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Abstract 
 
Study in spatio-temporal disease mapping models give a great worth in epidemiology, in describing 
the pattern of disease incidence across geographical space and time. This paper studies generalized 
linear mixed models (GLMM) for the analysis of spatial and temporal variability of dengue disease 
rates. For spatio-temporal study, the models accommodate spatially correlated random effects as well 
as temporal effects together with the space time interaction. The space time interaction is used to 
capture any additional effects that are not explained by the main factors of space and time. However, 
as study including time dimension is quite complex for disease mapping, the temporal effects that 
only relate to structured and unstructured time pattern are considered in these models as initial 
screening in studying disease pattern and time trend. The models are fitted within a hierarchical 
Bayesian framework using Integrated Nested Laplace Approximation (INLA) methodology. For this 
study, there are three main objectives. First, to choose the best model that represent the disease 
phenomenon. Second, to estimate the relative risk of disease based on the model selected and lastly, 
to visualize the risk spatial pattern and temporal trend using graphical representation. The models are 
applied to monthly dengue fever data in Peninsular Malaysia reported to Ministry of Health Malaysia 
for year 2015 by district level. 
 
 
Keywords: Spatio-temporal analysis, Disease mapping, Bayesian estimation, GLMM, INLA 
 

© 2017 Penerbit UTM Press. All rights reserved 
 

 
INTRODUCTION 
 

Disease mapping is a very active research field in investigating the 

spatial relationship of disease burden with the geographical 

distribution, risk factors in the environment and human populations. 

Year by year, numerous methods for disease mapping have been 

expanded in accordance with the growing amount of routinely collected 

health information worldwide. Recently, the combination study of 

spatial and temporal effects in disease mapping is being emphasizes 

compared to study on spatial effects only. This is because ignoring 

temporal evolution by assuming static in time is not always realistic for 

every disease especially for infectious diseases.  

In disease mapping, disease rates in a population are regularly been 

used to visualize on a map rather than the number of disease count. 

Traditionally, standardized incidence ratio (SIR) was calculated as 

improvement for crude rate by dividing the observed disease case count 

with the expected number of observations, where the expected number 

of observations is very sensitive to the number of population.  Uneven 

number of population in different areas leads to large variances in rates 

across the map and this results to unstable patterns of disease 

distribution. Besides that, a small change in the number of observations, 

would cause abrupt changes in the expected number of observations, 

which is known as the small number problems. Hence, to address the 

drawbacks of SIR, smoothing techniques for relative risk estimation 

have been developed by borrowing strength or information across 

neighbouring spatial units (Clayton and Kaldor, 1987). Smoothing 

techniques help to remove the variation in disease rates, reduce the 

effect of measurement errors, and better smoothing leads to less bias 

results in further analyses (Kang et al., 2016). 

More interestingly, for spatio-temporal disease mapping studies, 

smoothing technique is not only relating to the use of information from 

spatial neighbours but the context is lengthened to borrowing temporal 

neighbours too. Information is shared in time in a similar manner as 

sharing information in space. Hence, risks are smoother and more 

reliable because now the model is based on greater amount of 

information.  

Bayesian models have become a familiar approach for smoothing 

purposes, both empirical Bayes (EB) and fully Bayes (FB). Several 

studies like Clayton and Kaldor (1987), Marshall (1991) and Lahiri and 

Maiti (2000) used EB method for smoothing in their disease mapping 

studies while Besag et al. (1991), MacNab et al. (2004), and Wakefield 

(2007) applied FB. However, with the aid of modern programming, FB 

is preferably being used to solve the posterior distribution   especially   

in   a   complex   model   that   requires   many   parameters   to   be 

estimated. Commonly, estimating parameter with FB in most studies 

will involve Markov Chain Monte Carlo (MCMC) algorithm 

computation but this method requires a huge computation time and may 

lead to large Monte Carlo errors especially for a big data set. 

Furthermore, according to Schrödle and Held (2011), specific block-

sampling algorithms have to be applied in order to get reliable estimates 

if complex spatial and spatio-temporal models are to be fitted. 

In order to circumvent these drawbacks, an alternative method 

using integrated nested Laplace approximation (INLA) has been 

proposed by Rue et al. (2009) to compute the posterior marginals of all 

parameters of interest. This method is believed to provide precise 

parameter estimates in shorter time and more practical to use. Recently, 

the INLA method becomes an active research development in disease 

mapping and has been shown to work well with generalized linear 
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mixed models, Bayesian quantile additive mixed models, survival 

analysis, and spatio-temporal models (Martins et al., 2013). 

Variant models in spatio-temporal disease mapping have been 

described in the literature including parametric and non-parametric 

time trend and space-time interactions, most of them based on 

conditional autoregressions (CAR) models with extension to Besag, 

York and Mollié (BYM) models. For instance, Bernardinelli et al. 

(1995b) proposed a linear time trend model which an additional linear 

and a differential time trend. Then, Assunção et al. (2001) modified the 

study by applying second degree polynomial. Knorr-Held (2000) 

focuses on the inclusion of space-time interactions using non-

parametric time models by proposing four types of interactions together 

with four different prior distributions for the interactions. Ugarte et al. 

(2009) compare the performance of six space-time disease mapping 

models by adopt the extension proposed by Bernardinelli et al. (1995b) 

and Knorr-Held (2000). In other study, Martínez‐Beneito et al. (2008) 

link spatio-temporal study with autoregressive approach. 

The combination study of spatio-temporal model is very interesting 

to explore as this study is not yet in abundance as spatial model study. 

This may be due to difficulties of linking both spatial and temporal 

dependence on a single model. In this study, we will focus on general 

time trend model as a linear time trend model may be unrealistic for 

some case of study. It is common to observe some changes in time 

trends due to the changes of the environment effects, the improvement 

in treatments and the advancement in research. The objectives of this 

study are to choose the best model that represent the disease 

phenomenon, to estimate the relative risk of disease based on the model 

selected and to visualize the spatial pattern and temporal trend using 

graphical representation. The models are fitted using INLA 

methodology and dengue data will be applied in this study. 

 

 

MATERIALS AND METHODOLOGY 
 

Case study: Dengue in Peninsular Malaysia 
Dengue is the most ordinary mosquito-borne viral disease of 

humans, mainly transmitted by the female mosquitos Aedes aegypti and 

Aedes albopictus. Due to the dramatically increase of dengue cases day 

by day, dengue has become a major world-wide public health concern 

especially for regions near in tropical and sub-tropical climate. 

According to Mia et al. (2013), the factors that contribute to the spread 

of dengue in Malaysia are the changes in climate factors such as warm 

temperature, increased rainfall, and relative humidity that indirectly 

serve a conducive condition for mosquito breeding. Besides that, 

factors such as unstopping urbanization, massive infrastructure 

development, change in population number, deforestation, poor waste 

sanitation, inadequate domestic water supplies, faster modes of 

transportation, increased migration and internationally travel are also 

contributing to the dramatically increase of dengue (Shafie et al., 2015; 

Pang and Loh, 2016). Presently, dengue outbreak can only be 

controlled using vector-controlled methods as licensed vaccine still in 

the developmental stage. In Malaysia, the vector control strategies are 

adulticiding, larviciding, personal protection, environmental 

management, community participation, legislation, and integrated 

control. Besides that, personal protection such as the use of mosquito 

coils, insecticide mats, aerosols, and bed-nets are also give benefits in 

controlling dengue incidence.  

With a deep concern on dengue incidence in Malaysia and in line 

with government’s effort to control this problem, statistically research 

on dengue with inclusion of spatial and temporal trend are considered 

because it is believed that there is a relationship between geographical 

areas and time points on dengue risk. It is hope that this research may 

help the target audiences in planning more systematic vector-control 

prevention programmes especially for hotspots areas and also areas that 

has a tendency to become hotspots area. 

Areal data on dengue incidence in 86 districts in Peninsular 

Malaysia for year 2015 recorded by monthly is used in this study. This 

data is obtained from Vector Borne Disease Sector, Ministry of Health 

Malaysia. In Malaysia, every single dengue case is recorded properly 

to Vector Borne Disease Sector. It is compulsory to health officer to 

notify any suspected or confirmed dengue case to the nearest district 

health office via online notification system within 24 hours of 

diagnosis.  

 

Spatio-temporal models for disease mapping 
The relative risk estimation typically involves generalized linear 

mixed models (GLMM). Let the study region, Peninsular Malaysia be 

divided into n districts. Data for each area, i ( 1, 2, ...,i n ) with time 

points, t ( 1, 2, ...,t T ) are available for study. The number of dengue 

cases, Oit conditional to the relative risk, rit is assumed to have Poisson 

distribution with mean, .
it it it

E r   
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it it it it it
O r Poisson E r 
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and 
it

N  refers to number of population. 

 

Taking logarithm to the both side of the mean, 
it

  leads to 

 

               log( ) log( ) log( )
it it it

E r   .                           (3) 

 

Then, different models are defined depending on the specification of 

log( )
it

r . 

 

General time trend models 
The general time trend models describe here are similar to those 

proposed by Knorr-Held (2000). The log-risk is modelled as 

 

log
it i t t it

r             (4) 

 

where  is logarithm of the global risk, 
i
 is refer to spatial effect, 

t
 is 

defined as unstructured temporal effect, 
t

 is structured temporal effect, 

and 
it

 is space-time interaction effect.  

From Eq. (4)  ,  , and γ  represent main effects and δ represents 

interaction effect. The prior distribution used for ( )
1 2 n

ξ ,ξ ,...,ξ 

follows the Leroux et al. (2000) CAR prior, defined as ~ ( ),N
-1

0, Q

where -1

Q is the inverse of precision matrix. 

 

2 1

( (1 ) )
s s s s s

R I
-1

Q   


     (5) 

 

Here, the subscript s refers to spatial elements where
2

s
 is a spatial 

variance component, 
s

 is a spatial smoothing parameter taking values 

between 0 and 1, 
s

I is an n n identity matrix and 
s

R is a spatial 

neighbourhood matrix. The entries of matrix 
s

R  follow the following 

rules. 
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where 
i

w is the number of neighbours of the ith area and i ~ j indicates 

the areas i and j are neighbours. In our study, the areas are neighbours 

if they share common boundary. Corresponding to the prior distribution 

for  , the univariate full conditional distribution model is expressed as 

.
2

s s

i j i i

i ~ j
s s i s s i

λ σ
ξ | ξ ~ N ξ ,

1 - λ + λ w 1 - λ + λ w


 
 
 

 (7) 

Next, an independent and identically distributed normal prior with 

mean zero and unknown variance 
2

s
φ

is used for  . That is
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t
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γ ,γ ,...,γ 'γ  , a random walk of first order 
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Lastly, similar for 
11 12

( , , ..., ) ,
nT

'δ    it is assumed to be normally 

distributed as 
2

~ ( , )N
δ

δ 0 
δ

R where 
δ

R is the structure matrix given 

by the Kronecker product, corresponds to the structure matrices of the 

main effects. Similar to Knorr-Held (2000), four different types of 

interactions are considered and can be interpreted in a different way 

(see Table 1). In Type I interaction, all 
it

 are independent (do not have 

any structure in space and time). In Type II interaction, each 
.i

 follows 

time trends (in this study, we use a RW1), independently to all other 

areas. In Type III interaction, each 
. t

 follows spatial pattern, without 

any temporal structure. Lastly, for Type IV, 
it

 are completely 

dependent over space and time. 

Table 1  Four different types of space-time interaction terms. 

Space-time 
interaction 

𝑹𝜹 RW1 for 𝜸 

Type I 𝑰𝒔 ⊗ 𝑰𝒕 𝐼 ×  𝑇 

Type II 𝑰𝒔 ⊗ 𝑹𝒕 𝐼 × (𝑇 − 1) 

Type III 𝑹𝒔 ⊗ 𝑰𝒕 (𝐼 − 1)  ×  𝑇 

Type IV 𝑹𝒔 ⊗ 𝑹𝒕 (𝐼 − 1) × (𝑇 − 1) 

Note: Table followed Ugarte et al. (2014) 

Note that keeping the main effects only and dropping the space-

time interaction effect leads to the additive model. The additive model 

will be represented by Model 1. For the next models, models with 

different interaction types are run. Model 2, 3, 4 and 5 follow Type I, 

II, III and IV interactions respectively with the unstructured and the 

structured time effects. In addition, models without the unstructured 

time effects are considered in which Model 6 represents the additive 

models, Model 7 and 8 represent Type II and IV interactions 

respectively. 

Integrated nested Laplace approximations: INLA 
The spatio-temporal models are built as Bayesian model in the form 

of three stages hierarchy with latent Gaussian model. 

Fig. 1  The Bayesian hierarchical model. 

The main goal in INLA is to estimate the marginal posterior

distribution of all components of GMRF. Briefly, GMRF is a 

multivariate Gaussian distribution with a sparse precision matrix. 

( | ) ( | ) ( ) .
i i

x x d


   y θ, y θ | y θ (9) 

The first component of the integral ( | )
i

x θ, y can be 

approximated using three different approaches: a Gaussian 

approximation, a simplified Laplace approximation and a full Laplace 

approximation. The Gaussian approximation is the simplest and the 

fastest approximation. However, inaccurate result might be obtained 

due to numerical error in location, error due to the lack of its skewness 

or both (Rue and Martino, 2007). The most accurate approximation is 

the full Laplace, but the computation is too long. As an alternative, the 

simplified Laplace approximation is used which is less time consuming 

and only bring a slight loss of accuracy. 

Meanwhile, the second component can be approximated using a 

Laplace approximation where ( )
G

x | θ, y denotes the Gaussian 

approximation to the full conditional distribution, and x * (θ) is the 

mode of the full conditional of x for a given θ . 

( )
( ) |

( )
.

G





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x, θ, y
θ | y

x | θ, y
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Finally, an approximation of the posterior marginal density in Eq. 

(9) is given by 

( | ) ( | ) ( ) .
i i k k k

k

x x   y θ , y θ | y (11) 

An area weight, 
k

 has to be assigned to each 
k

 for substitution of the 

integral in Eq. (9). For more details, see Rue et al. (2009) and Martins 

et al. (2013). 

Next, the hierarchical model is completed by assigning an 

appropriate prior distribution for the hyperparameters of the model.  

The prior distributions used for the hyperparameters may influence the 

results (posterior distributions) and hence, should be carefully 

considered and compared. Usually, using the prior distributions based 

on literature review to determine the prior distributions is helpful in 

Bayesian models. For details, see papers by Bernardinelli et al. (1995a) 

and Wakefield (2007). For this study model, the only priors that should 

• The observational model, 
y|x ~𝜋(y|x)

• y: the observations

1st stage

• Components in Eq. 4, models as 
Gaussian Markov random fields 
(GMRF) with precision matrix Q,
x|𝛉~𝜋 x|θ
𝐱 = (𝛼, 𝜉′, 𝜑′, 𝛾′, 𝛿′)′

2nd 

stage

• Hyperparameters, 𝛉~𝜋 θ

• 𝛉 = (𝜎𝑠
2, 𝜆𝑠, 𝜎𝜑

2, 𝜎𝛾
2, 𝜎𝛿

2)'
3rd stage
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be specified correspond to the precision parameters which are the 

inverse of the variance components; 
2

1 / ,
s s

t s=
2

1 / ,
j j

t s=

2

1 / ,
g g

t s= and 
2

1 /
d d

t s= . The hyperpriors distributions used in this 

paper are similar to what has been proposed by Ugarte et al. (2014). 

Besides that, to guarantee identifiability of the interaction term δ , 

specific sum-to-zero constraints have to be used except for Type I 

interaction. The vector δ follows an intrinsic Gaussian Markov random 

field (IGMRF). An IGMRF is improper and its structure matrix, 
δ

R is 

not of full rank. The improper density, π* (δ) can be written as 

π* (δ) = π(δ | Aδ = e) (12) 

where Aδ = e are linear constraints δ , A is a matrix consists of 
δ

R

eigenvectors which span the null space, and e is a vector of zeros. The 

number of necessary linear constraints is always equal to the rank 

deficiency of 
δ

R . 

Interestingly, in the INLA approach, the deviance information 

criterion (DIC) can be computed for selecting the best model. 

According to Spiegelhalter et al. (2002), DIC is the sum of the deviance 

posterior mean, D (a measure for model fit) and the effective parameters 

number, 
D

p (a measure for model complexity). The lowest DIC values 

provides the best trade-off between model fit and model complexity. 

DIC .
D

D p  (13) 

In this study, R-programming via the R-INLA package is used for 

completing the methodology that has briefly described above. 

RESULTS AND DISCUSSION 

Table 2  DIC values for the study models. 

Model 
Space-time 
interaction 

𝑫̅ 𝒑𝑫 DIC 

1 Additive model 19172.65 97.19382 19269.84 

2 Type I 5990.825 765.7633 6756.588 

3 Type II 6003.618 641.8277 6645.446 

4 Type III 6172.708 696.5397 6869.248 

5 Type IV 6196.147 581.0601 6777.207 

6 Additive model 19172.55 97.19417 19269.75 

7 Type II 6003.29 641.8658 6645.156 

8 Type IV 6196.199 580.9653 6777.164 

Table 2 shows the result for the eight fitted models that has been 

described previously. This result is based on a simplified Laplace 

approximation. The additive models exhibit the highest values of DIC 

and show the worst fit although their estimated model complexity is 

lower. This result implies the importance of including space-time 

interaction in the study model. The models without unstructured 

temporal component seem slightly better although the difference of the 

DIC value between model with and without unstructured temporal 

component is too small. This may imply the inclusion or exclusion of 

the unstructured temporal component for this study model is not too 

important. Among the eight models proposed, Model 7 has the smallest 

DIC values. Hence, Model 7 is chosen as the best model in terms of 

model fit and complexity. This model consists of the spatial effect with 

a Leroux CAR prior, a structured temporal effect with a RW1 prior and 

a type II interaction. Then after choosing the best model, this selective 

model has been fitted again using the ‘full Laplace’ approximation and 

the result is used for relative risk computation. 

The estimated log-relative risks obtained with Model 7 can be 

separated into individual components: an overall global risk ( â ), a risk 

related to the spatial location ( x̂ ), a temporal risk trend ( ĝ ) common to 

all areas, and an area specific temporal risk trend ( d̂ ) for each district. 

These are useful as the spatial and temporal effects can be varied across 

time and districts respectively. 

Fig. 2  The spatial pattern of dengue risk map, 
ˆˆ .i

i
e

x

z =

Fig. 3  The posterior probabilities map, ˆ( 1 ).
i

P | Oz >
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Fig. 2 presents the map of spatial dengue risk, 
ˆˆ i

i
e

x

z = associated 

to each district and constant along the year. Meanwhile, Fig. 3 presents 

the posterior probability that the spatial risk is greater than 1, 
ˆ( 1 )

i
P | Oz > . The degree of spatial risk is differentiated with different 

shades. The darker the region indicates the region’s risk is higher. For 

simplicity, usually in the disease mapping studies, the regions with 

probabilities above 0.8 and 0.9 are considered as high risk regions, 

similar to what Richardson et al. (2004) has suggested. In this study, a 

reference threshold equal to 1 and cut-off value of 0.8 is used to detect 

high risk regions in all the time periods. Hence, from the both figure, 

Fig. 2 and Fig. 3, it is clearly seen that the districts in Selangor, Kuala 

Lumpur, Penang, Melaka, Southern part of Johor, and some districts in 

Perak and Pahang are high risk areas of dengue in year 2015. 

Fig. 4 presents the line graph of the general temporal trend of 

dengue risk common to all districts in Peninsular Malaysia. The line 

graph shows a non-linear trend with a decreasing trend for the first four 

months and a drastic increasing pattern to the seventh month as well as 

a fluctuating pattern until the end of the year. This trend indicates that 

there might be some factors that are affecting the dengue outbreaks in 

Peninsular Malaysia along this period such as the climate changes or 

the prevention schedule.  

Fig. 4  The general temporal trend of dengue risk. 

For the specific temporal trends, five selected districts are chosen 

for representing the northern, eastern, southern, western, and middle 

part of Peninsular Malaysia in order to see the temporal trend of 

different districts. These specific temporal trends (in log scale) are 

represented by Fig. 5 until Fig. 9. These line graphs are not converted 

to actual values because we are only interested to see their pattern as 

using the actual values will reveal the same pattern too. Kota Bharu, 

Kota Setar and Kuantan show slightly similar pattern which is a 

decreasing trend towards the middle of the year and increasing trend 

after that. However, Kuala Lumpur and Johor Bahru display a different 

trend. The temporal trend for Kuala Lumpur is quite steady along the 

year while for Johor Bahru, the time effect is higher in the middle of 

the year. 

Fig. 5 Specific temporal trend for Kuala Lumpur. 

Fig. 6 Specific temporal trend for Johor Bahru. 

Fig. 7 Specific temporal trend for Kota Bharu. 

Fig. 8 Specific temporal trend for Kota Setar. 

Fig. 9 Specific temporal trend for Kuantan. 
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Fig. 10  Relative dengue risk distribution. Fig. 11 Posterior probability distribution, ˆ( 1 )
it

P r | O> by districts.

Fig. 10 and Fig. 11 display the maps of relative risk of dengue and 

the posterior probabilities that the relative risk greater than 1, 

ˆ( 1 )
it

P r | O> for each district in Peninsular Malaysia from January to 

December of 2015 respectively. These figures give a clearer graphical 

representation in visualizing dengue disease phenomenon for all areas 

throughout the study period. Based on information from both figures, 

there are several districts that show high significant risk of dengue 

disease in Peninsular Malaysia for year 2015. A group of districts near 

to the most urbanized area in Peninsular Malaysia, Kuala Lumpur 

shows high significant risk throughout the year. Other than that, Kinta 

also shows high dengue risk for almost every month.  Meanwhile, the 

most southern district, Johor Bahru exhibits high dengue risk during 

June until December with its neighbours Kota Tinggi and Kulai Jaya 

are also slightly affected during July and September. The rest of the 

areas do not give any clearer pattern of relative risk and just report high 

case for certain month. 

CONCLUSION 

Our analysis of the dengue case in Peninsular Malaysia for year 

2015 shows that the gap of the relative risks of dengue between the 

districts under study is big. There are areas that show significant high 

risk throughout the year such as areas near to the capital city of 

Malaysia, Kuala Lumpur which are Petaling, Sepang, Hulu Langat, 

Gombak, Klang and Hulu Selangor. Meanwhile, Seberang Perai 

Tengah, Kinta, Kuantan and Johor Bahru have a tendency to become 

high dengue risk area. Hence, the authorities in charge should give 

prioritized to these areas in planning intervention strategies to reduce 

the dengue cases. The rest of the districts are still under control. 

However, precaution must be continued and monitor from time to time. 

Besides that, the results obtained also shows that some areas have 

different temporal trends in dengue outbreak compare to other areas. 

Hence, we can get some ideas on the effective time for vector control 

activities for each district in Peninsular Malaysia. For example, areas 

like Kota Setar, Kota Bharu and Kuantan, the prevention control should 

focus more on the earlier and at the end of the year, Johor Bahru in the 

middle of the year while Kuala Lumpur, the prevention should be for 

the overall months in the year. 

In general, this study provides a useful starting point for spatio-

temporal dengue analysis. The result in this study can be used in 

clustering analysis, hotspot identification and also spatial regression. 

As dengue is a major infectious disease in Malaysia and believe to have 

strong relationship with environmental factors, adding seasonal effects 

in the spatio-temporal model might give more appropriate model for 

dengue study. Besides that, instead of using monthly data, this model 

can be rerun using weekly data with other suitable time series model 

such as autoregressive first order model (AR1). 
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Relative risk

0.00 - 0.90

0.91 - 1.80

1.81 - 2.70

2.71 - 3.60

3.61 - 4.50

January February March 

April May June 

July August September 

October November December 
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