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De�nition 1 The generalized Pad�e type approximant of order n of the series f , (0=n)Gf { or inshort GPTA { is de�ned in the following way [2]:� we �x t 2 A and consider the polynomial qn(x; t) of degree less or equal n in x which satis�esthe following interpolation conditions:Li(qn(x; t)) = Li(G(x; t)) i = 0; � � � ; n;where the Li are linear functionals acting on the variable x;� we replace G by its approximation qn and we construct the approximant(0=n)Gf (t) = c(qn(x; t)) n 2 NI :From the de�nition of the interpolation polynomial we can writeqn(x; t) = � 0 1 x � � � xnL0(G(x; t)) L0(1) L0(x) � � � L0(xn)� � � � � � � � � � � � � � �Ln(G(x; t)) Ln(1) Ln(x) � � � Ln(xn) =D(0)nwith D(0)n = L0(1) L0(x) � � � L0(xn)L1(1) L1(x) � � � L1(xn)� � � � � � � � � � � �Ln(1) Ln(x) � � � Ln(xn)This enables us to represent the generalized Pad�e type approximant as a quotient of determinantsin the following way:c(qn(x; t)) = � 0 c0 c1 � � � cnL0(G(x; t)) L0(1) L0(x) � � � L0(xn)� � � � � � � � � � � � � � �Ln(G(x; t)) Ln(1) Ln(x) � � � Ln(xn) =D(0)n =0BBB@� 0 c0 � � � cnL0(Pni=0 xigi(t)) L0(1) � � � L0(xn)� � � � � � � � � � � �Ln(Pni=0 xigi(t)) Ln(1) � � � Ln(xn) � 0 c0 � � � cnL0(xn+1Gn(x; t)) L0(1) � � � L0(xn)� � � � � � � � � � � �Ln(xn+1Gn(x; t)) Ln(1) � � � Ln(xn) 1CCCA =D(0)nwhere Gn(x; t) = P1i=0 xign+1+i(t). Soc(qn(x; t)) = c0g0(t) + c1g1(t) + � � �+ cngn(t) + en(t) withen(t) = � 0 c0 c1 � � � cnL0(xn+1Gn(x; t)) L0(1) L0(x) � � � L0(xn)� � � � � � � � � � � � � � �Ln(xn+1Gn(x; t)) Ln(1) Ln(x) � � � Ln(xn) =D(0)n ;2



which shows the main property of the GPTA, namely that the �rst n+ 1 terms of its expansionin the family fgi(t)g coincide with those of f(t). We can write the approximant in the formc(qn(x; t)) = a0L0(G(x; t)) + a1L1(G(x; t)) + � � �+ Ln(G(x; t))and we have a0L0(xi) + a1L1(xi) + � � �+ anLn(xi) = c(xi) i = 0; � � � ; n:If the linear functionals are de�ned by: Li(g) = g(xi), i � 0, and the generating function isG(x; t) = (1� xt)�1, then the approximants constructed are the Pad�e type approximants.As f(t) = c(G(x; t)), we can write the error of the approximants in the formrn(t) = f(t)� (0=n)Gf (t) = c(G(x; t)) c0 c1 � � � cnL0(G(x; t)) L0(1) L0(x) � � � L0(xn)� � � � � � � � � � � � � � �Ln(G(x; t)) Ln(1) Ln(x) � � � Ln(xn) =D(0)n =c(xn+1Gn(x; t)) c0 c1 � � � cnL0(xn+1Gn(x; t)) L0(1) L0(x) � � � L0(xn)� � � � � � � � � � � � � � �Ln(xn+1Gn(x; t)) Ln(1) Ln(x) � � � Ln(xn) =D(0)n = 1Xi=0 dign+1+i(t);with di = cn+1+i c0 c1 � � � cnL0(xn+1+i) L0(1) L0(x) � � � L0(xn)� � � � � � � � � � � � � � �Ln(xn+1+i) Ln(1) Ln(x) � � � Ln(xn) =D(0)nIn order to have an approximation of higher order (which corresponds to a generalization of Pad�eapproximants or Pad�e type approximants of higher order) we need thatdi = 0; i = 0; � � � ; k , 0@ nXj=0 ajLj1A (xn+1+i) = c(xn+1+i) = cn+1+i i = 0; � � � ; k:We remark that these conditions are independent of the generating function G(x; t).The existence and unicity conditions for the GPTA have been studied in [2] and a programin Mathematica for the formal recursive computation of these approximants has been given in[5]. Some convergence results for sequences of GPTA corresponding to the two following types oflinear functionals Li were given in [4]:1. Li(f) = f(xi) (if the point is repeated, we consider the derivatives);or2. Li(f) = RC f(z)pi(z)w(z) jdzj, where fpi(z)g is the family of orthonormal polynomials onC with respect to the weight function w(z).Conditions on the generating function and on the linear functional c were proposed there in orderto obtain convergence. 3



1.2 Construction of the generalized Pad�e type table.Let us generalize the de�nition given in the previous section to the following case. Let f be givenby f(t) = kXi=0 cigi(t) + 1Xi=k+1 cigi(t):We want to compute an approximant of the form(k=n)Gf (t) = kXi=0 bigi(t) + a0L0(G(x; t)) + � � �+ anLn(G(x; t))for which the expansion in the series of fgi(t)g coincides with the one of f(t) as far as possible.As (k=n)Gf (t) = kXi=0 bigi(t) + a0 1Xi=0 L0(xi)gi(t) + � � �+ an 1Xi=0 Ln(xi)gi(t)the order condition writes8><>: a0L0(xk+1) + a1L1(xk+1) + � � �+ anLn(xk+1) = ck+1� � � � � � � � �a0L0(xk+1+n) + a1L1(xk+1+n) + � � �+ anLn(xk+1+n) = ck+1+na system of (n + 1) equations and (n + 1) unknowns which gives the ai's. The bi's followimmediately from bi = ci � nXj=0 ajLj(xi) i = 0; � � � ; k;and so the expansion of (k=n)Gf (t) coincides with the one of f(t) up to the order k + n+ 1.In this way, we can construct a table of approximants (k=n)Gf , k � 0, n � 0. Let us see nowto which interpolation problem correspond these approximants. We set as beforexk+1Gk+1(x; t) = G(x; t)� kXi=0 xigi(t) = 1Xi=k+1 xigi(t);and let qn(x; t) be the polynomial of degree n satisfying the interpolation conditionsLi(qn(x; t)) = Li(Gk+1(x; t)) i = 0; � � � ; n:We can approach G(x; t) by �Pki=0 xigi(t) + xk+1qn(x; t)� and so f(t) byPki=0 cigi(t) + c(xk+1qn(x; t)) == kXi=0 cigi(t)� 0 ck+1 � � � ck+1+nL0(xk+1Gk(x; t)) L0(xk+1) � � � L0(xk+1+n)� � � � � � � � � � � �Ln(xk+1Gk(x; t)) Ln(xk+1) � � � Ln(xk+1+n) =D(k+1)n =4



= kXi=0 cigi(t) + nXi=0 aiLi(xk+1Gk(x; t)) == kXi=0 cigi(t) + nXi=0 ai[Li(G(x; t))� kXj=0Li(xj)gj(t)] == kXi=0(ci � nXj=0 ajLj(xi))gi(t) + nXi=0 aiLi(G(x; t)) == kXi=0 bigi(t) + nXi=0 aiLi(G(x; t)) = (k=n)Gf (t):We can study the convergence properties of two types of sequences:� n �xed, k !1;� k �xed, n!1:For this case, the convergence properties are independent of k because for all k, the functionGk(�; t) has the same analytic properties than G(�; t). We can then consider, without lossof generality, k = 0.In this paper we will be interested in this second problem. We will consider one type oflinear functionals: Li(g) = g(xi) (and the derivatives if some interpolation points coincide). Wewill begin by obtaining an integral representation of the error and then we will get somme errorbounds for the sequences of generalized Pad�e type approximants �(0=n)Gf (z)�n. We will considerparticular choices for the generating function and obtain the corresponding convergence results.2 Integral representation of the error.Let us consider a function f(z) in a domain D � CI given by a series expansion8z 2 D f(z) = 1Xn=0 cngn(z) with limn!1 ����� cncn+1 ����� = R , R > 1 (1)and let G(x; z) = 1Xi=0 xigi(z) (2)be a generating function function for the family fgn(z)g.We associate to f a function g de�ned by the following power seriesg(t) = 1Xn=0 cntn; which is analytic for jtj < R:We de�ne the linear form c in the space H� of holomorphic functions in D1=� = D(0; 1=�) by:8k 2 H� c(k) = 12�i Zjxj=r g(x)k(1=x)dxx � < r < R: (3)5



We have c(xn) = 12�i Zjxj=r g(x) dxxn+1 = g(n)(0)n! = cn 8n � 0:Along all the paper, the functional c will act on the variable x.Let A � D be a regular set such that, for z 2 A, G(�; z) 2 H�. In other words, if D[z] is thedomain of analyticity of G(�; z), 8z 2 A D[z] � D(0; 1=�). Thenc(G(x; z)) = 12�i Zjxj=r g(x)G(1=x; z)dxx == 12�i Zjxj=r 1Xn=0 gn(z) g(x)xn+1dx = 12�i 1Xn=0 gn(z) Zjxj=r g(x)xn+1dx == 1Xn=0 cngn(z) = f(z) 8z 2 Aby uniform convergence arguments. So, if qn(x; z) is the polynomial of degree n which interpolatesG(�; z) in the set of points fznigni=0, we get(0=n)Gf (z) = c(qn(x; z)) = 12�i Zjxj=r g(x)qn( 1x; z)dxxand the error of the GPTA can be writtenf(z) � (0=n)Gf (z) = 12�i Zjxj=r g(x) �G( 1x; z)� qn( 1x; z)� dxx 8z 2 A:In this case the speed of convergence of the GPTA can be measured by the speed of convergenceof the interpolating polynomials:���f(z) � (0=n)Gf (z)��� �M maxjxj= 1r jG(x; z)� qn(x; z)j :More precisely, as the interpolation error can be written [3]G(x; z)� qn(x; z) = 12�i Z� (x� zn0) � � � (x� znn)(t� zn0) � � � (t� znn) G(t; z)t� x dt x 2 Int(�)with � a simple, closed, recti�able curve in D(0; 1=�), zni 2 Int(�) (the interior of �) , i =0; � � � ; n, 8n 2 NI , we obtain the following expression for the error of the generalized Pad�e typeapproximants:en(z) = f(z)� (0=n)Gf (z) = � 14�2 Zjxj=r g(x) Z� (x�1 � zn0) � � � (x�1 � znn)(t� zn0) � � � (t� znn) G(t; z)xt� 1 dtdx (4)if D(0; 1=r) � Int(�). So we obtainjen(z)j � 14�2M(r)maxjxj=r nYi=0 ���x�1 � zni���mint2� nYi=0 jt� znij6



with M(r) a quantity depending on r. Let us consider now sequences fznigni=0 of interpolationpoints satisfying limn!1 j(z � zn0) � � � (z � znn)j1=(n+1) = �(z) 8z 2 D(0; 1=�): (5)In (4), making the change of variable y = x�1, and remarking that we can replace the curvejyj = 1=r by any simple, closed and recti�able curve 
 such that D(0; 1=R) � Int(
), we getlimn!1 jen(z)j1=(n+1) � maxy2
 �(y)mint2� �(t) ; (6)for all � and 
 satisfying the given conditions. We immediately obtain the following theorem:Theorem 1 Let f(z) = P1n=0 cngn(z), z 2 D � CI with limn!1 jcn=cn+1j = R. Let G(�; z) be agenerating function for the family fgn(z)g. Let us suppose that for z 2 A � D (a regular set),G(�; z) is analytic inD1=�. We consider sequences of interpolation points fzni; i = 0; � � � ; ngn2NI �D1=� satisfying (5). We de�ne C� = fz : �(z) = �g, Int(C�) the interior of C� and Ext(C�) theexterior of C�. We suppose that C� is a simple, closed, recti�able curve and we set�M = sup n� : C� � D1=�; zni 2 Int(C�)8i; no�m = inf n� : C� � Int(C�M ); C� � Ext(D1=R)o :Then 8z 2 A limn!1 ���f(z)� (0=n)Gf (z)���1=(n+1) � �m�M :Let us consider two di�erent choices of sequences of interpolation points satisfying (5).(a) Let (zi)i be a sequence of points verifyinglimn!1 znk+1 = �1; limn!1 znk+2 = �2; � � � ; limn!1 znk+k = �k:and let us set: 8n 2 NI zni = zi, i = 0; � � � ; n. Then�(z) = limn!1 j(z � z1) � � � (z � zn)j1=n = j(z � �1) � � � (z � �k)j1=kand so the set of points �(z) = rk is a lemniscate.Corollary 1 Let f and G(�; z) satisfy the conditions of Theorem 1. We construct the sequenceof GPTA corresponding to the following choice of interpolation points:zni = zi i = 0; � � � ; n with limn!1 zn = 0:Then we obtain limn!1 ���f(z) � (0=n)Gf (z)���1=(n+1) � �R:7



Proof: in this case we easily obtain �(z) = jzj, C� = D(0; �), �M = 1=�, �m = 1=R and the resultfollows from Theorem 1. 4(b) Let us consider the following de�nitions:� � a Borel �nite measure on CI with compact support S(�)= supp(�);� 
 = 
(�) the unbounded component of CI nS(�);� g
(z;1) the Green function with pole at in�nity;� pn(�; z) the sequence of orthonormal polynomials with respect to the measure �.Let us suppose that � 2 Reg [6], that islimn!1 jpn(�; z)j1=n = eg
(z;1) (7)locally uniformly for z 2 CI nCo(S(�)). We also say that the sequence fpn(�; z)g has regularexterior asymptotic behaviour.If we choose the sequences of interpolation points fznigni=0 as the zeros of pn+1(�; z), for n 2 NI ,with fpn(z)g verifying (7) then condition (5) is satis�ed. For some particular cases, we can easilycompute the form of C�. In fact, we have the following well-known result (see, for instance, [8]):Proposition 1 If S(�) = [�1; 1] then g
(z;1) = log ���z +pz2 � 1��� and then C� = E� where E�(� > 1) is the ellipse of foci �1; 1 and semi-axes a = 12(�+ ��1), b = 12(�� ��1).So, if we choose fznigni=0 as the zeroes of Jacobi, Legendre or Tchebyshev polynomials, we cancompute the values of �m and �M . That is what we are going to do in the following subsections,where we will consider some particular choices for the generating function.2.1 Expansion in a Legendre Series.If fPn(z)g are the Legendre polynomials then the generating function isG(x; z) = 1p1� 2xz + x2 = 1Xn=0 xnPn(z):If we �x z 2 E� (� > 1) de�ned as above, G(�; z) is analytic for x 2 D(0; 1=�), and so if we setA = E� , G(�; z) 2 H1=�.Proposition 2 Let f be given by its expansion in a Legendre seriesf(z) = 1Xn=0 anPn(z) with lim supn!1 janj1=n = 1R (R > 1): (8)8



Let us �x � and �� such that � < R, �� > � and choose the sequence of interpolation points inthe following way zni = yni=�� i = 0; � � � ; n; (9)where yni are the zeroes of the Tchebyshev polynomial of degree n + 1, Tn+1(z). Then the errorof the corresponding sequence of GPTA has the following asymptotic behaviourlimn!1 ���f(z) � (0=n)Gf (z)���1=n � �R 0B@1 +vuut1 +  R��!21CA =0B@1 +vuut1�  ���!21CA 8z 2 E�: (10)Remark: a similar result is obtained if we choose fynig as the zeroes of the Legendre polyno-mials.Proof:The expansion (8) converges for z 2 Int(ER). For z 2 E� with � < R we have the integralrepresentation 8z 2 E� c(G(x; z)) = 12�i Zjxj=r g(x)G(1=x; z)dxx ; � < r < Rand, as for �� < �, 1=�� > 1=� > 1=r, this representation is still true for z 2 Int(E�). It iswell-known that the zeroes of the Tchebyshev polynomials satisfy:�T (y) = limn!1 jTn(y)j1=n = limn!1 j(y � yn0) � � � (y � ynn)j1=(n+1) = �=2 for y 2 E�:So �(z) = limn!1 j(z � zn0)(z � zn2) � � � (z � znn)j1=(n+1) = 1���T (��z) = 1�� �2 for ��z 2 E�:In this case, C� is given byC� = fz : �(z) = �g = fz : ��z 2 E2���g == (z = x+ iy : x = 12�� [2��� + 12��� ] cos �; y = 12�� [2���� 12��� ] sin �)We obtain that for z 2 C�  �� 14�2��!2 � jzj2 �  �+ 14�2��!2Then the quantities �M and �m de�ned in Theorem 1 can be chosen satisfying( �M + 14�2��M = 1=��m � 14�2��m = 1=R9



So �M = 12� + 12s 1�2 � 1�2� ; �m = 12R + 12s 1R2 + 1�2� : (11)The result follows from the application of Theorem 1. 4By the de�nition of the generalized Pad�e type approximants, we easily see that the generalform of these approximants for a function given by its expansion in Legendre polynomials is(0=n)Gf (z) = nXi=0Ai(�i + �iz)�1=2 if the interpolation points are distinct= pXi=0Ai niXj=0(�i + �iz)�(2j+1)=2Pij(z) with Pij polynomial of degree jwhere for i = 0; � � � ; p, zni is repeated ni times.2.2 Expansion in a Tchebychev series.If fTn(z)g are the Tchebyshev polynomials, then the generating function will beG(x; z) = 1 � xz1 � 2xz + x2 = 1Xn=0 xnTn(z):Fixing z 2 E�, G(�; z) is analytic for x 2 D(0; 1=�) and so, for the speed of convergence ofthe sequence of GPTA of a function given by its Tchebyshev expansion we can obtain resultsequivalent to those of the previous section. We remark that in this case the general form of theseapproximants is a rational function.2.3 Expansion in a Laguerre series.Let us consider the function f given byf(z) = 1Xn=0 cnL(�)n (z) with �(�+ 1)Cn+�n cn = Z 10 e�xf(x)L(�)n (x)dx; (12)where nL(�)n (z)o are the Laguerre polynomials. We suppose that limn!1 sup jcnj1=n = 1=R < 1For z 2 CI n]0;+1[ we have limn!1 n�1=2 log ���L(�)n (z)��� = 2Re((�z)1=2) [7], which gives for thedomain of convergence DD = nz : Re((�z)1=2) � K (for some constant K)othe interior of a parabola with focus in the origin. K depends on the value of R and an analogof the Cauchy-Hadamard formula holds.The generating function of the Laguerre polynomials isG(x; z) = 1Xn=0 xnL(�)n (z) = (1� x)�1�� expf �xz1� xg;10



which, for all z 2 CI , is analytic in D(0; 1).In this case, the general form of these approximants is a linear combination of exponentialfunctions and functions of the form xi exp(�ix) (if some interpolation points are repeated), thatis (0=n)Gf (z) = qXi=1 pi(z)e�ix with pi(z) polynomial of degree ni; qXi=1 ni = n: (13)Let us now apply Theorem 1 with simple choices for the interpolation points fznigni=0 � D(0; 1).Proposition 3 Let f be given by (12) satisfying limn!1 jcnj1=n = 1=R and let us consider thesequences of GPTA (0=n)Gf (z) corresponding to the following choices of interpolation points:1. limn!1 zn = 0. Then 8z 2 D limn!1 ���f(z) � (0=n)Gf (z)���1=(n+1) � 1R:2. Let fznigni=0 be given by (9) with �� > 1.8z 2 D limn!1 ���f(z)� (0=n)Gf (z)���1=n � 1R 0B@1 +vuut1 +  R��!21CA =0B@1 +vuut1�  1��!21CA :Proof:1) In this case, �(z) = jzj and C� = D(0; �). So �M = 1 and �m = 1=R, which gives the resultby applying Theorem 1.2) It is su�cient to see that in this case the quantities �M and �m are given by (11) with � = 1.42.4 Expansion in a Hermite series.Let us consider the function f given by its expansion in Hermite polynomials:f(z) = 1Xn=0 cnHn(z) with �1=22nn!cn = Z +1�1 e�x2f(x)Hn(x)dx: (14)We suppose that limn!1 jcnj1=n = 1=R.For z 2 CI n]�1;+1[ we have limn!1(2n)�1=2 log n�(n=2+1)�(n+1) jHn(z)jo = Im(z) [7], which givesfor the domain of convergenceD = fz : jIm(z)j � K (for some constant K) g :K depends on R and an analog of Cauchy-Hadamard formula holds.The generating function for the Hermite polynomials isG(x; z) = 1Xn=0 xnHn(z)n! = e2zx�x2 ;11



and so the general form of the generalized Pad�e type approximants is also of type (13).As for all z 2 CI , G(�; z) in an entire function of x, we have the integral representation8z 2 CI c(G(x; z)) = 12�i Zjxj=r g(x)G( 1x; z)dxx ; r < R= f(z) 8z 2 D:Conditions of theorem 1 are satis�ed for all � � 0. So let us �x � > 0 and consider the samechoices for the fznigni=0 as in the previous section.� limn!1 zn = 0, zn 2 D(0; 1=�) 8n. Applying theorem 1 we get for the error boundlimn!1 jen(z)j1=(n+1) � �R:� Proposition 4 Let f(z) be a function given by (14) with limn!1 jcnj1=n = 1=R. Weconsider the sequence of generalized Pad�e type approximants �(0=n)Gf �n corresponding tothe sequences of interpolation points fznign0 satisfying{ fznign0 are the zeroes of a family of orthogonal polynomials in [�1; 1] with respect to aregular measure (for instance, Tchebychev, Legendre or Jacobi polynomials).Then the sequence ((0=n)Gf (z))n converges to f(z). More precisely, if we �x � > 1 satisfying12(�� ��1) > 1R we obtainlimn!1 ���f(z) � (0=n)Gf (z)���1=(n+1) � 12R� + 1�s 14R2 + 1 8z 2 D: (15)Proof:By propositon 1 we know that for this choice of interpolation points we obtain �(z) = � ,8z 2 E�. Applying Theorem 1 we get( �M = ��m � 1�m = 1RTaking �m = 12R +s 14R2 + 1, (15) follows. 43 GPTA for generalized Stieltjes functions. Connectionwith the Baker-Gammel approximants.Let us consider now the following class of functionsf(z) = Z�G(t; z)d�(t); (16)12



where � is a bounded, nondecreasing function taking in�nitely many di�erent values on �, � isa compact interval of RI +. For the special case G(t; z) = (1 + tz)�1, f becomes a Stieltjes series.If G(t; z) is the generating function of the family fgi(z)g1i=0 we formally havef(z) = Z�  1Xi=0 tigi(z)! d�(t) = 1Xi=0 �Z� tid�(t)� gi(z) = 1Xi=0 cigi(z):Let us suppose thatfor z 2 C a compact region of CI ; G(�; z) is analytic in A = RI +�]� a; a[: (17)Then by the Cauchy representation we can writef(z) = Z� 12�i Z� G(x; z)x� t dxd�(t);where � is a simple closed contour in A such that � lies in its interior. Thenf(z) = 12�i Z�G(x; z) Z� d�(t)x� t dx = 12�i Z�G(x; z)g(�1=x)dxx ; (18)where g(x) = Z� d�(t)1 + xt is a Stieltjes function.A way of constructing approximants for functions of the form (16) which are a linear combina-tion of G(ui; z) (ui 2 A) and g�i (z) = @i@uiG(u; z) ju=0 has been proposed by Baker and Gammel.The Baker-Gammel approximants of f [1] consist of replacing g by their Pad�e approximants. Wewill obtain an approximant of the formG[m+j=m](z) = jXi=0 �ig�i (z) + mXi=1�iG(ui; z): (19)It is easily shown (see [1] for the details) that their expansion in terms of the fgi(z)g coincideswith the one of f up to 2m+ j, and a convergence result can be deduced from the convergenceresults for the Pad�e approximants of a Stieltjes series. The construction of these approximantsneeds the computation of the poles and residues of the [m + j=m]f(z), which implies a ratheramount of computations.The approach studied in this paper - the generalized Pad�e type approximants - correspondsto, in (18), instead of replacing g by its Pad�e approximant, replacing G(�; z) by its interpolationpolynomial. As we have seen in the previous sections, the general form of these approximantscontains (19) for the following choice of interpolation points: ui; i = 1; � � � ;m and u0 = 0repeated j + 1 times. The order of approximation in the expansion in terms of the fgi(z)g ism+ j and so less than the one corresponding to the Baker-Gammel approximants, but we get animportant reduction in computations. We will now obtain some upper bounds on the asymptoticbehaviour of the error of the GPTA for generalized Stieljes functions for particular choices of theinterpolation points. 13



Theorem 2 Let f be a function of the form (16) satisfying (17). Let us consider sequences ofinterpolation points fznigni=0 � A satisfyinglimn!1 ����� nYi=0(z � zni)�����1=(n+1) = �(z) 8z 2 A (20)Then the corresponding sequence of GPTA satis�eslimn!1 ���f(z)� (0=n)Gf (z)���1=(n+1) � maxt2� �(t)minx2� �(x)for all � a contour in A such that 8n 2 NI fznigni=0 �Int(�) and � \� = �:Proof:Let qn(t; z) be the interpolation polynomial for G(t; z) (z �xed) ; then we havef(z)� (0=n)Gf (z) = Z� (G(t; z)� qn(t; z)) d�(t) == 12�i Z� Z� G(x; t)x� t Qni=0(t� zni)Qni=0(x� zni)dxd�(t)by the Cauchy integral representation of the interpolation error. By applying Fubbini's theoremwe get f(z)� (0=n)Gf (z) = 12�i Z� G(x; z)Qni=0(x� zni)  Z� Qni=0(t� zni)x� t d�(t)! dx: (21)Taking upper bounds we obtain���f(z)� (0=n)Gf (z)��� � 12�C1C2(z)maxt2� jQni=0(t� zni)jminx2� jQni=0(x� zni)jwith C1 = jR� d�(t)jmaxx2� (dist(x;�))�1 and C2(z) = jR�G(x; z)dxj. The result follows fromthe property (20) on the fznigni=0. 4Theorem 3 Let f be a function of the form (16) satisfying (17). Let f�n(z)gn2NI be the sequenceof orthonormal polynomials on � with respect to the measure d�(t). Let us construct the sequenceof GPTA corresponding to the following sequences of interpolation points: 8n 2 NI fznigni=0 arethe zeroes of �n+1(z). Then, if we set 
 = CI n� and g
(z;1) the corresponding Green function,the error has the following asymptotic behaviour8z 2 C limn!1 ���f(z) � (0=n)Gf (z)���1=2n � 1minx2� eg
(x;1)for all � such that � � Int(�); � � A; � \� = �:14



Proof:The sequence f�n(z)g satis�esZ� �n(t)�m(t)d�(t) = �mn 8n;m 2 NI :Using the orthogonality properties, (21) can be writtenf(z)� (0=n)Gf (z) = 12�i Z� G(x; z)�n(x)  Z� �n(t)x� td�(t)! dx == 12�i Z� G(x; z)�n(x)2  Z� �n(x)� �n(t)x� t �n(t)d�(t) + Z� �n(t)2x� t d�(t)! dx == 12�i Z� G(x; z)�n(x)2  Z� �n(t)2x� t d�(t)! dx:We have R� �n(t)2d�(t) = 1 and from the properties on the measure d�(t) and its support, it iswell-known that [6] lim infn!1 j�n(z)j1=n � eg
(z;1) 8z 2 
:Taking upper bounds, the result follows. 44 Conclusion.As Pad�e and Pad�e type approximants provide good approximations for functions given by its inpower series expansion, the generalized Pad�e type approximants studied in this paper enable usto construct approximations for functions given by their expansion in some family fgi(z)g1i=0 forwhich we know a generating function G(x; t). As recalled in the �rst section, these approximantsare a linear combination of the functions fG(xi; t)g and ( @j@xjG(xi; t)), and the coe�cients arevery easily computed.Based on the analytical properties of the generating function and choosing the sequences ofinterpolation points satisfying some conditions, we obtained a general result on the speed ofconvergence of the corresponding sequences of approximants. For the most common expansions- the expansion on the classical orthogonal polynomials - we got some upper bounds on the errorof the GPTA corresponding to particular choices of the interpolation points. The results showthat these approximants can have good convergence properties.There are some interesting open problems under study:� a family of functions fgi(z)g being given, compare for di�erent choices of interpolationpoints the speed of convergence of the corresponding sequence of approximants and deter-mine what is the best choice for obtaining the tastest convergence;� for a function given by the series f(z) =P1i=0 cigi(z), compare the speed of convergence ofthe sequence of partial sums sn(z) = P1i=0 with the one of a sequence of GPTA and givesu�cient conditions in order to obtain acceleration of convergence;15
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