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Abstract

In this paper we will give an integral representation of the error for the generalized Padé
type approximants defined in [2]. We will deduce some asymptotic upper bounds on the
error of sequences of these approximants. As applications, we will consider functions defined
by their expansions in some families of classical orthogonal polynomials and obtain for the
corresponding approximants some results on the speed of convergence. Finally we obtain
some results on the asymptotic behaviour of the error of these approximants for generalized
Stieljes functions.

1 Introduction.

1.1 Definition of the Generalized Padé-Type Approximants.

Let f be an analytic function defined on a set A C € by the series of functions

f(t) = icigi(t), e A

Let G(z,t) be a generating function of the family {g;(¢)},, that is, G(z,1) = 2, 2'¢;(t). We
define the linear functional ¢ by its moments in the following way:

c(:z:i):ci e N.

Then formally we have f(t) = ¢(G(x,t)), t € A, where the linear form ¢ acts on the variable x
(this will be the case along all the paper).
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Definition 1 The generalized Padé type approximant of order n of the series f, (O/n)? —orin
short GPTA — is defined in the following way [2]:

o we firt € A and consider the polynomial g, (x,1) of degree less or equal n in x which satisfies
the following interpolation conditions:

Li(qu(2,t)) = Li(G(x,t)) 1=0,---,n,
where the L; are linear functionals acting on the variable x;

o we replace G by its approximation g, and we construct the approrimant

(O/n)?(t) =c(qn(z,1)) neN.

From the definition of the interpolation polynomial we can write

0 1 T z"
il 1) = - PO Dbl Lol o
L(G(z,t)) La(1) La(x) -+ La(a")
with
Lo(1) Lo(z) - Lo(a")
PO = Li(1)  Ly(x) Ly(2™)
Lo(l) Ln(z) - Lo(a")

This enables us to represent the generalized Padé type approximant as a quotient of determinants
in the following way:

0 Co c Cp,
c(gn(a,1)) = — Lo(G(x,1)) LO(l) LO( ) Lo(a") /Do) =
Ln(G(x,1)) La(1) Ly(x) Ly (2")
0 o - ¢ 0 o - ¢
| Lo(Xio@'gi(t) Lo(1) -+ Lo(a") | _| Lo(a" "Gl 1)) Lo(1) -+ Lo(a") /DO
La(Xio2'gi(t)) La(1) -+ La(@®) | | La(@™Gu(a,1)) La(l) -+ La(a")

where G, (z,t) = 520 ' gni144(1). So

c(qn(x,t)) = cogo(t) + c1g1(t) + -+ + cugn(t) + en(t) with

0 Co cy Cp
calt) = = PO Lall) Lole) o LY
L,(2" G (x,t)) Lo(1) Lu(z) -+ Lu(z")
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which shows the main property of the GPTA, namely that the first n + 1 terms of its expansion
in the family {g;(f)} coincide with those of f(¢). We can write the approximant in the form

c(gn(x,t)) = aolo(G(x, 1)) + a1 Li(G(a,t)) + - - - + L, (G(x, 1))
and we have ' ' ' '
aolo(a") + a1 Ly(x') + -+ apLp(z') =c(a') ¢=0,---,n.
If the linear functionals are defined by: L;(¢) = g(x;), ¢ > 0, and the generating function is

G(x,t) = (1 — at)™', then the approximants constructed are the Padé type approximants.
As f(t) = e(G(x,1)), we can write the error of the approximants in the form

c(G(x, 1)) co ¢ . cnn
rult) = £10) = (0fm)fa) =| U Dol B

La(G(2,t)) Ln(1) Ln(z) --+ Lu(27)

c(z" G (2, 1)) co ¢ e Cn

Lola Gl 1)) o) Lo(x) - Lo} iy _ $ g0 ),

Lo(@™ G (2,)) Ln(1) Ln(x) -+ Lo(a") =

with
s I s
Lp(z") L,(1) Ly(x) -+ Lp(a")

In order to have an approximation of higher order (which corresponds to a generalization of Padé
approximants or Padé type approximants of higher order) we need that

d; =0, @':07..-7k<:>(Zaij)(xn-l—l-l—i):c(xn-l—l-l—i):cn_l_l_l_i i=0,--, k.
7=0

We remark that these conditions are independent of the generating function G/(x,1).
The existence and unicity conditions for the GPTA have been studied in [2] and a program
in Mathematica for the formal recursive computation of these approximants has been given in

[5].
Some convergence results for sequences of GPTA corresponding to the two following types of
linear functionals L; were given in [4]:

L. L;(f) = f(x;) (if the point is repeated, we consider the derivatives);

or

2. Li(f) = [o [(z)pi(z)w(z) |dz|, where {p;(2)} is the family of orthonormal polynomials on
C with respect to the weight function w(z).

Conditions on the generating function and on the linear functional ¢ were proposed there in order
to obtain convergence.



1.2 Construction of the generalized Padé type table.

Let us generalize the definition given in the previous section to the following case. Let f be given

by

ZEOCigi(t)Jr i cigi(t)

i=k+1

We want to compute an approximant of the form
k/n Zng )+ aolo(G(a, 1)) + - 4+ an L, (G(2, 1))

for which the expansion in the series of {g¢;(¢)} coincides with the one of f(¢) as far as possible.

As
k/n szgz —I'CLOZLO —I'anZL

the order condition writes
GOLO(IL’HI) + GlLl(l’kH) + -+ GnLn(SI?kH) = Ck+1
G0L0($k+1+n) + G1L1($k+1+n) + -+ GnLn($k+1+n) = Ckiitn

a system of (n + 1) equations and (n 4 1) unknowns which gives the a;’s. The b;’s follow
immediately from

_Za][’](xi) 1= 07"'7k7
7=0

and so the expansion of (k/n) (t) coincides with the one of f(¢) up to the order k +n + 1.
In this way, we can construct a table of approximants (k/n)G k>0,n>0. Let us see now
to which interpolation problem correspond these approximants. We set as before

h Gk 1(1’ t ngz - Z ngz(t)v

i=k+1

and let ¢,(x,t) be the polynomial of degree n satisfying the interpolation conditions
Li(qn(xvt)) = Li(Gk-I-l(xvt)) 1= 07 R LT
We can approach G(x,t) by (ZZ 0 T'g: () + :I;k"'lqn(:z;,t)) and so f(t) b

Zf:o Cin( ) + c( FH (xvt)) =

A 0 Ck41 te Ck4+1+4n
k41 E+1y L k+14n
=3 cigilt) — Lo(x “Gfk(:z:,t)) Lo( ‘ ) Lo(li 3 ) /DU —
=0
L (¥ Gy (1)) Ln( ’“+1) oo Ly (2t
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=0
n k
= Zczgz +Za2[ Z J}] g] -
=0 7=0
k n n
- Y- Yab > -
=0 7=0 =0

= Z_:bzgz +Za2Lz (k/n) ()

We can study the convergence properties of two types of sequences:
o n fixed, k — oo;

o k fixed, n — .

For this case, the convergence properties are independent of £ because for all £, the function
('(e,1) has the same analytic properties than G/(e,?). We can then consider, without loss
of generality, k = 0.

In this paper we will be interested in this second problem. We will consider one type of
linear functionals: L;(¢g) = g(x;) (and the derivatives if some interpolation points coincide). We
will begin by obtaining an integral representation of the error and then we will get somme error
bounds for the sequences of generalized Padé type approximants ((O/n)?(z))n We will consider

particular choices for the generating function and obtain the corresponding convergence results.

2 Integral representation of the error.

Let us consider a function f(z) in a domain D C € given by a series expansion

VzeD f(z Z Cngn(z) with lim

n—oo

=R,R>1 (1)

cn+1
and let

=3 wale) )

be a generating function function for the family {g¢.(2)}.
We associate to f a function ¢ defined by the following power series

= > ¢,t", which is analytic for |t] < R.
n=0
We define the linear form ¢ in the space H, of holomorphic functions in D/, = D(0,1/c) b
1 dx
Vk € 'H, c(k):—,/H g(@)k(l/z)— a<r<R. (3)
z T

)



We have

o b g)
Along all the paper, the functional ¢ will act on the variable z.
Let A C D be a regular set such that, for z € A, G(e,2) € H,. In other words, if Dy, is the

domain of analyticity of G(e,2),Vz€ A D) D D(0,1/a). Then

(Glz: ) = %J@Tm><wxaf
= _ 5 gl@)
T 2w /|x —r HZ:: n+1 ﬁn:o 9n(2) /|x|=r e dx =

= Z_:cngn(z) =f(z) Vze A

by uniform convergence arguments. So, if ¢,(x, z) is the polynomial of degree n which interpolates
(i(e, z) in the set of points {z,;}._,, we get

1 1 dx

OnF() = clantena) = 5 [ ol

) z z

and the error of the GPTA can be written

1@ = 0o =5 [ s [6Ga—aa] T vea

) z

In this case the speed of convergence of the GPTA can be measured by the speed of convergence
of the interpolating polynomials:

£(2) wm<ﬂ<ﬂhmﬂaxa—%w2n

More precisely, as the interpolation error can be written [3]

(m@wmﬁzﬁﬁﬁjgjﬁzgﬁjﬁxewm

with I' a simple, closed, rectifiable curve in D(0,1/«), z, € Int(I') (the interior of I') , 7 =
0,---,n, Vn € N, we obtain the following expression for the error of the generalized Padé type
approximants:

en(z) = f(2) = (0/n)%(2) = 1 /|$|:Tg(x)/r (271 = zpo) -+ (271 — 2) G(t,z)dtdx (1)

472 (t—zpo) - (t—2zpn) a2t —1

it D(0,1/r) C Int(I'). So we obtain

n

maXH ‘:1;_1 — Zni
1 | |=r i:O

eal2)] < T M(r) -
Itrélrﬂ Zm




with M(r) a quantity depending on r. Let us consider now sequences {z,;}".

_o of interpolation
points satistying

Tim [(z = 200) -+ (= = 20|/ = 0(2) ¥z € D(0,1/a). (5)

In (4), making the change of variable y = 7!, and remarking that we can replace the curve
ly| = 1/r by any simple, closed and rectifiable curve 4 such that D(0,1/R) C Int(~), we get

. ) B TW)
dim fe,(2)] < mino(d)’ (6)
tel’

for all I" and ~ satisfying the given conditions. We immediately obtain the following theorem:

Theorem 1 Let f(z) =300 cogn(2), 2 € D C € with lim,—co |¢n/cnt1| = R. Let G(eo,2) be a
generating function for the family {g,(z)}. Let us suppose that for = € A C D (a regular set),
G(e,2) is analytic in Dy,. We consider sequences of interpolation points {zn;, 1 =10, - ,n}neN C
Dy satisfying (5). We define C, = {z : 0(2) = p}, Int(C,) the interior of C, and Ext(C,) the

exterior of C,. We suppose that C, is a simple, closed, rectifiable curve and we set

pM = sup {p 1O, C Dy 2 € [nt(Cp)‘v’i,n}
pm = inf {p :C, C Int(C,,,), C,C E:I:t(Dl/R)}.
Then )
Vee A lim |f(2) = (0/n)f(2)] < b

Let us consider two different choices of sequences of interpolation points satisfying (5).
(a) Let (z;); be a sequence of points verifying

nh_{go Znk4+1 = 51, 7}1_{20 Znk4+2 = fz, Tt ’nh—>r£1<> Cnk+k = fk
and let us set: Vn € N z,, =2;,,¢=0,---,n. Then

o(z) = lim |(z = =1) - (= = 2" = (= = &) - (= = &)I"

n—oo

k

and so the set of points o(z) = r* is a lemniscate.

Corollary 1 Let f and G(e,z) satisfy the conditions of Theorem 1. We construct the sequence
of GPTA corresponding to the following choice of interpolation points:

Zpi =% t=0,---.n with lim z, =0.

n—oo

Then we obtain )
lim | £(2) = (0/n)§ (=) <

n—oo

o
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Proof:in this case we easily obtain o(z) = |z|, C, = D(0,p), par = 1/, pm = 1/ R and the result
follows from Theorem 1.

A
(b) Let us consider the following definitions:

e 1 a Borel finite measure on € with compact support S(u)= supp(p);

e ) = Q(u) the unbounded component of €\S(p);

e ga(z,00) the Green function with pole at infinity;

e p,(p,z) the sequence of orthonormal polynomials with respect to the measure p.

Let us suppose that u € Reg [6], that is
Lim [p, (p, 2)['" = e =) (7)

locally uniformly for z € €\Co(S(p)). We also say that the sequence {p,(p,z)} has regular
exterior asymptotic behaviour.
If we choose the sequences of interpolation points {z,;}-_, as the zeros of p,4(p, z), forn € N,

with {p,(z)} verifying (7) then condition (5) is satisfied. For some particular cases, we can easily
compute the form of C,. In fact, we have the following well-known result (see, for instance, [8]):

Proposition 1 If S(p) = [—1,1] then go(z,00) = log ‘z + V2?2 — 1‘ and then C, = &, where &,
(p> 1) is the ellipse of foci —1,1 and semi-aves a = 3(p+p~'), b= 12(p—p7').

So, if we choose {z,;}_, as the zeroes of Jacobi, Legendre or Tchebyshev polynomials, we can
compute the values of p,, and pp;. That is what we are going to do in the following subsections,
where we will consider some particular choices for the generating function.

2.1 Expansion in a Legendre Series.

If {P.(z)} are the Legendre polynomials then the generating function is

1 o0
) V1 —=2xz+ 2? HZ:%:E (=)

If we fix z € €, (p > 1) defined as above, (e, z) is analytic for € D(0,1/p), and so if we set
A=E,,G(e,2) € Hyyp.

G(x,z

Proposition 2 Let [ be given by ils expansion in a Legendre series

flz) = i a, P,(z) with limsup |an|1/n = (R>1). (8)

n—oo

==



Let us fix p and p. such that p < R, p. > p and choose the sequence of interpolation points in
the following way

where y,; are the zeroes of the Tchebyshev polynomial of degree n + 1, T,11(2). Then the error
of the corresponding sequence of GPTA has the following asymptotic behaviour

\m R\?2 2
<2114 1+(—) /114 1—(ﬁ) Vze&, (10)

lim ‘f(Z) - (O/n)?(Z) =R P P

n—oo

Remark: a similar result is obtained if we choose {y,;} as the zeroes of the Legendre polyno-

mials.
Proof:
The expansion (8) converges for z € Int(Eg). For z € &, with p < R we have the integral
representation
1 dx
Vie & olGle,2)) = %/m_ g@)G(1 [0, 2) =, p<r <R

and, as for p. < p, 1/p. > 1/p > 1/r, this representation is still true for z € Int(&,). It is
well-known that the zeroes of the Tchebyshev polynomials satisfy:

n—oo n—oo

So

1 146
1/(n+1) — _O-T(p*z) = —5 for p*Z E 55‘

o(z) = lim (2 = 2n0)(2 = 2n2) ==+ (2 = Znn)| . P

In this case, C, is given by

Co={z: o(z)=a}={z:pz €&E)0} =

1 1 1 1
= Sz=a+iy: z=—[2p.a+ JcosO, y = [2p.a — | sin 6
204 2p.c 204 2p.c

1 2 _ | |2 _ + 1 2
o — z (8%
dpfa) T T 4pia

Then the quantities py; and p,, defined in Theorem 1 can be chosen satistying

We obtain that for z € C,

PM‘F% = 1/p
= 1/R

i
Pm = 12 pm



_1_|_11 1 _1+11+1 (1)
Moy T\ T T aR T2 R T g
The result follows from the application of Theorem 1.
JAN
By the definition of the generalized Padé type approximants, we easily see that the general
form of these approximants for a function given by its expansion in Legendre polynomials is

(O/n)?(z) = > Aiei + B:2)~Y? if the interpolation points are distinct

-
Il
=]

A; Z(ozi + ﬂiz)_(zj"'l)/QPij(z) with P;; polynomial of degree j

i=0

I
'M“

Il
=]

K3

where for : = 0,-- -, p, z,,; is repeated n; times.

2.2 Expansion in a Tchebychev series.

If {T..(z)} are the Tchebyshev polynomials, then the generating function will be

i 2" T, (2).

n=0

1 —az

Gla,2) = 1 —2xz + 22 -

Fixing z € &,, G(e,z) is analytic for « € D(0,1/p) and so, for the speed of convergence of
the sequence of GPTA of a function given by its Tchebyshev expansion we can obtain results
equivalent to those of the previous section. We remark that in this case the general form of these
approximants is a rational function.

2.3 Expansion in a Laguerre series.

Let us consider the function f given by

f(z) = fj enL(2) with D(a + 1)0" e, = /0 T e (@) L () de, (12)

where {Lgf)(z)} are the Laguerre polynomials. We suppose that lim,,_ ., sup |cn|1/n =1/R<1
For z € ©\]0, +o0[ we have lim,_., n~"/?log ‘Lgf)(z)‘ = 2Re((—2)"?) [7], which gives for the
domain of convergence D

D= {Z : Re((—z)lﬂ) < K (for some constant K)}

the interior of a parabola with focus in the origin. K depends on the value of R and an analog
of the Cauchy-Hadamard formula holds.
The generating function of the Laguerre polynomials is

—Tz

1 x}?

Glx,z) = i "L (z) = (1 — ) exp{

10



which, for all z € €, is analytic in D(0, 1).

In this case, the general form of these approximants is a linear combination of exponential
functions and functions of the form x!exp(3;x) (if some interpolation points are repeated), that
is .

O/n ZpZ 5 with pi(2) polynomial of degree n;, > n=n. (13)
i=1

Let us now apply Theorem 1 with simple choices for the interpolation points {z.;};_, C D(0,1).

Proposition 3 Let f be given by (12) satisfying lim,,_ |cn|1/n = 1/R and let us consider the
sequences of GPTA (O/n)?(z) corresponding to the following choices of interpolation points:

1. limy— oo 2, = 0. Then

n 1
VeeD lim |f(z) — (0/m)f (=) """

n—oo

INA
=

2. Let {zn;}i_y be given by (9) with p, > 1.

Vze D hm‘f —(0/n); ()‘l/ngl 1+ 1—|—(£) /1 1+ 1_(i)

Proof:

1) In this case, o(z) = |z| and C, = D(0,p). So ppr = 1 and p,, = 1/R, which gives the result

by applying Theorem 1.

2) It is sufficient to see that in this case the quantities pys and p,, are given by (11) with p = 1.
A

2.4 Expansion in a Hermite series.

Let us consider the function f given by its expansion in Hermite polynomials:

ch »(2) with rV/29mple —/ _x2f(:1;)Hn(:1;)d:1;. (14)

We suppose that lim,_ .. |cn|1/n =1/R.
For z € €\]— 00, +oo[ we have lim,, . (2n)~"/? log {HF%Z |Hn(z)|} = Im(z) [7], which gives

for the domain of convergence
D={z: |Im(z)| < K (for some constant K) }.

K depends on R and an analog of Cauchy-Hadamard formula holds.
The generating function for the Hermite polynomials is

>~ H, 2
G(Q?,Z) — Z xn n(’Z) — 6221’—1’ ,
n=0 :

11



and so the general form of the generalized Padé type approximants is also of type (13).
As for all z € €, G/(e,z) in an entire function of x, we have the integral representation

1 1 dx
Vee € o(Ge,2) = %/m: 9@)G(=2) =, <R
= f(z) VzeD.

Conditions of theorem 1 are satisfied for all o > 0. So let us fix o > 0 and consider the same

choices for the {z,;}"

o as in the previous section.

o lim, ... 2, =0, z, € D(0,1/a) Vn. Applying theorem 1 we get for the error bound

lim |en(z)|1/(n+1) <&

e Proposition 4 Let f(z) be a function given by (14) with lim,_ |cn|1/n = 1/R. We
consider the sequence of generalized Padé type approrimants ((O/n)?) corresponding to

the sequences of interpolation points {z,;}, satisfying

— {zni}g are the zeroes of a family of orthogonal polynomials in [—1, 1] with respect to a
regular measure (for instance, Tchebychev, Legendre or Jacobi polynomials).

Then the sequence ((O/n)?(z))n converges to f(z). More precisely, if we fix p > 1 satisfying
Hp—p") > 5 we oblain

lim [£(z) = (0/n)§ ()] <sm T\t VeED (15)

Proof:

By propositon 1 we know that for this choice of interpolation points we obtain o(z) = p ,
Vz € &,. Applying Theorem 1 we get

fomzn
Pm — 5= R

1 1
Taking p,, = ¥ + 14/ 7 + 1, (15) follows.

3 GPTA for generalized Stieltjes functions. Connection
with the Baker-Gammel approximants.

A

Let us consider now the following class of functions
f(z) = / G(t, 2)da(t), (16)
A

12



where « is a bounded, nondecreasing function taking infinitely many different values on A, A is
a compact interval of R *. For the special case G(t,z) = (1 +t2)~", f becomes a Stieltjes series.

If G(t, z) is the generating function of the family {g¢:(#)}-, we formally have

16 = [ (S datty = X ([ vaatn)) o) = S eanto
a =0 =0 a =0
Let us suppose that
for z € C' a compact region of €', G(e, z) is analytic in A = R T x] — a, al. (17)

Then by the Cauchy representation we can write

1= [ o [ A g,

where I' is a simple closed contour in A such that A lies in its interior. Then

1 da(t) , 1 dx
f(2) = 5= [ Gla2) [ S25de = — [ Gla,2)g(=1/0) (1)
where g(x) = A flj—(i;)t is a Stieltjes function.

A way of constructing approximants for functions of the form (16) which are a linear combina-

tion of G'(u;,2) (u; € A) and ¢7(z) = 0

ut

The Baker-Gammel approximants of f [1] consist of replacing ¢ by their Padé approximants. We

G/(u, z) |u=o0 has been proposed by Baker and Gammel.

will obtain an approximant of the form

m

G (2) = 32 Bigh () + 3 il ). (19

=1

It is easily shown (see [1] for the details) that their expansion in terms of the {g¢;(2)} coincides
with the one of f up to 2m + j, and a convergence result can be deduced from the convergence
results for the Padé approximants of a Stieltjes series. The construction of these approximants
needs the computation of the poles and residues of the [m + j/m]s(z), which implies a rather
amount of computations.

The approach studied in this paper - the generalized Padé type approximants - corresponds
to, in (18), instead of replacing ¢ by its Padé approximant, replacing G/(e, z) by its interpolation
polynomial. As we have seen in the previous sections, the general form of these approximants
contains (19) for the following choice of interpolation points: w;, ¢ = 1,---,m and ug = 0
repeated j + 1 times. The order of approximation in the expansion in terms of the {g:(2)} is
m 4+ j and so less than the one corresponding to the Baker-Gammel approximants, but we get an
important reduction in computations. We will now obtain some upper bounds on the asymptotic
behaviour of the error of the GPTA for generalized Stieljes functions for particular choices of the
interpolation points.

13



Theorem 2 Let [ be a function of the form (16) satisfying (17). Let us consider sequences of
interpolation points {z,;}_, C A satisfying

(1)
=o(z) VzeA (20)

n

H(Z — Zni)

=0

lim

n—oo

Then the corresponding sequence of GPTA satisfies

1/(n+1) o MaXiea o(t)

~ minger o(x)

lim | £(2) = (0/n)§ ()]

n—oo

for all ' a contour in A such that Vn € N {z,}._, CIn{(I') and TN A = 0.

Proof:
Let ¢,(1, z) be the interpolation polynomial for G(¢, z) (z fixed) ; then we have

f(z) = (0/n)§ (=) / (G(t,2) — qn (tvz))da(t) =
- 271'@/ /F x —t HZ of Zm)d:zjdoz(t)

by the Cauchy integral representation of the interpolation error. By applying Fubbini’s theorem

we get
e = 05 = 5 [ el ([ B g ar 2

Taking upper bounds we obtain

7(2) = (O (2)] € o0y e ol = 20)

minger |TTizo(z — 2ni)|

with €y = | [, do(t)| maxger (dist(z, A))™" and Cy(z) = | [ G(x, 2)dz|. The result follows from
the property (20) on the {z,;}._,
A

Theorem 3 Let f be a function of the form (16) satisfying (17). Let {m.(2)}, .y be the sequence
of orthonormal polynomials on A with respect to the measure da(t). Let us construct the sequence
of GPTA corresponding to the following sequences of interpolation points: ¥Yn € N {z.}_, are
the zeroes of mp41(z). Then, if we set Q@ = C\A and go(z,00) the corresponding Green function,
the error has the following asymptotic behaviour
) 1/2n 1
¥ze O lim [f(z) = (0/n)F(2)] " <

n—00 9@(73700)

" min e
zel’

for all ' such that
AcC Int(l), TCA, TnA=0o.
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Proof:
The sequence {m,(z)} satisfies

/A tn(O)7m(D)da(t) = S Vn,m €N

Using the orthogonality properties, (21) can be written

Fe =) = g [ SR [ 2o o -

271 () T —1
- ﬁ /F iff;;) ( /A W”(iz — :n(t)rn(t)da(t) +/ %da(t)) du =

1 n(1)?
_ _,/ Gz, 2) / (0 o)) da.
2 Jr m(x)? \Ja o —1
We have [ 7,(t)*da(t) = 1 and from the properties on the measure da(t) and its support, it is
well-known that [6]

li7¥r_1>;1>£1f|7rn(z)|1/n > 902y e Q.

Taking upper bounds, the result follows.

4 Conclusion.

As Padé and Padé type approximants provide good approximations for functions given by its in
power series expansion, the generalized Padé type approximants studied in this paper enable us
to construct approximations for functions given by their expansion in some family {g¢:(2)}.2,
which we know a generating function G/(x,1). As recalled in the first section, these approximants

for

o’
are a linear combination of the functions {G/(x;,1)} and {WG(xi,t)}, and the coefficients are
T

very easily computed.

Based on the analytical properties of the generating function and choosing the sequences of
interpolation points satisfying some conditions, we obtained a general result on the speed of
convergence of the corresponding sequences of approximants. For the most common expansions
- the expansion on the classical orthogonal polynomials - we got some upper bounds on the error
of the GPTA corresponding to particular choices of the interpolation points. The results show
that these approximants can have good convergence properties.

There are some interesting open problems under study:

e a family of functions {g;(z)} being given, compare for different choices of interpolation
points the speed of convergence of the corresponding sequence of approximants and deter-
mine what is the best choice for obtaining the tastest convergence;

e for a function given by the series f(z) = 372, ¢;g:(2), compare the speed of convergence of
the sequence of partial sums s,(z) = Y72, with the one of a sequence of GPTA and give

sufficient conditions in order to obtain acceleration of convergence;

15



e study the convergence and acceleration properties of sequences of the form ((k/n)?(z))k
(with n fixed) defined in section 1.2.
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