Quadrature Generation Techniques in CMOS Relaxation Oscillators

S. Aniruddhan
Indian Institute of Technology Madras
Chennai, India

ISCAS 2012
Outline

● Introduction & Motivation

● Quadrature Relaxation Oscillators (QRXO)
 – Shunt-coupled QRXO
 – Series-coupled QRXO

● Design and Simulation Results

● Summary
Introduction

- RF oscillator: key block in wireless & wireline communication systems [1,2]
- LC VCOs are commonly used
 - Low phase noise (high-Q)
 - Large area (spiral inductors)
 - Tuning range limited by device parasitics
- Quadrature LO signals
 - Recovery of IQ signal
 - Image-rejection
IQ LO Generation – 1

- **VCO (f_0) + polyphase filter**
 - High frequencies: capacitive parasitics become comparable to filter C
 - Buffers required to drive low impedances = high power consumption
 - Quadrature error \subseteq R & C matching

- **VCO (2f_0) + Divide-by-2**
 - LC oscillator potentially has higher Q at 2f_0
 - Divider power becomes significant
 - Quadrature error \subseteq device matching
IQ LO Generation – 2

- Four-stage ring oscillator (f_0)
 - Tuning range set by stage delays
 - Quadrature error \Leftrightarrow delay matching
- Quadrature VCO (f_0) [1,3,4]
 - Power efficient at higher frequencies
 - Quadrature error \Leftrightarrow coupling strength
Relaxation Oscillator

- Schmitt Trigger: Cross-coupled NMOS + R loads
- Integrator: Capacitor C
- Tune frequency using I_0
Quadrature Generation

- Quadrature Relaxation Oscillator [5,6]
 - V_C and V_{OUT} are 90° out of phase
 - Integrator of each oscillator triggers the other

- Quadrature LC VCO
 - Inhibit negative resistance generation for 0° or 180° modes
 - Shunt & series injection

- Quadrature Relaxation Oscillator (this work)
 - Suppress Schmitt-trigger operation for 0°/180°
 - Shunt & Series coupling
Shunt Coupled QRXO

- $I=Q$ (in-phase) \Rightarrow M_{5-6} oppose M_{1-2}
 - QRXO$_{I}$ dies out \Rightarrow QRXO$_{Q}$ too ceases to oscillate

- $I=\overline{Q}$ (out-of-phase) \Rightarrow M_{7-8} oppose M_{3-4}
 - QRXO$_{Q}$ dies out \Rightarrow QRXO$_{I}$ too ceases to oscillate
Series Coupled QRXO

- Series injection through M_{5-8}
- Coupling devices in triode region
Circuit Design & Simulation

- Quadrature relaxation oscillators designed and simulated using Spectre (Cadence)
 - $f_0 = 2.4\text{GHz}$
 - UMC 0.18µm CMOS process ($V_{DD} = 1.8\text{V}$)

- Reference 2.4GHz relaxation oscillator
 - Total bias current = 6mA
 - $M_{1-2} = 100\mu\text{m} \times 0.25\mu\text{m}$
 - Load resistance $R = 100\Omega$
 - Integrator capacitance $C = 460\text{fF}$
Shunt-coupled QRXO

- Quadrature coupling validated in simulation
- Primary design parameter: size of quadrature coupling devices
 - Large W/L \Rightarrow strong coupling, larger parasitics
 - Small W/L \Rightarrow weak coupling, more flicker noise
 - Larger L \Rightarrow less flicker noise, more parasitics
 - $M_{5-8} = 36\mu m \times 0.65\mu m$
- Total QRXO current = 12mA
- 1% I-Q mismatch \Rightarrow 0.25° quadrature error
Shunt QRXO – Startup
Shunt QRXO – Phase Noise

-99.4 dBc/Hz @ 1MHz offset

R = 24%; M_{5-8} (flicker) = 21%; M_{1-4} (thermal) = 18%
Shunt QRXO – Phase Error

![Graph showing the relationship between Coupling Device width (um) and Quadrature Phase Error (deg.), Oscillation Frequency (Ghz). The graph indicates a decrease in Quadrature Phase Error and an increase in Oscillation Frequency as the Coupling Device width increases.]
Series-coupled QRXO

- Quadrature coupling validated in simulation
- Coupling devices
 - Operate in triode region
 - Weaken cross-coupled NMOS operation (degeneration)
 - Large W/L ($M_{5-8} = 200\mu m \times 0.18\mu m$)
 - Flicker noise less of a concern
- Total QRXO current = 16mA
- 1% I-Q mismatch $\Rightarrow 0.1^\circ$ quadrature error
Series QRXO – Startup
Series QRXO – Phase Noise

-98.3 dBc/Hz @ 1MHz offset

M_{1-4} (flicker) = 70%
Series QRXO – Phase Error

![Graph showing the relationship between Coupling Device width (um) and Quad. Phase Error (deg.), Oscillation Frequency (GHz)]
Comparison

<table>
<thead>
<tr>
<th>Coupling Devices</th>
<th>Shunt coupled QRXO</th>
<th>Series coupled QRXO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saturation (smaller)</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>Triode (larger)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quadrature Error</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>Phase Noise</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>Current Consumption</td>
<td>✓</td>
<td>×</td>
</tr>
</tbody>
</table>
Summary

- Two topologies for quadrature coupling of relaxation oscillators were presented.
- 2.4GHz quadrature oscillators were designed and simulated in a UMC 0.18µm CMOS process.
 - Shunt-coupled \Rightarrow lower current, larger quadrature error.
 - Series-coupled \Rightarrow larger current, lower quadrature error.
References

Thank you