Outlier Detection using Disjunctive Logic Programming

Fabrizio Angiulli1 and Rachel Ben-Eliyahu - Zohary2 and Luigi Palopoli3

Abstract. Assume your general knowledge about the world is encoded in a disjunctive logic program P via Answer Set Semantics. Then, assume you get factual evidence about some aspects of the current status of the world encoded in a second disjunctive logic program, say P'. A fundamental question to be answered is the following: “Does the general knowledge encoded in P agree with the evidence about the world as encoded in P'?” In this paper we first define a formal framework suitable to discuss the question and then illustrate how difficult it is to answer the question.

1 Introduction

Assume your general knowledge about the world is encoded in a disjunctive logic program P via Answer Set Semantics. Then, assume you get factual evidence about some aspects of the current status of the world encoded in a second disjunctive logic program, say P'. A fundamental question to be answered is the following: “Does the general knowledge encoded in P agree with the evidence about the world as encoded in P'?” In the following, we shall formally state such a question by defining the concepts of an outlier and an outlier witness. Intuitively, an outlier is a piece of knowledge from the currently acquired evidence (encoded as a disjunctive logic program) which is not coherent with the given background theory (this latter too encoded in the form of a disjunctive logic program) and the witness represents the clue for such incoherence. In this sense, an outlier denotes some factual properties that cannot be logically justified in terms of the background theory.

Clear enough, detecting outliers can be useful for instance in order to be prompted to revise the background knowledge base as determined by the newly acquired knowledge or, vice versa, simply to get evidence that something abnormal is taking place. Note that in our approach such “exceptional” pieces of knowledge are not explicitly listed in the background theory as “abnormals”, as is usually done with logic-based abduction [14, 3, 17, 6, 10, 18, 12]. Rather, such pieces of knowledge (the outliers) are characterized as “exceptional” since they denote evidence for which no logical justification is found in the background theory at hand.

Just to give a simple example of the matter, consider a situation where someone’s car brakes work properly but they make a strange noise and that noise is not, as expected, justified in a theory describing the normal behavior of the car brakes. In this case, the car brakes would be identified as outliers and their noise is the associated witness.

The aim of this paper is to formally state the concept of outlier and outlier witness in the context of disjunctive logic programming. This means that both the background knowledge, that is, what is known in general about the world and the factual evidences, that is, what is currently perceived about (possibly a portion of) the world are encoded in the form of disjunctive logic programs.

Before closing this introductory section, we briefly present next some related works.

These authors investigated outlier detection in the context of default logics [1]. In that context we have a propositional default theory $\Delta = (D, W)$, where D is a set of defaults and W is a set of propositional formulas. An outlier is then defined as a literal in W which is not justified in Δ with respect to a witness $S \subseteq W$. In that paper, the complexity of singling out outliers was studied for several fragments of Reiter’s propositional default logics [16], the resulting complexity ranging from P to Σ^p_2.

It is well known that unlike extended logic programs with no disjunctive heads, disjunctive logic programs (DLP) under stable model semantics cannot be viewed as a subset of default logic and hence have a significant role as a KR tool. The so called extended logic programs (logic programs with two kinds of negation: negation as failure and classical negation) can be embedded very naturally into default theories and therefore can be considered as a subset of default logic. On the other hand, disjunctive extended logic programs cannot be viewed as a subset of default logic although default logic in its full volume does include disjunction. This is well explained in the paper by Gelfond and Lifschitz [7] where stable model semantics for DLP was introduced. For example, a DLP having a single rule $\{P \leftarrow Q\}$ has two models: $\{P\}$ and $\{Q\}$, while a default logic where W is empty and D has a single default $\text{True} \leftarrow \text{True}$ has a single extension, which is the logical closure of $\{P \lor Q\}$. Part of the motivation for developing stable model semantics for DLP was the limitations of default logic in handling disjunctive knowledge (See a paper by Poole [15]).

As already noted elsewhere [1], there is a main semantically significant difference between abduction and outlier detection. In abduction, we have a set of manifestations (either “exceptional” or not) and a set of justifications for them is to be found. Intuitively this set will include logical sentences which, if added to the given theory, would make this latter imply the manifestations. Outlier detection, on the other hand, is closer to learning which manifestations belonging to a given set thereof are to be considered exceptional (the outliers) and to find justifications (the witnesses) to their exceptionality.

A second bunch of work which is related to outlier detection is that on logic-based abduction from disjunctive logic programs [6]. In the context of logic programming, abduction is a well-studied issue (see [4] for a detailed survey). Abduction in the logic-programming framework was explored in two directions. The first line of work has used logic programs as an AI tool for knowledge representation and
Preliminaries

Section 5.

detecting outliers in extended disjunctive logic programs. Conclusively, there is a major difference between the two lines of research. As explained above, there is a major difference between abduction and outlier detection in extended disjunctive logic programs. Conclusively, a major difference between the two lines of research.

reasoning about abduction, and the second line of work has used the concept of abduction for defining semantics of logic programs. With respect to DLP, there was also research on the relationship between semantics of DLP and abduction-based semantics of logic programs (see for example [18]). As explained above, there is a major difference between abduction and outlier detection. In addition, it is clear that in this paper no attempt is done to develop yet another semantics to DLP. Hence, while the work on abductive logic programs might look at a first glance very relevant to the work reported here, there is clearly a major difference between the two lines of work.

The rest of this paper is organized as follows. In Section 2, we give preliminary definitions. In Section 3, we introduce the formal definition of the concept of outlier. Section 4 analyzes the complexity of detecting outliers in extended disjunctive logic programs. Conclusions are given in Section 5.

2 Preliminaries

2.1 Extended Disjunctive Logic Programs

A propositional Extended Disjunctive Logic Program (EDLP) is a collection of rules of the form

\[L_1 \mid \ldots \mid L_k \leftarrow L_{k+1}, \ldots, L_m, \text{not } L_{m+1}, \ldots, \text{not } L_n, \]

where the symbol “not” denotes negation by default, and each \(L_i \) is a literal, i.e., an expression of the form \(\ell \lor \neg \ell \) with \(\ell \) a propositional letter, and the symbol “\(-\)” denotes classical negation. If \(k = 0 \) then the rule is called integrity clause.

Answer sets [8] of an EDLP \(P \) are defined as follows. Let \(\text{Lit}(P) \) denote the set of all the literals obtained using the propositional letters occurring in \(P \). Let a context \(C \) be any subset of \(\text{Lit}(P) \). Let \(P \) be a negation-by-default-free EDLP. Call a context \(C \) closed under \(P \) iff for each rule \(L_1 \mid \ldots \mid L_k \leftarrow L_{k+1}, \ldots, L_m, \text{not } L_{m+1}, \ldots, \text{not } L_n \), \(n \geq m \geq k \geq 0 \), such that both \(\ell \in C \) and \(\neg \ell \in C \), then \(S \subseteq C \). An answer set of a general EDLP is defined as follows. Let the reduct of \(P \) w.r.t. the context \(S \), denoted by \(R_P(S) \), be the EDLP obtained from \(P \) by deleting (i) each rule that has not \(L \) in its body for some \(L \in S \), and (ii) all subformulas of the form not \(L \) of the bodies of the remaining rules. Any context \(S \) which is an answer set of \(P \) is an answer set of \(P \) by ANSW(\(P \)) we denote the collection of all consistent answer sets of an EDLP. An EDLP \(P \) is ANSW-consistent iff \(\text{ANSW}(P) \neq \emptyset \), and \(P \) entails a propositional formula \(F \), written \(P \models F \), iff \(F \in \text{Cons}(S) \) for each \(S \in \text{ANSW}(P) \), where \(\text{Cons}(F) \) denotes the set of all logical consequences from the set of formulae \(F \).

Because of both its declarative and its expressive power, EDLP is largely considered a convenient tool for representing and manipulating complex knowledge [11].

2.2 Complexity Theory

We recall some basic definitions about complexity theory, particularly, the polynomial time hierarchy. The reader is referred to [9, 13] for more on this.

The class \(P \) is the set of decision problems that can be answered by a deterministic Turing machine in polynomial time.

The classes \(\Sigma^P_k \) and \(\Pi^P_k \), forming the polynomial hierarchy, are defined as follows: \(\Sigma^P_0 = \Pi^P_0 = P \) and for all \(k \geq 1 \), \(\Sigma^P_k \) and \(\Pi^P_k \) are defined by \(\Sigma^P_k = \text{co-} \Sigma^P_{k-1} \) and \(\Pi^P_k = \text{co-} \Pi^P_{k-1} \), respectively. Note that, for all \(k \geq 1 \), \(\Sigma^P_k \subseteq \Pi^P_k \subseteq \Sigma^P_{k+1} \).

Let \(\text{D}(\ell) \) denote the set of all the strings over a given finite set of symbols. A function \(f : \Gamma \to \Sigma \) is said to be polynomial time computable if there exists a deterministic polynomial time Turing machine that computes it. Let \(L_1, L_2 \) be two subsets of \(\Gamma \). A polynomial time computable function \(\tau : \Gamma \to \Gamma \) is called a polynomial time transformation from \(L_1 \) to \(L_2 \) if for each \(x \in \Gamma \) the following holds: \(x \in L_1 \iff \tau(x) \in L_2 \). The language \(L(A) \) associated to a decision problem \(A \), is the set consisting of strings in \(\Gamma \) such that \(A \) returns “yes” on the input \(x \). A problem \(A \) is polynomially reducible to a problem \(B \) if there exists a polynomial time transformation from \(L(A) \) to \(L(B) \). A problem \(A \) is complete for the class \(C \) of the polynomial hierarchy iff \(A \) belongs to \(C \) and every problem in \(C \) is polynomially reducible to \(A \).

A well known \(\Sigma^P_k \)-complete problem is to decide the validity of a formula \(QBE_{k+1} \), that is, a formula of the form \(\exists X_1 \lor X_2 \land \ldots \land QX_k f(X_1, \ldots, X_k) \), where \(Q \) is \(\exists \) if \(k \) is odd and \(\forall \) if \(k \) is even. \(X_1, X_2, \ldots, X_k \) are disjoint sets of variables, and \(f(X_1, \ldots, X_k) \) is a propositional formula in \(X_1, \ldots, X_k \). Analogously, the validity of a formula \(QBE_{k+1} \), that is, a formula of the form \(\forall X_1 \land X_2 \land \ldots \land QX_k f(X_1, \ldots, X_k) \), where \(Q \) is \(\forall \) if \(k \) is odd and \(\exists \) if \(k \) is even, is complete for \(\Pi^P_k \). Deciding the conjunction \(\Phi \land \Psi \), where \(\Phi \) is a \(QBE_{k+1} \) formula and \(\Psi \) is a \(QBE_{k+1} \) formula, is complete for \(\text{D}(\ell) \).

3 Defining Outliers

Definition 1 Let \(P^{\text{rls}} \) be an EDLP, encoding general knowledge about the world, called rules program, and let \(P^{\text{obs}} \) be a negation-by-default-free EDLP, encoding some aspects of the current status of the world, called observations program.

A rule-observation pair \(P \) is a pair \(P = (P^{\text{rls}}, P^{\text{obs}}) \) composed by a rules program and an observations program. Intuitively, a rule-observation pair relates the general knowledge encoded in \(P^{\text{rls}} \) with the evidence about the world encoded in \(P^{\text{obs}} \).

In the following, we will denote by \(P(P) \) the EDLP \(P^{\text{rls}} \uplus P^{\text{obs}} \).

Definition 2 Let \(P = (P^{\text{rls}}, P^{\text{obs}}) \) be a rule-observation pair, and let \(O \subseteq P^{\text{obs}} \) be a set of clauses. If there exists a non empty set of clauses \(W \subseteq P^{\text{obs}} \) such that:

1. \(\text{ANSW}(P(P)_W) \models \neg W \), and
2. \(\text{ANSW}(P(P)_{W \cup O}) \not\models \neg W \),

where \(P(P)_W = P(P) \setminus W \) and \(P(P)_{W \cup O} = P(P)_W \cup O \), then we say that \(O \) is an outlier in \(P \) and \(W \) is an outlier witness for \(O \) in \(P \) under the ANSW semantics.

In order to motivate the above definition and make it easy to understand, we look at the following example. Consider
the rule-observation pair \(P = (p_{\text{rls}}, p_{\text{obs}}) \), where \(p_{\text{obs}} = \{ \text{Tweety} \} \) and \(p_{\text{rls}} \) is the set \[\{ \text{Fl}y(\text{Tweety}) \leftarrow \text{Bird}(\text{Tweety}), \neg \text{Fl}y(\text{Tweety}) \} \] and \(p_{\text{rls}} \) is the set \[\{ \text{Fl}y(X) \leftarrow \text{Bird}(X), \neg \text{Fl}y(X), \text{Bird}(X) \leftarrow \text{Penguin}(X), \neg \text{Bird}(X), \neg \text{Fl}y(X) \leftarrow \text{Penguin}(X), \neg \text{Fl}y(X) \} \].

If we look carefully at the program \(P(P) \), we note that Tweety not flying is quite strange, since we know that birds fly and Tweety is a bird. If we are trying to nail down what makes Tweety an exception, we notice that if we would have dropped the observation \(\neg \text{Fl}y(\text{Tweety}) \), we would have concluded the exact opposite, namely, that Tweety does fly. Thus, \(\neg \text{Fl}y(\text{Tweety}) \) is a witness according to the definition above. Furthermore, if we drop both the observations \(\neg \text{Fl}y(\text{Tweety}) \) and \(\text{Bird}(\text{Tweety}) \), we are no longer able to conclude that Tweety flies. This implies that \(\text{Fl}y(\text{Tweety}) \) is a consequence of the fact that Tweety is a bird, and thus \(\text{Bird}(\text{Tweety}) \) is the outlier.

One may wonder whether it is always possible to find outliers which are singleton sets of clauses. The following example shows that this is not the case. Consider the following rule-observation pair \(P \):

\[
\begin{align*}
p_{\text{obs}} &= \{ \text{\text{o}_1, \text{o}_2} \}, \\
p_{\text{rls}} &= \{ \text{\text{w}}, \text{\text{a}}, \text{\text{q}}, \text{\text{\neg q}}, \text{\text{\neg o}_1, \text{\neg w}}, \text{\text{\neg o}_2, \text{\neg w}}, \text{\text{\neg o}_1, \text{\neg o}_2} \}
\end{align*}
\]

We note that \(P(P) \) is consistent, and that \(\{ \text{w} \} \) is an outlier witness for \(\{ \text{o}_1, \text{o}_2 \} \). Furthermore, nor \(\{ \text{o}_1 \} \) neither \(\{ \text{o}_2 \} \) are outliers.

4 Complexity Results

In this section we discuss the complexity of detecting and verifying outliers (queries \(Q_0 - Q_3 \) below).

In order to state the computational complexity of detecting outliers, in the rest of the work we refer to the following problems (also referred to as queries) defined for an input rule-observation pair \(P = (p_{\text{rls}}, p_{\text{obs}}) \):

- \(Q_0(\text{ANSW}) \): does there exist an outlier in \(P \) under the ANSW semantics?
- \(Q_1(\text{ANSW}) \): given \(O \subseteq p_{\text{obs}} \), is there any outlier witness set for \(O \) in \(P \) under the ANSW semantics?
- \(Q_2(\text{ANSW}) \): given \(W \subseteq p_{\text{obs}} \), is \(W \) a witness for any outlier \(O \) in \(P \) under the ANSW semantics?
- \(Q_3(\text{ANSW}) \): given \(O, W \subseteq p_{\text{obs}} \), is \(O \) an outlier in \(P \) with witness \(W \) under the ANSW semantics?

Let \(\mathcal{L} \) be a consistent set of literals. We denote with \(\mathcal{L}_T \) the truth assignment on the set of letters occurring in \(L \) such that, for each positive literal \(p \in \mathcal{L}_T \), \(T(p) = \text{true} \) and for each negative literal \(\neg p \in \mathcal{L}_T \), \(T(p) = \text{false} \).

Let \(L \) be a set of literals. Then we denote with \(L^+ \) the set of positive literals occurring in \(L \), and with \(L^- \) the set of negative literals occurring in \(L \).

Let \(T \) be a truth assignment of the set \(\{ x_1, \ldots, x_n \} \) of boolean variables. Then we denote with \(\text{Lit}(T) \) the set of literals \(\{ t_1, \ldots, t_k \} \), such that \(t_i \) is \(x_i \) if \(T(x_i) = \text{true} \) and is \(\neg x_i \), if \(T(x_i) = \text{false} \), for \(i = 1, \ldots, n \).

\[a_i \leftarrow \neg x_i \quad 1 \leq i \leq n \]
\[y_j \leftarrow b_j \quad 1 \leq j \leq m \]
\[z_k \leftarrow c_k \quad 1 \leq k \leq l \]
\[z_k \leftarrow f \quad 1 \leq k \leq l \]
\[c_k \leftarrow f \quad 1 \leq k \leq l \]
\[f \leftarrow \sigma(t, x) \quad 1 \leq r \leq N \]
\[f \leftarrow f \quad \text{false} \]
\[f \leftarrow x_0 \quad \text{true} \]
\[f \leftarrow o \quad \text{false} \]

where also \(A = a_1, \ldots, a_n, B = b_1, \ldots, b_m, \) and \(C = c_1, \ldots, c_l \) and \(f \) and new letters distinct from those occurring in \(\Phi \), and \(\sigma : X \cup Y \cup Z \rightarrow X \cup Y \cup Z \cup A \cup B \cup C \) is the following mapping:

\[\sigma(t) = \begin{cases} a_i & \text{if } t = \neg x_i, 1 \leq i \leq n \\ y_j & \text{if } t = \neg y_j, 1 \leq j \leq m \\ z_k & \text{if } t = \neg z_k, 1 \leq k \leq l \\ c_k & \text{if } t = \neg c_k, 1 \leq k \leq l \\ t & \text{otherwise} \end{cases} \]

Clearly, \(P(\Phi) \) can be built in polynomial time. Now we show that \(\Phi \) is valid iff there exists an outlier in \(P(\Phi) \).

Given a truth assignment \(T \) on a subset of \(X \cup Y \cup Z \), let \(\text{Lit}(T) \) denote the context \(\text{Lit}(T)^+ \cup \sigma(\text{Lit}(T)^-) \).

\[\Rightarrow \] Suppose that \(\Phi \) is valid. Then there exists a truth assignment \(T_X \) to the variables in the set \(X \) such that \(T_X \) satisfies \(\forall Y \exists Z. f(X, Y, Z) \). Let \(W = \{ x_0 \} \cup \{ \neg \text{Lit}(T_X)^- \} \), now we show that \(P(\Phi)_W \) is inconsistent. By contradiction, suppose that there exists an answer set \(S \) of \(P(\Phi)_W \), then \(S = \{ T_X \} \cup \{ T_Y \} \cup Z \cup C \cup \{ f, o \} \), where \(T_Y \) denotes an arbitrary truth assignment to the set of variables in \(Y \). Note that \(f \in S \) is assured by the clause \(f \leftarrow \text{false} \). As \(S \) is an answer set of \(P(\Phi)_W \), hence a minimal context closed under \(\text{Red}(P(\Phi)_W) \), it follows that for each truth assignment \(T_Z \) to the variables in the set \(Z \), the subset \(S' = \{ T_X \} \cup \{ T_Y \} \cup \{ T_Z \} \cup \{ o \} \) of \(S \) is not a context closed under \(\text{Red}(P(\Phi)_W) \). Thus, for each \(T_Z \) there exists an \(r \in \{ 1, \ldots, N \} \) such that \(\sigma(t(r), c) = \neg t(r), c \), \(\sigma(t(r), c) \in S' \). We can conclude that there exists an answer set \(S \) of \(P(\Phi)_W \) iff \(T_X \) satisfies \(\exists Y \forall Z. \forall r. (\neg t(r), c) \in S' \), \(\forall Z. f(X, Y, Z) \).
which contradicts the fact that T_X satisfies $\forall Y \exists Z f(X, Y, Z)$. Hence $P(P(\Phi))_W$ is inconsistent and $\text{ANSW}(P(P(\Phi))_W) \models \neg \Phi$. Let $O = \{o\}$, then $P(P(\Phi))_W, o$ is consistent and such that $\text{ANSW}(P(P(\Phi))_W, o) \models \neg \Phi$. Thus, O is an outlier with outlier witness set W.

\((\Leftarrow)\) Suppose that there exists an outlier $O \subseteq P^{\text{obs}}(\Phi)$ with witness $W \subseteq P^{\text{obs}}(\Phi)$ in P. As classical negation does not occur in $P(P(\Phi))_W$, then it is the case that $\text{ANSW}(P(P(\Phi))_W) \models \neg \Phi$ iff $P(P(\Phi))_W$ is consistent. Thus, $W \subseteq X \cup \{x_o\}$ and, from what is stated above, $P(P(\Phi))_W$ is inconsistent implies that $T_X(W) \models \neg \Phi$ satisfies $\forall Y \exists Z f(X, Y, Z)$, i.e., that Φ is valid. To conclude, the set $O = \{o\}$ is always an outlier having such a witness.

Theorem 2 \textit{Q1(ANSW)} is Σ_2^P-complete under polynomial time transformations. Σ_2^P-completeness holds even if classical negation does not occur in the rule-observation pair P and P contains no integrity clauses.

\textbf{Proof:} The proof is similar to that of Theorem 1. \qed

Theorem 3 \textit{Q2(ANSW)} is Δ_3^P-complete under polynomial time transformations. Δ_3^P-completeness holds even if classical negation does not occur in the rule-observation pair P and P contains no integrity clauses.

\textbf{Proof sketch:} (Membership) Given the rule-observation pair $P = \langle P^{\text{obs}}, P^{\text{obs}} \rangle$, with P^{pos} and P^{obs} containing no classical negation and no integrity clauses, and a subset $W \subseteq P^{\text{obs}}$, we should verify that there exists $O \subseteq P^{\text{obs}}$ such that $\text{ANSW}(P(\Phi))_W \models \neg \Phi$ (query q') and that $\text{ANSW}(P(\Phi)_W, o) \models \neg \Phi$ (query q''). We have already noted that query q' is Π_2^P-complete. As for query q'', it is Σ_2^P-complete as it can be answered by a polynomial-time nondeterministic Turing machine with an NP oracle as follows: the machine guesses both an outlier $O \subseteq P^{\text{obs}}$ and a consistent context S of $P(\Phi)_W, o$ such that $\neg \Phi \not\models S$, verifies that S is closed under $\text{Red}(P(\Phi)_W, o, S)$, and decides whether $S' \subseteq S$ exists such that S' is closed under $\text{Red}(P(\Phi)_W, o, S)$ with a call to the NP oracle. Hence, we have to decide the conjunction $q' \land q''$, i.e., a Δ_3^P problem.

(Hardness) Let r be an EDLP rule, and let $h(r)$ and $b(r)$ denote respectively the head and the body of r. Let $P' \land P''$ be two EDLPs without classical negation and integrity clauses. W.l.o.g. assume that P' and P'' contain no common letters and also that they do not contain the letters w and o. Consider the EDLPs $P'^{\text{obs}} = \{h(r) \leq b(r), o : r \in P'\} \cup \{b(r) \leq b(r), \text{not} : o : r \in P''\}$ and $P^{\text{obs}} = \{w, o\}$, and the rule-observation pair $P = \langle P'^{\text{obs}}, P^{\text{obs}} \rangle$. Now we show that P' is inconsistent (a Σ_2^P-complete check, see [5], Theorem 39) and P'' is consistent (a Π_2^P-complete check, see [5], Theorem 40) iff $\{o\}$ is an outlier with witness $\{w\}$ under the ANSW semantics. This result follows immediately by noting that $\text{ANSW}(P') = \text{ANSW}(P(\Phi)_W)$ and $\text{ANSW}(P'') = \text{ANSW}(P(\Phi)_W, o)$. \qed

Theorem 4 \textit{Q3(ANSW)} is Δ_3^P-complete under polynomial time transformations. Δ_3^P-completeness holds even if classical negation does not occur in the rule-observation pair P and P contains no integrity clauses.

\textbf{Proof:} The proof is analogous to that of Theorem 3. \qed

5 Conclusions

In this paper, we have defined outliers and associated witnesses. These concepts serve the purpose of denoting situations where some piece of knowledge coming from factual observations is not justified in the context of the general knowledge about the world as encoded in a given background theory. In the framework we have presented, both the background knowledge and the observations are encoded in the form of ELDP. We have also studied the complexity of detecting outlier and shown that this problem is quite demanding from the computational viewpoint. Presently, we are working towards extending the presented framework to other languages and semantics and singling out significant tractable cases of the outlier detection problem.

Acknowledgements. This research has been partially funded by MIUR in the context of the research programme CFIN’03 “Tecniche di induzione di regole, metainquery ed estrazione di pattern strutturati su database biologici”.

REFERENCES