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ABSTRACT: 
Under-canopy mapping is desired to derive critical forest biometrics, such as diameter at breast height (DBH), merchantable height, 
and debris volume. The main challenge of such under-canopy mapping is the intermittent access to the global navigation satellite 
system (GNSS) signal, which is crucial to deriving accurately georeferenced mapping products. In this study, we propose two 
frameworks – Forest Feature LiDAR Simultaneous Localization and Mapping (F2-LSLAM) and Integrated Scan Simultaneous 
Trajectory Enhancement and mapping (IS2-TEAM) – for 3D LiDAR unit mounted on backpack systems to achieve accurate forest 
inventory. In the F2-LSLAM strategy, ground/tree trunk features are extracted from individual LiDAR scans. On the other hand, when 
trajectory information provided by navigation sensors is available, these semantic features are derived from LiDAR points within 
several scans (i.e., integrated scan) for the IS2-TEAM strategy. Then, local/global least squares adjustment (LSA) using derived features 
is performed to register LiDAR scans to a common reference frame for both strategies. To evaluate the performance of the proposed 
strategies, three in-house developed backpack systems with varying specifications were used to collect data in complicated forest 
environments. Through the comparison with point clouds acquired by a commercial backpack LiDAR system, the proposed 
frameworks are capable of generating point clouds with satisfactory intra-dataset alignment quality (in the range of 2-4 cm) for all 
backpack systems in natural forest areas with relatively flat terrain. However, for more challenging areas with dense undergrowth 
vegetation and/or large height differences, F2-LSLAM framework cannot extract sufficient features, while IS2-TEAM still exhibits 
good performance.  
 

1. INTRODUCTION 

Accurate forest inventory provides substantial information, 
which is essential for the management of long-term sustainability 
of forest ecosystems (Kangas and Maltamo, 2006). Traditional 
forest inventory is conducted manually, which is labor-intensive, 
costly, and time-consuming. To improve the efficiency, 
remote/proximal sensing techniques – e.g., LiDAR and 
photogrammetric mapping using above-canopy and under-
canopy platforms – have been adopted as alternative approaches 
for automated forest inventory at various scales. During the past 
decade, researchers utilized imagery/LiDAR data acquired by 
crewed aerial systems to estimate inventory attributes such as tree 
height, crown dimension, stem map, and timber volume 
(Goodbody et al., 2019; Khosravipour et al., 2014). Nowadays, 
uncrewed aerial vehicles (UAVs) have attracted the attention of 
the forestry research community due to their low cost, ease of 
deployment, rapid acquisition, and ability to deliver fine 
spatial/temporal resolution products. For instance, forest 
biometrics were derived using orthophotos and point clouds 
generated from UAV images (Miller et al., 2021), while UAV 
LiDAR data have been adopted for segmenting individual trees 
(Corte et al., 2020). Nevertheless, with above-canopy flights, the 
ability of camera/LiDAR to map under-canopy features is limited 
by tree density and leaf cover. Detailed under-canopy mapping, 
which is necessary for deriving accurate estimates of critical 
forest biometrics such as diameter at breast height (DBH) and 
merchantable height, is not always guaranteed. In these 
scenarios, under-canopy LiDAR mapping is preferred (Hyyppä 
et al., 2020). 
Under-canopy LiDAR mapping platforms can be categorized 
into stationary terrestrial laser scanners (TLS) and mobile LiDAR 
systems. Although the former provide high-quality data for 
deriving forest structural metrics at the stand-level (Barbeito et 
al., 2017), data acquisition using TLS is not scalable since large 
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field surveys and point cloud registration are time-consuming. 
On the other hand, mobile LiDAR systems can maneuver under-
canopy to obtain relatively larger spatial coverage while 
minimizing occlusions. The majority of mobile LiDAR systems 
rely on an onboard integrated global navigation satellite 
system/inertial navigation system (GNSS/INS) unit – i.e., direct 
georeferencing – to provide the position and orientation 
information for point cloud generation. The main challenge of 
such under-canopy mapping is the intermittent access to the 
GNSS signal, which is crucial to deriving accurately 
georeferenced mapping products from the onboard sensors. 
To mitigate the impact of GNSS-challenging environments on 
the derived LiDAR point clouds, trajectory enhancement 
strategies were adopted. For instance, Kukko et al. (2017) derived 
the centroids of tree trunks from LiDAR point clouds 
reconstructed every few seconds. By minimizing the discrepancy 
among conjugate centroids, GNSS/INS-derived trajectory was 
refined. Based on the same concept, Zhou et al. (2023) employed 
tree trunk and terrain patch features for trajectory enhancement. 
The major limitation of such strategies is the requirement of an 
initial GNSS/INS trajectory with reasonable accuracy.  
Advances in Simultaneous Localization and Mapping (SLAM) 
offer an alternative to direct georeferencing in GNSS-
denied/challenging scenarios. Several studies have been 
conducted to evaluate the performance of LiDAR SLAM in 
forest environments. Tang et al. (2015) investigated a LiDAR-
inertial SLAM strategy. By minimizing the discrepancy between 
conjugate 2D stem locations from different timestamps while 
considering the measurements from the inertial measurement unit 
(IMU), an extended Kalman filter (EKF) was adopted to derive 
the trajectory. Pierzchała et al. (2018) developed an Iterative 
Closest Point (ICP)-based SLAM algorithm to estimate the 
relative transformation between successive LiDAR scans. This 
process was followed by loop closure and optimization steps to 
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derive the final trajectory. Chen et al. (2020) proposed a Semantic 
LiDAR Odometry and Mapping (SLOAM) algorithm. In 
SLOAM, trees and ground features were derived through a 
hybrid deep learning and morphological based segmentation 
process from individual LiDAR scans (i.e., LiDAR points from a 
full revolution of the laser beam assembly). Odometry and 
mapping threads were conducted to estimate the transformation 
parameters between successive scans and register all scans to a 
common reference frame, respectively. In their process, the 
attributes related to the extracted semantic features, e.g., the 
diameter of the trees, could be provided. However, the lack of 
long-term optimization in their approach will result in 
accumulated errors. 
Recently, commercial under-canopy mobile 3D LiDAR systems 
integrated with SLAM techniques have become available. 
Several studies investigated the performance of these commercial 
systems, including (i) the backpack/handheld LiDAR systems 
developed by Emesent Hovermap Ltd. (Australia) (Hartley et al., 
2022), (ii) the handheld LiDAR systems developed by 
GeoSLAM Ltd. (UK) (Sofia et al., 2021), and (iii) the backpack 
LiDAR systems developed by Digital Green Valley Technology 
Ltd. (China) (Xie et al., 2022). These systems have shown 
promising results for forest inventory applications. However, 
they are limited in terms of their ability to provide critical 
semantic features for forest inventory applications during the 
SLAM process. 
This study proposes two frameworks – Forest Feature LiDAR 
SLAM (F2-LSLAM) and Integrated Scan Simultaneous 
Trajectory Enhancement and mapping (IS2-TEAM) – using a 
single, non-rotating 3D LiDAR mounted on backpack systems 
for accurate forest inventory. More specifically, F2-LSLAM 
consists of odometry and mapping threads. In the odometry 
thread, semantic features – tree trunks and ground – are extracted 
from individual scans. The mapping thread registers LiDAR 
scans to a common reference frame through local/global LSA 
using extracted features. As for IS2-TEAM, trajectory 
information provided by the onboard navigation units is required 
and used to generate LiDAR points from several scans (i.e., an 
integrated scan). Thus, feature extraction is performed on the 
integrated scans where the definition of features is more 
complete. Then, the same mapping thread of F2-LSLAM is 
utilized to register all integrated scans.  

2. BACKPACK SYSTEMS AND DATASETS 
DESCRIPTION 

This section begins with an introduction to the backpack systems 
and sensors utilized in this study. Then, the acquired datasets 
used for evaluating the proposed frameworks are described. 
2.1 Backpack Mobile Mapping Systems 

In this study, three in-house developed backpack mobile mapping 
systems with different specifications – i.e., the number of laser 
beams and coverage of a single scan – are used for evaluation of 
two proposed frameworks. For each system, a 3D LiDAR unit is 
installed with the rotational axis of its laser beam assembly 45° – 
55° away from the vertical direction. Such design ensures the 
capability to capture the upper canopy for forest inventory. The 
first backpack system – BP-HDL32 – comprises a Velodyne 
HDL-32E LiDAR, two Sony 𝛼6000 cameras, and a NovAtel 
PwrPak7-E2 GNSS/INS unit, as shown in Figure 1a. The second 
backpack system – BP-VLP16 – carries a Velodyne VLP-16 
LiDAR and a NovAtel PwrPak7-E1 GNSS/INS unit, as shown in 
Figure 1b. The third backpack system – BP-VLP16HR – carries 
a Velodyne VLP-16 Hi-Res LiDAR, a Sony α7R II camera, and 
a NovAtel SPAN-CPT GNSS/INS unit, as shown in Figure 1c. 
The specifications of used LiDAR and GNSS/INS units are listed 

in Table 1. For the 3D LiDAR units on these three systems, the 
number of revolutions per minute (i.e., RPM setting) is set to 600, 
resulting in a LiDAR scan duration of 0.1 seconds. It is worth 
mentioning that the onboard cameras are not used in this study. 

 
(a) (b) 

(c) 
 

(d) 
Figure 1. The backpack mobile mapping systems and onboard 
sensors used in this study: the in-house developed (a) BP-HDL32, 
(b) BP-VLP16, and (c) BP-VLP16HR systems, as well as (d) off-
the-shelf Hovermap Backpack system. 

System BP-HDL32 BP-VLP16 BP-VLP16HR 
LiDAR Specifications 

# of laser beams 32 16 16 
Horizontal FOV 360° 360° 360° 

Vertical FOV (angle 
range from sensor’s 

horizon) 

41.33° 
(-30.67° to 
+10.67°) 

30 ° 
(-15° to 
+15°) 

20 ° 
(-10° to +10°) 

Pulse per second ~695,000 ~300,000 ~300,000 
GNSS/INS Specifications 

IMU data rate 200 Hz 200 Hz 100 Hz 
Positional accuracy * 1-2 cm 1-2 cm 1-2 cm 
Roll/pitch accuracy * 0.005° 0.009° 0.008° 
Heading accuracy * 0.010° 0.044° 0.026° 

* After GNSS/INS post-processing in open sky conditions 

Table 1. Specifications of LiDAR and GNSS/INS units mounted 
on the in-house developed backpack systems. 

In addition to the three in-house developed backpack systems, 
this study also includes a commercial backpack LiDAR system 
developed by Emesent Hovermap Ltd. (hereafter denoted as BP-
HM) for comparison purposes. This system comprises a 
Hovermap ST – i.e., SLAM-based LiDAR unit – and a GoPro 
Hero 8, as shown in Figure 1d. During data acquisition, the 3D 
LiDAR unit mounted on the Hovermap ST rotates, providing an 
angular field of view (FOV) of 360°  by 290 ° . The BP-HM 
captures approximately 300,000 points per second (similar to BP-
VLP16 and BP-VLP16HR systems). The provided SLAM-based 
post-processing software allows for a mapping accuracy of 2 cm. 

2.2 Datasets Description 

The study sites used for this research are at a natural forest within 
Martell Forest – a research forest owned and managed by Purdue 
University, in West Lafayette, Indiana, USA, as depicted in 
Figure 2a. In this natural forest, black oak, white oak, yellow 
poplar, ash, basswood, and sugar maple are the major species. 
There is a significant amount of large and mature timber, but also 
young and more vigorous small sawtimber resulting from a large 
influx of regeneration at some point in the past. Shrubby species 
– mainly bladdernut – make up a large portion of the understory 
vegetation. The average DBH is 29.7 cm for those trees whose 
diameter exceeds 7.6 cm. 
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Figure 2. (a) Location of the study sites and the sample trajectory 
(colored by time) of the collected backpack datasets; terrestrial 
images captured on the same date of data acquisition for (b) study 
site 1 under leaf-off condition and (c) study site 2 under leaf-on 
condition. 

For study site 1 with relatively flat terrain, four backpack datasets 
were collected following the same route using the BP-HDL32, 
BP-VLP16, BP-VLP16HR, and BP-HM systems on March 2nd, 
2023 under leaf-off condition. Each mission lasted around 13 
minutes, covering an area of approximately 4 ha with an 800 m 
long trajectory. The mission route started and ended at the same 
location, allowing for a qualitative assessment of the trajectory’s 
alignment from the beginning and end. Additionally, a UAV 
LiDAR dataset covering the study site acquired on March 3rd, 
2022 was used as a reference point cloud. The UAV was flown 
at 60 m height above ground, providing point cloud with an 
expected accuracy at the nadir position in the range of 7-8 cm. 
As for study site 2, this area is densely populated with low 
vegetation, and the elevation difference is up to 20 m, as shown 
in Figure 2c. Two backpack datasets following the same track 
were collected on May 31st, 2023 under leaf-on condition using 
BP-VLP16HR and BP-HM systems. Each mission lasted around 
12 minutes, covering an area of approximately 1 ha with a 500 m 
long trajectory. This study site is more challenging considering 
the dense undergrowth vegetation and height difference when 
compared to study site 1. 

3. F2-LSLAM AND IS2-TEAM FRAMEWORKS 

LiDAR point cloud reconstruction is based on the point 
positioning equation, as graphically illustrated in Figure 3. Raw 
LiDAR data are used to derive the position of the laser beam 
footprint at an object point 𝐼 captured at firing time 𝑡 relative to 
the 𝑙𝑢 frame, 𝑟 . To compute the 3D coordinates, 𝑟 , of the 
object point 𝐼 in a given reference frame – i.e., the mapping frame 
(𝑚), the position and orientation, 𝑟 /𝑅 , of the laser unit 
frame at time 𝑡  relative to the mapping frame need to be 
established in the F2-LSLAM and IS2-TEAM processes.  

 
Figure 3. Parameters and coordinate systems involved in the 
point positioning equation for LiDAR reconstruction. 

The proposed F2-LSLAM framework includes odometry and 
mapping threads, while the IS2-TEAM framework consists of 
feature extraction process and the same mapping thread, as 
shown in Figure 4. The odometry thread of F2-LSLAM extracts 
ground/tree features from each LiDAR scan and estimates the 
relative transformation between successive scans. On the other 
hand, the IS2-TEAM framework employs trajectory information 
provided by the onboard navigation sensors (GNSS/INS unit in 
this study) for more reliable feature extraction. Specifically, 
although the absolute accuracy of the derived trajectory is 
negatively affected by GNSS signal outages, the relative position 
and orientation information in a short period (within a few 
seconds) is still reasonable and used to generate the integrated 
scan. Then, feature extraction is performed on the integrated 
scans where the definition of features is more complete. The 
mapping thread performs local and global LSA using extracted 
semantic features to register individual/integrated LiDAR scans 
to a common reference frame and refine pose parameters derived 
from the odometry thread or provided by the trajectory. 
Moreover, the proposed strategies also support the incorporation 
of reference point clouds in the process.  

 
Figure 4. Proposed F2-LSLAM and IS2-TEAM frameworks. 

3.1 Odometry Thread of F2-LSLAM 

In this process, feature extraction is conducted through 
morphological strategies from individual scans (a sample LiDAR 
scan from the BP-HDL32 system is shown in Figure 5a), starting 
with segmenting ground areas followed by clustering individual 
tree trunks. To achieve this, the point cloud needs to be leveled 
so that LiDAR points representing the ground can be extracted 
based on the elevation while the points that constitute 
cylinders/lines perpendicular to the ground could be potential tree 
features. In this study, a leveled laser unit frame ( 𝑙𝑙𝑢 ) is 
introduced to address the challenges caused by the unleveled 
installation of the used LiDAR unit. The origin of 𝑙𝑙𝑢 frame is 
the same as 𝑙𝑢 frame, and the Z axis of 𝑙𝑙𝑢 frame is along the 
plumb line (as shown in Figure 3).  
The feature extraction process for a LiDAR scan is conducted in 
four steps. Firstly, connected consecutive LiDAR points 
corresponding to the same object captured by a given laser beam 
are grouped as segments according to the similarity of their range 
measurements. Then, by assuming the ground is relatively 
smooth and horizontal in a local neighborhood, some ground 
portions are extracted by clustering the segments from 
neighboring scan lines. An initial ground model is derived from 
these portions to level the LiDAR scan (i.e., transform the 
LiDAR scan to the 𝑙𝑙𝑢  frame). Once the scan is leveled, a 
complete representation of the ground is extracted by finding the 
LiDAR segments with the lowest elevation in a local 
neighborhood. Lastly, the remaining non-ground segments that 
constitute vertical cylinders/lines in the 𝑙𝑙𝑢 frame are identified 
as tree trunk features. The derived ground and tree trunk features 
from the sample LiDAR scan is shown in Figure 5b. 
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Figure 5. (a) Sample LiDAR scan from the BP-HDL32 system 
(colored by laser beam ID) and (b) extracted ground and tree 
trunk features (colored in blue and red, respectively). 

Based on the extracted features, relative pose estimation between 
successive LiDAR scans is conducted in the odometry thread. 
Since a single ground model is estimated from each scan, they 
are directly matched and used to derive the 𝑑𝜔 , 𝑑𝜙 , and 𝑑𝑍 
components of the pose parameters in question. Then, a 2D 
nearest neighbor search is used to match tree trunk features from 
the two scans. By minimizing the sum of squared distances 
between 2D locations of matched tree trunks, 𝑑𝑋,𝑑𝑌, and 𝑑𝜅 
components are solved through a linear LSA process. 
The performance of relative pose estimation relies on the 
extracted features from LiDAR scans. Failure to extract sufficient 
features from the scans will affect its performance. To overcome 
this challenge, trajectory information provided by the GNSS/INS 
unit can be used in the process. Specifically, relative pose 
parameters are derived from the trajectory information 
considering the short duration between successive scans (i.e., 
~0.1 seconds for the used systems).  
3.2 Feature Extraction of IS2-TEAM 

In areas with dense vegetation or steep terrain, extracting features 
from an individual LiDAR scan can be difficult. To address these 
challenges, extracting features from LiDAR points over a longer 
duration is preferred. Assuming that the relative transformation 
derived from the GNSS/INS trajectory is of reasonable accuracy, 
integrated scans consisting of a specific number of individual 
scans are derived in this study, as shown in Figure 6a.  
The feature extraction process starts by partitioning the integrated 
scan into a grid using a pre-defined cell size. The lowest point in 
each cell is identified as a potential ground point (PGP). A 
region-growing process is performed starting from the PGP with 
the shortest range measurement to identify PGPs with consistent 
height information, which are denoted as initial ground points. 
Unclassified PGPs with high planarity values (calculated from 
neighboring PGPs), are labelled as seed points for an additional 
round of region-growing. Finally, the results from above region-
growing steps are combined as the augmented ground points.  
In the next step, a Triangulated Irregular Network (TIN)-based 
interpolation is used to generate a DTM. The augmented ground 
points are used to create a TIN, and the height values of the DTM 
cells are interpolated using the TIN. The classification of bare 
earth (BE) and above-ground (AG) points is then performed. 
Points that have a height difference below a threshold compared 
to the corresponding DTM cell are classified as BE points, while 
the rest are classified as AG points. 
Tree trunk feature extraction is performed on the AG points. 
First, the heights of the AG points are normalized using the DTM. 
The lower portion of the normalized AG points, which is 

assumed to represent the tree trunk, is isolated based on user-
defined height thresholds. A tree detection and localization 
approach proposed by Lin et al. (2021a) is then applied to 
segment the isolated AG points based on estimated tree locations. 
Criteria based on the number of points and height range are used 
to filter out unreliable segments. A cylinder model is fitted to the 
surviving tree trunk features to eliminate points with large 
residuals. The results of the ground and tree trunk feature 
extraction are shown in Figure 6b. 

 
(a) 

 
(b) 

Figure 6. (a) Sample integrated scan consisting of 100 individual 
scans from the BP-VLP16HR system (colored by height) and (b) 
extracted ground/tree trunk features (colored in blue and red, 
respectively). 

3.3 Mapping Thread of F2-LSLAM and IS2-TEAM 

Once semantic features from each individual scan or integrated 
scan are extracted, all individual/integrated scans will be 
sequentially aligned relative to a common/mapping frame 
through three layers of optimization processes, namely: 
integrated scan optimization, integrated scan to map 
optimization, and map re-optimization. The involved procedures 
will be presented in this subsection. 
Integrated scan optimization 
In the F2-LSLAM framework, successive LiDAR scans will be 
registered to a local reference frame named integrated scan 
coordinate system ( 𝑖-𝑠 ) using the relative pose parameters 
estimated from the odometry thread. Conjugate tree trunk 
features from the involved scans are also identified. As for the 
IS2-TEAM strategy, the integrated scan has already been 
generated using the provided GNSS/INS trajectory information. 
Meanwhile, tree trunk features and ground points within the 
integrated scan have been derived.  
In this process, pose parameters relative to the 𝑖-𝑠  frame are 
refined through an optimization process that uses tree trunk and 
ground patch features. While the matched/derived tree trunk 
features are modeled as cylinders, ground patches are extracted 
from the ground points using regularly spaced 2D seed points and 
modeled as planes. For a seed point, a 2D square region is defined 
with a given size (e.g., 1 m) – ground points within this region 
are identified and form a ground patch. A non-linear LSA is 
conducted to solve for the pose parameters of involved scans and 
the parametric models of used features (i.e., cylinder and planar 
features for tree trunk features and ground patches) through the 
minimization of the sum of squared normal distances of feature 
points to respective models. Figure 7 shows the established tree 
trunk features and ground patches from a sample integrated scan 
before and after the optimization, where the alignment of tree 
trunk features improves significantly through the optimization. 
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(a) 

 
(b) 

Figure 7. Sample results from the integrated scan optimization 
procedure with 100 scans: extracted tree trunk features (colored 
by feature ID) and ground patches (colored in blue) (a) before 
and (b) after the optimization process. 

Integrated scan to map optimization 
The integrated scan to map optimization is performed to 
determine the transformation from the 𝑖-𝑠 frame to the mapping 
frame (𝑟 - /𝑅 - ). A map could be created by the first integrated 
scan, where each tree trunk feature initializes a map tree, and 
ground points from this integrated scan initialize the ground map. 
Then, subsequent integrated scans are sequentially aligned to the 
map. In case a reference point cloud in a known coordinate 
system is available, it could be employed to initialize the map. 
By doing so, products of the proposed frameworks are defined in 
the same coordinate system, facilitating multi-system/temporal 
evaluation. The reference point cloud also provides additional 
control information to reduce drifts. In this study, a DTM and tree 
locations are derived from a reference point cloud. The former 
will be used as the ground map, and each detected tree location 
initializes a map tree.  
Integrated scan to map optimization is achieved by aligning the 
features from integrated scan to the map. For tree trunk features 
in the current integrated scans, the corresponding map trees are 
identified through nearest neighbor search. For each ground 
point, its corresponding control plane is derived from the ground 
map. Figure 8a shows the features that will be used in the 
optimization and the zoom-in window shows the initial 
alignment between matched tree trunk features. In the next step, 
the 𝑟 - /𝑅 -  in question are refined through a non-linear LSA 
process by minimizing the discrepancy between the matched tree 
trunk features as well as ground point to the corresponding 
control plane derived from current integrated scan and map. 
Figure 8b shows the alignment of matched features after 
optimization, where the discrepancies between the matched tree 
objects and map trees are minimized. After optimization, the 
ground and tree trunk features from the current integrated scan 
are used to update the map. 

 
(a) 

 
(b) 

Figure 8. Used tree trunk features and ground points (a) before 
and (b) after optimization (points from the current integrated scan 
and map are colored in red and blue, respectively). 

Map re-optimization 
As integrated scans are added to the map, errors will accumulate 
over time. To reduce drifts in the map, frequent long-term 
optimization that simultaneously refines pose and feature 
parameters – i.e., map re-optimization – is conducted. Similar to 
integrated scan optimization, map re-optimization is achieved by 
minimizing the discrepancies among conjugate features. For 
ground patches, the same approach used in the integrated scan 
optimization is adopted to extract them from the ground points in 
the map. Figure 9a shows the used map trees and ground patches 
in the map re-optimization. Next, a non-linear LSA is conducted 
to simultaneously refine the pose and cylindrical/planar feature 
parameters by minimizing the sum of squared normal distances 
between the LiDAR points and their respective parametric 
models. Figure 9b shows two sample map trees before and after 
optimization, where the misalignment is reduced.  

 
(a) 

 

 
(b) 

Figure 9. (a) Mapped trees and ground patches from 1,000 scans 
(map trees are colored by feature ID, ground patches are colored 
in blue, and initial trajectory is colored in black) and (b) top view 
of two sample map trees before (blue) and after (red) map re-
optimization. 

4. EXPERIMENTAL RESULTS 

In this study, the datasets collected at two study sites in the 
Martell natural forest were used to validate the performance of 
the proposed frameworks. Specifically, both the F2-LSLAM and 
IS2-TEAM strategies were adopted to process each dataset. To 
serve as a fair comparison, trajectory information was also used 
in the F2-LSLAM strategy. Moreover, the BP-HM data were 
processed using the Emesent Hovermap’s post-processing 
software and used as a reference. The experiment results for 
study sites 1 and 2 will be presented in this section.  
4.1 Experimental Results of Study Site 1 

As mentioned in Section 2.2, a reference UAV point cloud is 
available for this study site. Therefore, the UAV data were used 
in the process for the three in-house developed backpack datasets. 
To do so, a preprocessing step was performed to derive DTM and 
tree locations from the reference UAV point cloud for map 
initialization. The former was generated through the adaptive 
cloth simulation algorithm (Lin et al., 2021b) with a resolution of 
10 cm, while the latter was derived using the height/density-
based tree detection/localization approach proposed by Lin et al. 
(2021a). In addition, manual DBH measurements for trees whose 
diameter exceeds 10 cm in the northern part of the covered area 
are available. The UAV reference point cloud, BP-HM data, and 
manual DBH measurements will be used for analysis. 
The assessment of the proposed framework starts by presenting 
the derived trajectory and extracted tree trunk/ground features in 
the process. Then, the point cloud is reconstructed using the 
derived trajectory for each system without performing any noisy-
points removal process. Two sample regions of interest (ROIs) 
over the areas with DBH reference data are extracted for the 
following analysis: 
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Point cloud alignment quality: For qualitative analysis, a 
sample tree is manually segmented from all backpack point 
clouds for comparison. To perform quantitative evaluation, DBH 
values of trees in the ROIs are derived from each backpack point 
cloud. For each tree, the trunk portion in the height range of 1.3–
1.5 m above ground is first extracted. An iterative circle fitting 
process is performed to remove outliers and estimate the diameter 
(i.e., DBH). Lastly, for trees with reference data, statistics related 
to DBH residuals will be reported. 
Point cloud positional accuracy: Positional accuracy of 
backpack point clouds is verified against the UAV reference 
point cloud by visually checking the alignment of a sample tree.  
Capability of extracting all tree trunks: An advantage of the 
proposed frameworks is the ability to extract tree trunk features 
through the process. To evaluate the performance, the number of 
trees in the ROIs is manually counted and compared to that 
extracted from the F2-LSLAM and IS2-TEAM strategies for each 
dataset. 
Results from both F2-LSLAM and IS2-TEAM strategies for the 
sample BP-VLP16HR dataset are presented in Figure 10, 
including the derived trajectory and extracted ground/tree trunk 
feature points. It can be observed that there is no noticeable 
discontinuity or misalignment between the beginning and end of 
the mission for both frameworks. For the IS2-TEAM strategy 
performing feature extraction from integrated scans, a greater 
number of features, especially the ground points, were derived in 
the process. In spite of this, F2-LSLAM strategy can still derive 
a reasonable trajectory. Similar findings can be observed for the 
results from the other two datasets collected using BP-HDL32 
and BP-VLP16 systems. Next, the qualitative and quantitative 
assessment of these results are conducted on two square ROIs 
(with an area of 40 by 40 m), which are highlighted by red boxes 
in Figure 10a. 

 
(a) 

 
(b) 

Figure 10. Top view of processing results for the BP-VLP16HR 
datasets using (a) F2-LSLAM and (b) IS2-TEAM strategies, 
where the derived trajectory is colored in black, extracted ground 
points and tree trunk features are colored in gray and blue, 
respectively.  

To evaluate the alignment quality of backpack point clouds, a 
sample tree from ROI-2 was manually segmented from each 
dataset. Figure 11 displays the side view of this tree and a cross 
section of the tree trunk. Overall, the tree trunks are well-defined 
in all datasets, with the BP-HM point cloud exhibiting the 
smallest noise level. The alignment quality of IS2-TEAM results 
is slightly better than the F2-LSLAM strategy. The alignment 

quality is also quantitatively evaluated through DBH estimation. 
There are 59 and 64 reference DBH measurements in ROI-1 and 
ROI-2, respectively. Table 2 presents the mean, standard 
deviation (STD), and RMS of the differences between the 
estimated DBH values and reference data. It can be observed 
from the table that F2-LSLAM and IS2-TEAM strategies 
produced comparable results. The mean differences suggest that 
BP-VLP16 and BP-VLP16HR results tend to underestimate the 
DBH values, while BP-HDL32 results overestimate them. 
Regarding the RMS of the differences, the values of the proposed 
SLAM strategies are 1-2 cm larger than those of the BP-HM 
results. The qualitative and quantitative evaluations reveal that 
the proposed frameworks can produce point clouds with 
reasonable alignment quality from the in-house developed 
backpack systems for both strategies, and the estimated DBH 
values have an accuracy of 2-4 cm. However, the alignment 
quality of the point clouds is not as good as that of the commercial 
backpack system. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 11. A sample tree (with a reference DBH value of 68.32 
cm) and the cross section in the height range of 1.3–1.5 m above 
ground (colored by height) derived from the F2-LSLAM and IS2-
TEAM results for the in-house developed backpack systems: (a) 
BP-HDL32, (b) BP-VLP16, and (c) BP-VLP16HR, as well as the 
(d) BP-HM point cloud. 
The positional accuracy of the derived point clouds is validated 
through comparison with the reference UAV point cloud. Figure 
12 shows the sample tree from the two in-house developed 
backpack systems overlaid with the one from UAV. The ground, 
tree trunk, as well as branches from the in-house developed 
backpack datasets are in good agreement with the UAV point 
cloud in all directions, indicating high positional accuracy of the 
results from both strategies. To evaluate the ability of the 
proposed frameworks to extract tree trunks, the number of trees 
within these two ROIs was manually counted from the point 
clouds of the BP-HDL32 system. There were 84 and 137 trees 
identified for the two ROIs. Table 3 lists the number of detected 
tree trunks (N ), true positives (TP), false positives (FP), and 
false negatives (FN), as well as the corresponding precision, 
recall, and F1 score metrics within each ROI for the in-house 
developed backpack systems using F2-LSLAM and IS2-TEAM 
strategies. The false positives and precision values suggest that 
the commission errors as represented by the precision metric are 
low in all cases for the F2-LSLAM strategy, while the errors are 
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slightly higher in the IS2-TEAM strategy. Since the tree density 
in ROI-2 is higher than that in ROI-1, the omission errors for the 
former are higher due to the occlusions for the F2-LSLAM 
strategy. Additionally, the presence of young and small trees, 
especially in ROI-2, also contributes to the missing ones. On the 
other hand, through the feature extraction from integrated scans, 
the IS2-TEAM strategy was able to derive more tree trunk 
features, leading to higher recall values. In summary, the 
proposed strategy successfully extracts the majority of trees, 
especially mature ones, in these two regions for all in-house 
developed backpack systems. 

 
(a) 

 
(b) 

Figure 12. A sample tree in the (a) BP-HDL32 and (b) BP-
VLP16HR point clouds from the F2-LSLAM (red) and IS2-
TEAM (green) strategies overlaid with the UAV reference point 
cloud (black). 

4.2 Experimental Results of Study Site 2 

Different from study site 1, this study site is much more 
challenging due to the height difference and dense undergrowth 
vegetation during the data acquisition. Because of this, the F2-
LSLAM strategy could not extract sufficient features from 
individual scans, leading to the failure of the SLAM process. On 
the other hand, the IS2-TEAM strategy exhibited good 
performance for the BP-VLP16HR dataset. Figure 13 shows the 
IS2-TEAM results, where ground and tree trunk features were 
successfully extracted from the integrated scans. The derived 

trajectory aligns well between the beginning and end of the 
mission. To evaluate the alignment quality of the IS2-TEAM 
results, a sample tree was manually segmented from the BP-
VLP16HR and BP-HM point clouds. Figure 14 displays the side 
view of this tree and a cross section of the tree trunk. The 
alignment quality from the proposed framework is reasonable. 
However, similar to the observations from the results of study site 
1, the BP-HM provided point clouds with better alignment 
quality.  

 
Figure 13. Top view of SLAM results for the BP-VLP16HR 
datasets using IS2-TEAM strategy, where the derived trajectory 
is colored in black, extracted ground points and tree trunk 
features are colored in gray and blue, respectively. 

 
Figure 14. A sample tree and the cross section in the height range 
of 5.0–6.0 m above ground (colored by height) derived from the 
IS2-TEAM results for the BP-VLP16HR dataset and the BP-HM 
point cloud. 

 Datasets Number of DBH 
values 

F2-LSLAM IS2-TEAM 
Differences in DBH (cm) Differences in DBH (cm) 

Mean STD RMS Mean STD RMS 

ROI-1 

BP-HDL32 59 0.81 2.63 2.73 -0.28 1.89 1.90 
BP-VLP16 58 -1.95 3.37 3.87 -1.69 3.08 3.49 

BP-VLP16HR 56 -3.00 2.48 3.88 -2.84 2.15 3.55 
BP-HM 59 -0.30 1.64 1.65 -0.30 1.64 1.65 

ROI-2 

BP-HDL32 64 2.30 2.52 3.40 0.73 2.20 2.30 
BP-VLP16 64 -2.07 2.05 2.90 -1.10 2.05 2.31 

BP-VLP16HR 63 -1.51 2.88 3.23 -1.99 2.74 3.37 
BP-HM 64 -0.07 1.70 1.70 -0.07 1.70 1.70 

Table 2. DBH estimation accuracy assessment on backpack point clouds for the two ROIs.
 Datasets Frameworks N  TP FN FP Precision Recall F1 score 

ROI-1 
(84 trees) 

BP-HDL32 F2-LSLAM 81 81 3 0 1.000 0.964 0.982 
IS2-TEAM 82 80 4 2 0.976 0.952 0.964 

BP-VLP16 F2-LSLAM 80 79 5 1 0.988 0.940 0.963 
IS2-TEAM 82 79 5 3 0.963 0.941 0.952 

BP-
VLP16HR 

F2-LSLAM 77 76 8 1 0.987 0.905 0.944 
IS2-TEAM 80 77 7 3 0.963 0.917 0.939 

ROI-2 
(137 
trees) 

BP-HDL32 F2-LSLAM 126 125 12 1 0.992 0.912 0.951 
IS2-TEAM 135 130 7 5 0.963 0.949 0.956 

BP-VLP16 F2-LSLAM 119 119 18 0 1.000 0.869 0.930 
IS2-TEAM 135 129 8 6 0.956 0.942 0.949 

BP-
VLP16HR 

F2-LSLAM 123 123 14 0 1.000 0.898 0.946 
IS2-TEAM 136 129 8 7 0.949 0.942 0.945 

Table 3. Performance of the tree trunk extraction in the two ROIs from the F2-LSLAM and IS2-TEAM results of in-house developed 
backpack systems. 
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5. CONCLUSIONS AND RECOMMENDATIONS FOR 
FUTURE WORK 

In this paper, F2-LSLAM and IS2-TEAM frameworks are 
proposed for LiDAR based forest inventory. The F2-LSLAM 
strategy consists of two threads: odometry and mapping. The 
odometry thread extracts semantic features including ground and 
tree trunks while the mapping thread performs local and global 
LSA using extracted semantic features to register LiDAR scans 
to a common reference frame. As for IS2-TEAM, feature 
extraction is performed on the integrated scans derived from the 
GNSS/INS trajectory. Then, the same mapping thread of F2-
LSLAM is utilized to register all integrated scans. These 
frameworks also support the incorporation of reference point 
clouds from other sources. 
Although it is not as good as the commercial backpack system, 
reasonable alignment quality was achieved for the in-house 
developed backpack systems, providing DBH estimates with an 
accuracy of 2-4 cm in areas with relatively flat terrain and visible 
tree trunks for both frameworks. The qualitative evaluation 
revealed that an approximately 10 cm positional accuracy was 
achieved when reference point cloud was employed in the 
process. As for the ability to extract tree trunk features, 
experimental results suggested that the majority of mature tree 
trunk features were successfully extracted for all systems, with 
an average F1 score higher than 0.93. However, for more 
challenging areas with dense undergrowth vegetation and/or 
large height differences, integrated scan-based feature extraction 
is more reliable. The main limitation of the proposed frameworks 
is that the point cloud alignment quality is not as good as the 
commercial backpack system. More research efforts are needed 
on incorporating geometric features (e.g., surface elements) and 
finer semantic features (such as branches) and RGB cameras, in 
optimizing the SLAM process. 
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