted in PBS, counted, and resuspended to a final volume of

1x105 cells/ml. 100 μl of transfected cells in quadrupilicate (1 x 104 293T and Cf2Th cells) were

mixed 1:1 and incubated for 6 hours in 96-well flat bottom plates. Following incubation, fusion

was assessed using a Renilla luciferase assay (Promega). Luminescence was determined using

the BMG Clariostar plate reader.

Data presentation and analysis

All data were plotted, and one-way ANOVA and Mann–Whitney U tests were performed

where indicated, using Prism version 7.0a for mac (GraphPad). IC50 values were determined

by first normalizing the relative luminescence units as follows: 100% and 0% inhibition was

defined by wells receiving the highest concentration of sCD4 and absence of sCD4, respec-

tively. A nonlinear regression curve was fit to the normalized data, and IC50 values were calcu-

lated using Prism (GraphPad) software.

Ethics statement

The blood collections performed on the animals in this study were approved as protocol num-

ber 00000451-RN02 by the University of Texas, MD Anderson Cancer Center, Institutional

Animal Care and Use Committee (MDACC-IACUC). The protocol approved by the MDAC-

C-IACUC adhered to the recommendations provided in the Guide for the Care and Use of Lab-
oratory Animals [120] and also adhered to the blood collection volumes recommended by the

Guidance Document of the Association of Primate Veterinarians (https://www.primatevets.

org/guidance-documents) entitled Guidelines for Blood Sampling in Nonhuman Primates (also

known as Blood Sampling Guidelines for Nonhuman Primates in Biomedical Research).

Supporting information

S1 Fig. Stable expression of human and primate CD4 receptors. (A) Histograms of CD4

expression levels in Cf2Th cell lines engineered to stably express each primate CD4 receptor

with human CCR5. (B) Gating strategy for enumerating the GFP+ (infected) cell population.

Single stains of human CD4 (blue) and human CCR5 (red) as well as unstained cells (black)

were used to denote receptor expression quadrants. A CD4 window was drawn such that it

would capture equivalent CD4/CCR5 receptor expression across all stable cell lines shown in

(A). GFP+ cells were enumerated within this window. (C) Surface expression of CD4 from

human T cells (Hut-78 cells) and primate T cells that we isolated directly from primate blood.

(D) Histograms of CD4 expression levels in Cf2Th cell lines with (red line) and without (black

line) HIV-1 infection. Shaded histograms are from cells transduced with an empty vector con-

trol and denote the CD4-negative population. Data associated with this figure can be found in

the supplemental data file (S7 Data). CCR5, C-C motif chemokine receptor 5; GFP, green fluo-

rescent protein.

(TIF)
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S2 Fig. Stable expression of primate CD4 and CCR5 receptors. (A) Histograms of CD4 and

CCR5 expression levels in Cf2Th cell lines made to stably express primate CD4/CCR5 receptor

pairs from each primate species (top) or each primate CD4 paired with human CCR5 (bot-

tom). (B) Cf2Th cell lines stably expressing primate CD4/CCR5 receptor pairs from each pri-

mate species (black bars) and each primate CD4 paired with human CCR5 (gray bars) were

infected with HIV-1 GFP pseudotyped with a subtype A Envelope (BG505). Error bars repre-

sent the mean + SEM from two independent experiments, each with three technical replicates.

Data associated with this figure can be found in the supplemental data file (S8 and S9 Datas).

CCR5, C-C motif chemokine receptor 5; GFP, green fluorescent protein.

(TIF)

S3 Fig. Production of human and primate sCD4 receptors. (A, B, C) Size-exclusion profiles

of (A) human, (B) chimpanzee, and (C) rhesus macaque soluble CD4 proteins (sCD4). The

input sample is made from combined fractions eluted from the Ni-NTA column. Total protein

was visualized using the TGX stain-free system (Bio-Rad). Fractions collected from the Super-

dex 75 column are each 1 ml. Fractions indicated with a red box eluted at a volume consistent

with the molecular weight of sCD4 monomers and were combined for use in downstream

experiments. Plots below the gels are A280 absorbance readings from the FPLC spectrophotom-

eter. (D) Total protein stain of purified sCD4 molecules. Human, chimpanzee, and rhesus

macaque CD4 are all differentially glycosylated, explaining the differences in migration [48]. (E)

HIV-1 pseudotyped with the indicated Envs (top of graphs), was preincubated with increasing

concentrations of human sCD4 produced in this study (solid line; see panel A) or a commer-

cially available sCD4 obtained from National Institutes of Health AIDS Reagent Program

(#7356) (dashed line), and then used to infect TZM-bl cells. Error bars represent the SD from

n = 4 technical replicates. Data associated with this figure can be found in the supplemental data

file (S10 Data). FPLC, fast protein liquid chromatography; TGX, Tris-Glycine eXtended

(TIF)

S1 Table. Envelope clones used in this study.

(DOCX)

S1 Data. Raw values for the data in Fig 1.

(PZFX)

S2 Data. Raw values for the data in Fig 2.

(PZFX)

S3 Data. Raw values for the data in Fig 3.

(PZFX)

S4 Data. Raw values for the data in Fig 4.

(PZFX)

S5 Data. Raw values for the data in Fig 5.

(PZFX)

S6 Data. Raw values for the data in Fig 6.

(PZFX)

S7 Data. Flow cytometry files corresponding to S1 Fig.

(ZIP)

S8 Data. Flow cytometry files corresponding to S2 Fig.

(ZIP)
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S9 Data. Raw values for the data in S2 Fig.

(PZFX)

S10 Data. Raw values for the data in S3 Fig.

(PZFX)
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