
Fairness with Penalties Secure Cash Distribution End

Bitcoin and Secure Computation With Money
How to Use Bitcoin to Play Internet Poker

Iddo Bentov Ranjit Kumaresan Tal Moran
Technion MIT IDC

GTACS @ BIU

January 8, 2015



Fairness with Penalties Secure Cash Distribution End

Goals

MPC enhancements

Impose fairness in MPC without an honest majority.

Secure (reactive) MPC with money inputs and outputs

For example: poker.

Efficiency improvements to the MPC itself:

Transform semi-honest secure MPC to MPC secure in the
malicious setting, while penalizing caught deviations.



Fairness with Penalties Secure Cash Distribution End

Formal model that incorporates coins

Functionality F2 versus functionality F?2 with coins

If party Pi has (say) secret key ski and sends it to party Pj ,
then both Pi and Pj will have the string ski.

If party Pi has coins(x) and sends y < x coins to party Pj ,
then Pi will have coins(x− y) and Pj will have extra coins(y).

Ideally, all the parties deem coins to be valuable assets.

It is possible to define the secure computation with coins
model directly, or with (UC) ideal functionalities.

Sending coins(x) may require a broadcast that reveals at least
the amount x (not in zk-SNARK cryptocurrency like ZeroCash).

We give proofs using the simulation paradigm (but not in this
talk).



Fairness with Penalties Secure Cash Distribution End

Formal model that incorporates coins

Functionality F2 versus functionality F?2 with coins

If party Pi has (say) secret key ski and sends it to party Pj ,
then both Pi and Pj will have the string ski.

If party Pi has coins(x) and sends y < x coins to party Pj ,
then Pi will have coins(x− y) and Pj will have extra coins(y).

Ideally, all the parties deem coins to be valuable assets.

It is possible to define the secure computation with coins
model directly, or with (UC) ideal functionalities.

Sending coins(x) may require a broadcast that reveals at least
the amount x (not in zk-SNARK cryptocurrency like ZeroCash).

We give proofs using the simulation paradigm (but not in this
talk).



Fairness with Penalties Secure Cash Distribution End

Claim-or-Refund for two parties Ps,Pr (implicit in [Max11],[BBSU])

The F?CR Claim-or-Refund ideal functionality

1 The sender Ps deposits (locks) her coins(q) while specifying a
timebound τ and a circuit φ(·).

2 The receiver Pr can claim (gain possession) of the coins(q) by
publicly revealing a witness w that satisfies φ(w) = 1.

3 If Pr didn’t claim within time τ , coins(q) are refunded to Ps.

How to realize F?CR via Bitcoin

The feature that is needed is “timelock” transactions.

Technically: Bitcoin nodes agree to include a transaction with
timelock field τ only if current block index/timestamp is > τ

It is possible to have more expressive schemes that allow
not-yet-reached timelock transactions to reside on the
blockchain (or local mempool), but this is prone to DoS.



Fairness with Penalties Secure Cash Distribution End

F?
CR via Bitcoin

High-level description the F?CR implementation in Bitcoin

Ps controls TXold that resides on the blockchain.

Ps creates a transaction TXnew that spends TXold to a
Bitcoin script that can be redeemed by Ps and Pr, or only by
Pr by supplying a witness w that satisfies φ(w) = 1.

Ps asks Pr to sign a timelock transaction that refunds TXnew

to Ps at time τ (conditioned upon both Ps and Pr signing).

After Pr signs the refund, Ps can safely broadcast TXnew.

1 Ps is safe because Pr only sees Hash(TXnew), and therefore
cannot broadcast TXnew to cause Ps to lose the coins.

2 Pr can safely sign the random-looking data Hash(TXnew)
because the protocol uses a freshly generated (skR, pkR) pair.



Fairness with Penalties Secure Cash Distribution End

F?
CR via Bitcoin

High-level description the F?CR implementation in Bitcoin

Ps controls TXold that resides on the blockchain.

Ps creates a transaction TXnew that spends TXold to a
Bitcoin script that can be redeemed by Ps and Pr, or only by
Pr by supplying a witness w that satisfies φ(w) = 1.

Ps asks Pr to sign a timelock transaction that refunds TXnew

to Ps at time τ (conditioned upon both Ps and Pr signing).

After Pr signs the refund, Ps can safely broadcast TXnew.

1 Ps is safe because Pr only sees Hash(TXnew), and therefore
cannot broadcast TXnew to cause Ps to lose the coins.

2 Pr can safely sign the random-looking data Hash(TXnew)
because the protocol uses a freshly generated (skR, pkR) pair.



Fairness with Penalties Secure Cash Distribution End

The structure of Bitcoin transactions

How standard Bitcoin transactions are chained

TXold = earlier TX output of coins(q) is redeemable by pkA

idold = Hash(TXold)

PREPAREnew = (idold, q, pkB, 0) 0 means no timelock

TXnew = (PREPAREnew, SignskA(PREPAREnew))

idnew = Hash(TXnew)

Initial minting transaction specifies some pkM that belongs to
a miner, and is created via proof of work.



Fairness with Penalties Secure Cash Distribution End

Realization of F?
CR via Bitcoin

The F?CR transaction

PREPAREnew = (idold, q, (pkS ∧ pkR) ∨ (φ(·) ∧ pkR), 0)
φ(·) can be SHA256(·) == Y where Y is hardcoded.

TXnew = (PREPAREnew, SignskS(PREPAREnew))

idnew = Hash(TXnew)

Ps sends PREPARErefund = (idnew, q, pkS , τ) to Pr

Pr sends σR = SignskR(PREPARErefund) to Ps

Ps broadcasts TXnew to the Bitcoin network

If Pr doesn’t reveal w until time τ then Ps creates TXrefund =
(PREPARErefund, (SignskS(PREPARErefund), σR)) and
broadcasts it to reclaim her q coins



Fairness with Penalties Secure Cash Distribution End

Fairness with penalties

Definition of fair secure multiparty computation with penalties

An honest party never has to pay any penalty

If a party aborts after learning the output and doesn’t deliver
output to honest parties ⇒ every honest party is compensated

Outline of F?f – fairness with penalties for any function f

P1, . . . , Pn run secure unfair MPC for f(x1, . . . , xn) that

1 Computes shares (y1, . . . , yn) of the output y = f(x1, . . . , xn)
2 Computes Tags = (com(y1), . . . , com(yn)) =(hash(y1), . . . , hash(yn))

3 Delivers (yi,Tags) to every Pi

P1, . . . , Pn deposit coins and run fair reconstruction (fair
exchange) with penalties to swap the yi’s among themselves.



Fairness with Penalties Secure Cash Distribution End

Fairness with penalties

Definition of fair secure multiparty computation with penalties

An honest party never has to pay any penalty

If a party aborts after learning the output and doesn’t deliver
output to honest parties ⇒ every honest party is compensated

Outline of F?f – fairness with penalties for any function f

P1, . . . , Pn run secure unfair MPC for f(x1, . . . , xn) that

1 Computes shares (y1, . . . , yn) of the output y = f(x1, . . . , xn)
2 Computes Tags = (com(y1), . . . , com(yn)) =(hash(y1), . . . , hash(yn))

3 Delivers (yi,Tags) to every Pi

P1, . . . , Pn deposit coins and run fair reconstruction (fair
exchange) with penalties to swap the yi’s among themselves.



Fairness with Penalties Secure Cash Distribution End

Fair exchange in the F?
CR-hybrid model - the ladder construction

“Abort” attack:
P2 claims without deposting

Fair exchange:
P1 claims by revealing w1

⇒ P2 can claim by revealing w2

Malicious coalition:
Coalition P1, P2 obtain w3 from P3

P2 doesn’t claim the top transaction

P3 isn’t compensated



Fairness with Penalties Secure Cash Distribution End

Fair exchange in the F?
CR-hybrid model - the ladder construction

“Abort” attack:
P2 claims without deposting

Fair exchange:
P1 claims by revealing w1

⇒ P2 can claim by revealing w2

Malicious coalition:
Coalition P1, P2 obtain w3 from P3

P2 doesn’t claim the top transaction

P3 isn’t compensated



Fairness with Penalties Secure Cash Distribution End

Fair exchange in the F?
CR-hybrid model - the ladder construction

“Abort” attack:
P2 claims without deposting

Fair exchange:
P1 claims by revealing w1

⇒ P2 can claim by revealing w2

Malicious coalition:
Coalition P1, P2 obtain w3 from P3

P2 doesn’t claim the top transaction

P3 isn’t compensated



Fairness with Penalties Secure Cash Distribution End

Fair exchange in the F?
CR-hybrid model - the ladder construction (contd.)

Fair exchange:
Bottom two levels:

P1, P2 get compensated by P3

Top two levels:

P3 gets her refunds by revealing w3

Full ladder:
Roof DEPOSITS.

P1
T1∧···∧Tn−−−−−−−−−−−−−−−−−−→

q,τn
Pn

P2
T1∧···∧Tn−−−−−−−−−−−−−−−−−−→

q,τn
Pn

...
Pn−2

T1∧···∧Tn−−−−−−−−−−−−−−−−−−→
q,τn

Pn

Pn−1
T1∧···∧Tn−−−−−−−−−−−−−−−−−−→

q,τn
Pn

Ladder DEPOSITS.

Pn
T1∧···∧Tn−1−−−−−−−−−−−−−−−−−−−−→
(n−1)q,τn−1

Pn−1

Pn−1
T1∧···∧Tn−2−−−−−−−−−−−−−−−−−−−−→
(n−2)q,τn−2

Pn−2

...
P3

T1∧T2−−−−−−−−−−−−−−−−→
2q,τ2

P2

P2
T1−−−−−−−−−−−−−→
q,τ1

P1

Figure 6: Roof and Ladder deposit phases for fair reconstruction.

18



Fairness with Penalties Secure Cash Distribution End

Multilock

B.3xA.3x C.3x D.3x

A?3x B?3x C?3x D?3x

C.xB.x D.x C.xA.x D.x B.xA.x D.x B.xA.x C.x

A.3x D.3x
B.3x C.3x

time ≥ τ + 1 time ≥ τ + 1

reveal wA reveal wD
reveal wB reveal wC

1

In principle, jointly locking coins for fair exchange can work well:

1 M = “if P1, P2, P3, P4 sign this message with inputs of
coins(3x) each then their 3x coins are locked into 4 outputs
of coins(3x) each, where each Pi can redeem output Ti with a
witness wi that satisfies φi, and after time τ anyone can divide
an unredeemed output Ti equally to {P1, P2, P3, P4} \ {Pi}”

2 P1, P2, P3, P4 sign M and broadcast it, and after M is
confirmed, each Pi redeems coins(x) by revealing wi



Fairness with Penalties Secure Cash Distribution End

Practicality of multiparty fair exchange with penalties in Bitcoin

Due to a design flaw, to implement F?ML in the current Bitcoin
protocol an unfair secure MPC needs to be invoked, where the
input of Pi is inpi = Signski(PREPARElock), and the output
to all parties is SHA256d(PREPARElock, inp1, . . . , inpn).

F?ML requires O(1) Bitcoin rounds and O(n2) transaction
data (and O(n2) signature operations), while the ladder
requires O(n) Bitcoin rounds and O(n) transactions data.

Recap:

Multiparty fair computation can be implemented in Bitcoin
via the ladder construction.

Multiparty fair computation can be implemented in Bitcoin
via F?ML with one superfluous unfair MPC.

Multiparty fair computation can be implemented via F?ML

directly with an enhanced Bitcoin protocol.



Fairness with Penalties Secure Cash Distribution End

Practicality of multiparty fair exchange with penalties in Bitcoin

Due to a design flaw, to implement F?ML in the current Bitcoin
protocol an unfair secure MPC needs to be invoked, where the
input of Pi is inpi = Signski(PREPARElock), and the output
to all parties is SHA256d(PREPARElock, inp1, . . . , inpn).

F?ML requires O(1) Bitcoin rounds and O(n2) transaction
data (and O(n2) signature operations), while the ladder
requires O(n) Bitcoin rounds and O(n) transactions data.

Recap:

Multiparty fair computation can be implemented in Bitcoin
via the ladder construction.

Multiparty fair computation can be implemented in Bitcoin
via F?ML with one superfluous unfair MPC.

Multiparty fair computation can be implemented via F?ML

directly with an enhanced Bitcoin protocol.



Fairness with Penalties Secure Cash Distribution End

Practicality of multiparty fair exchange with penalties in Bitcoin

Due to a design flaw, to implement F?ML in the current Bitcoin
protocol an unfair secure MPC needs to be invoked, where the
input of Pi is inpi = Signski(PREPARElock), and the output
to all parties is SHA256d(PREPARElock, inp1, . . . , inpn).

F?ML requires O(1) Bitcoin rounds and O(n2) transaction
data (and O(n2) signature operations), while the ladder
requires O(n) Bitcoin rounds and O(n) transactions data.

Recap:

Multiparty fair computation can be implemented in Bitcoin
via the ladder construction.

Multiparty fair computation can be implemented in Bitcoin
via F?ML with one superfluous unfair MPC.

Multiparty fair computation can be implemented via F?ML

directly with an enhanced Bitcoin protocol.



Fairness with Penalties Secure Cash Distribution End

Comparison with other ways to achieve fairness

Gradual release

Even with only 2 parties, the number of rounds depends on a
security parameter.

With Bitcoin, the PoW miners do all the heavy lifting.

Trusted bank

Legally Enforceable Fairness in Secure Two-Party
Computation [Lindell 2008]

Requires a trusted party to provide an ideal bank functionality.

Bank balance of a party can go negative? Bounced cheques?

2-party only: the bank can provide F?CR or F?ML to use our
constructions directly, or implement similar protocols.

Disadvantage of Bitcoin: funny money?



Fairness with Penalties Secure Cash Distribution End

Comparison with other ways to achieve fairness

Gradual release

Even with only 2 parties, the number of rounds depends on a
security parameter.

With Bitcoin, the PoW miners do all the heavy lifting.

Trusted bank

Legally Enforceable Fairness in Secure Two-Party
Computation [Lindell 2008]

Requires a trusted party to provide an ideal bank functionality.

Bank balance of a party can go negative? Bounced cheques?

2-party only: the bank can provide F?CR or F?ML to use our
constructions directly, or implement similar protocols.

Disadvantage of Bitcoin: funny money?



Fairness with Penalties Secure Cash Distribution End

Comparison with other ways to achieve fairness

Gradual release

Even with only 2 parties, the number of rounds depends on a
security parameter.

With Bitcoin, the PoW miners do all the heavy lifting.

Trusted bank

Legally Enforceable Fairness in Secure Two-Party
Computation [Lindell 2008]

Requires a trusted party to provide an ideal bank functionality.

Bank balance of a party can go negative? Bounced cheques?

2-party only: the bank can provide F?CR or F?ML to use our
constructions directly, or implement similar protocols.

Disadvantage of Bitcoin: funny money?



Fairness with Penalties Secure Cash Distribution End

Comparison with other ways to achieve fairness

Gradual release

Even with only 2 parties, the number of rounds depends on a
security parameter.

With Bitcoin, the PoW miners do all the heavy lifting.

Trusted bank

Legally Enforceable Fairness in Secure Two-Party
Computation [Lindell 2008]

Requires a trusted party to provide an ideal bank functionality.

Bank balance of a party can go negative? Bounced cheques?

2-party only: the bank can provide F?CR or F?ML to use our
constructions directly, or implement similar protocols.

Disadvantage of Bitcoin: funny money?



Fairness with Penalties Secure Cash Distribution End

Comparison with other ways to achieve fairness

Gradual release

Even with only 2 parties, the number of rounds depends on a
security parameter.

With Bitcoin, the PoW miners do all the heavy lifting.

Trusted bank

Legally Enforceable Fairness in Secure Two-Party
Computation [Lindell 2008]

Requires a trusted party to provide an ideal bank functionality.

Bank balance of a party can go negative? Bounced cheques?

2-party only: the bank can provide F?CR or F?ML to use our
constructions directly, or implement similar protocols.

Disadvantage of Bitcoin: funny money?



Fairness with Penalties Secure Cash Distribution End

Comparison with other ways to achieve fairness

Gradual release

Even with only 2 parties, the number of rounds depends on a
security parameter.

With Bitcoin, the PoW miners do all the heavy lifting.

Trusted bank

Legally Enforceable Fairness in Secure Two-Party
Computation [Lindell 2008]

Requires a trusted party to provide an ideal bank functionality.

Bank balance of a party can go negative? Bounced cheques?

2-party only: the bank can provide F?CR or F?ML to use our
constructions directly, or implement similar protocols.

Disadvantage of Bitcoin: funny money?



Fairness with Penalties Secure Cash Distribution End

Comparison with other ways to achieve fairness

Gradual release

Even with only 2 parties, the number of rounds depends on a
security parameter.

With Bitcoin, the PoW miners do all the heavy lifting.

Trusted bank

Legally Enforceable Fairness in Secure Two-Party
Computation [Lindell 2008]

Requires a trusted party to provide an ideal bank functionality.

Bank balance of a party can go negative? Bounced cheques?

2-party only: the bank can provide F?CR or F?ML to use our
constructions directly, or implement similar protocols.

Disadvantage of Bitcoin: funny money?



Fairness with Penalties Secure Cash Distribution End

Secure cash distribution and poker

How to Use Bitcoin to Play Internet Poker

Iddo Bentov Ranjit Kumaresan Tal Moran
Technion MIT IDC



Fairness with Penalties Secure Cash Distribution End

The Cryptographic Lens, by Shafi Goldwasser

=⇒

“Paradoxical”	  AbiliGes	  1983-‐	  
•  Exchanging	  Secret	  Messages	  without	  Ever	  MeeGng	  

•  Simultaneous	  Contract	  Signing	  Over	  the	  Phone	  

•  GeneraGng	  exponenGally	  long	  pseudo	  random	  strings	  
indisGnguishable	  from	  random	  

•  Proving	  a	  theorem	  without	  revealing	  the	  proof	  

•  Playing	  any	  digital	  game	  without	  referees	  

•  Private	  InformaGon	  Retrieval	  

•  Arbitrary	  ComputaGons	  on	  Encrypted	  Data	  



Fairness with Penalties Secure Cash Distribution End

Secure cash distribution with penalties

Ideal 2-party secure (non-reactive) cash distribution functionality:

1 Wait to receive (x1, coins(d1)) from P1 and
(x2, coins(d2)) from P2.

2 Compute (y, v)← f(x1, x2, d1, d2).

3 Send (y, coins(v)) to P1 and (y, coins(d1+d2−v)) to P2.

In the general case, each party Pi has input (xi, coins(di)) and
receives output (y, coins(vi)).

Use-cases: generalized lottery, incentivized computation, . . .



Fairness with Penalties Secure Cash Distribution End

Secure cash distribution with penalties

Ideal 2-party secure (non-reactive) cash distribution functionality:

1 Wait to receive (x1, coins(d1)) from P1 and
(x2, coins(d2)) from P2.

2 Compute (y, v)← f(x1, x2, d1, d2).

3 Send (y, coins(v)) to P1 and (y, coins(d1+d2−v)) to P2.

In the general case, each party Pi has input (xi, coins(di)) and
receives output (y, coins(vi)).

Use-cases: generalized lottery, incentivized computation, . . .



Fairness with Penalties Secure Cash Distribution End

Blackbox secure cash distribution

Blackbox realization of secure cash distribution in the
F?CR-hybrid model.

Assume that input coins amount of Pi is mi-bit number.

Step 1: commit to random secrets (preprocessing)

Invoke secure MPC where all i ∈ [n], j ∈ [n] \ {i}, k ∈ [mi]:

Pi picks random witness wi,j,k ← {0, 1}λ (also random ri,j,k).

Pi computes ci,j,k ← commit(1λ, wi,j,k, ri,j,k).

Pi n-out-of-n secret shares each witness wi,j,k.

Pi outputs ci,j,k and the i-th share of each wi,j,k to each Pj .

Then, each Pi makes F?CR transaction Pi
wi,j,k−−−−−−→
2k,τ

Pj



Fairness with Penalties Secure Cash Distribution End

Blackbox secure cash distribution (contd.)

Assume that the input coin amounts is d = (d1, . . . , dn) and the
string inputs are (x1, x2, . . . , xn).

Step 2: compute the cash distribution

Invoke secure MPC (unfair for now) for the cash distribution:

Compute the output coin amounts v = (v1, v2, . . . , vn).

Derive numbers bi,j that specify how many coins Pi needs to
send Pj according to the input coins d and output coins v.

Let (bi,j,1, bi,j,2, . . . , bi,j,mi) be the binary expansion of bi,j .

For all i, j, k, if bi,j,k = 1 then reconstruct wi,j,k and
concatenate it to the output.

Compute y = f(x1, x2, . . . , xn) and output y too.

Then, use fair exchange with penalties (with time limit < τ) to
deliver the output to all parties, so that F?CR claims will ensue.



Fairness with Penalties Secure Cash Distribution End

Reactive secure cash distribution

Ingredients needed:

See-saw instead of the ladder construction, to force parties to
make the next move.

The given secure MPC (whitebox) where for every round j a
single message is broadcast by a designated party Pij .

F?CR transactions Pi
φi,j−−−−→
q,τ

Pj where φi,j is a circuit (script)

that is satisfied if Pi create multiple signed extensions of
protocol’s execution (with a unique starting nonce).

Blackbox secure cash distribution as described, with refunds
at time τ that exceeds the see-saw time limits, and hence with
circuits specified at start that are checked in the final rounds.



Fairness with Penalties Secure Cash Distribution End

Reactive secure cash distribution

Ingredients needed:

See-saw instead of the ladder construction, to force parties to
make the next move.

The given secure MPC (whitebox) where for every round j a
single message is broadcast by a designated party Pij .

F?CR transactions Pi
φi,j−−−−→
q,τ

Pj where φi,j is a circuit (script)

that is satisfied if Pi create multiple signed extensions of
protocol’s execution (with a unique starting nonce).

Blackbox secure cash distribution as described, with refunds
at time τ that exceeds the see-saw time limits, and hence with
circuits specified at start that are checked in the final rounds.



Fairness with Penalties Secure Cash Distribution End

Reactive secure cash distribution

Ingredients needed:

See-saw instead of the ladder construction, to force parties to
make the next move.

The given secure MPC (whitebox) where for every round j a
single message is broadcast by a designated party Pij .

F?CR transactions Pi
φi,j−−−−→
q,τ

Pj where φi,j is a circuit (script)

that is satisfied if Pi create multiple signed extensions of
protocol’s execution (with a unique starting nonce).

Blackbox secure cash distribution as described, with refunds
at time τ that exceeds the see-saw time limits, and hence with
circuits specified at start that are checked in the final rounds.



Fairness with Penalties Secure Cash Distribution End

Reactive secure cash distribution

Ingredients needed:

See-saw instead of the ladder construction, to force parties to
make the next move.

The given secure MPC (whitebox) where for every round j a
single message is broadcast by a designated party Pij .

F?CR transactions Pi
φi,j−−−−→
q,τ

Pj where φi,j is a circuit (script)

that is satisfied if Pi create multiple signed extensions of
protocol’s execution (with a unique starting nonce).

Blackbox secure cash distribution as described, with refunds
at time τ that exceeds the see-saw time limits, and hence with
circuits specified at start that are checked in the final rounds.



Fairness with Penalties Secure Cash Distribution End

The see-saw construction: 2 parties

Roof deposit.

P1
ttm,2−−−−−−−−−−−→
q,τm,2

P2 (Txm,2)

See-saw deposits. For r = m− 1 to 1:

P2
ttr+1,1−−−−−−−−−−−−→
2q,τr+1,1

P1 (Txr+1,1)

P1
ttr,2−−−−−−−−−−→
2q,τr,2

P2 (Txr,2)

Floor deposit.

P2
tt1,1−−−−−−−−−−→
q,τ1,1

P1 (Tx1,1)



Fairness with Penalties Secure Cash Distribution End

The see-saw construction: multiparty

Roof deposits. For each j ∈ [n− 1]:

Pj
ttn−−−−−−−−−−−−−−−−−−−→

q,τ2n−2
Pn

Ladder deposits. For i = n− 1 down to 2:

• Rung unlock: For j = n down to i+ 1:

Pj
tti∧Ui,j−−−−−−−−−−−−−−−−−−−→
q,τ2i−1

Pi

• Rung climb:

Pi+1
tti−−−−−−−−−−−−−−−−−−−→
i·q,τ2i−2

Pi

• Rung lock: For each j = n down to i+ 1:

Pi
tti−1∧Ui,j−−−−−−−−−−−−−−−−−−−−−→
q,τ2i−2

Pj

Foot deposit.

P2
tt1−−−−−−−−−−−−−−−−−−−→
q,τ1

P1



Fairness with Penalties Secure Cash Distribution End

The see-saw construction: multiparty (contd.)

Properties of the multiparty see-saw

Quadratic round complexity (ladder is linear).

Party Pi who aborts pays compensation to all other parties.

In the ladder Pi can abort and then nobody learns the secret.

This is crucial for reactive functionalities:

Consider poker: suppose that in round j all parties exchange
shares to reveal the top card on the deck.
If Pi didn’t like this top card, we must not allow Pi to abort in
round j + 1 without punishment.

The circuits verify a signed extension of the entire execution
transcript, and that this extension conforms with the protocol.

⇒ needs more expressive scripting language than vanilla
Bitcoin, but not Turing complete scripts because the round
bounds are known in advance.



Fairness with Penalties Secure Cash Distribution End

The see-saw construction: multiparty (contd.)

Properties of the multiparty see-saw

Quadratic round complexity (ladder is linear).

Party Pi who aborts pays compensation to all other parties.

In the ladder Pi can abort and then nobody learns the secret.

This is crucial for reactive functionalities:

Consider poker: suppose that in round j all parties exchange
shares to reveal the top card on the deck.
If Pi didn’t like this top card, we must not allow Pi to abort in
round j + 1 without punishment.

The circuits verify a signed extension of the entire execution
transcript, and that this extension conforms with the protocol.

⇒ needs more expressive scripting language than vanilla
Bitcoin, but not Turing complete scripts because the round
bounds are known in advance.



Fairness with Penalties Secure Cash Distribution End

The see-saw construction: multiparty (contd.)

Properties of the multiparty see-saw

Quadratic round complexity (ladder is linear).

Party Pi who aborts pays compensation to all other parties.

In the ladder Pi can abort and then nobody learns the secret.

This is crucial for reactive functionalities:

Consider poker: suppose that in round j all parties exchange
shares to reveal the top card on the deck.
If Pi didn’t like this top card, we must not allow Pi to abort in
round j + 1 without punishment.

The circuits verify a signed extension of the entire execution
transcript, and that this extension conforms with the protocol.

⇒ needs more expressive scripting language than vanilla
Bitcoin, but not Turing complete scripts because the round
bounds are known in advance.



Fairness with Penalties Secure Cash Distribution End

The see-saw construction: multiparty (contd.)

Properties of the multiparty see-saw

Quadratic round complexity (ladder is linear).

Party Pi who aborts pays compensation to all other parties.

In the ladder Pi can abort and then nobody learns the secret.

This is crucial for reactive functionalities:

Consider poker: suppose that in round j all parties exchange
shares to reveal the top card on the deck.
If Pi didn’t like this top card, we must not allow Pi to abort in
round j + 1 without punishment.

The circuits verify a signed extension of the entire execution
transcript, and that this extension conforms with the protocol.

⇒ needs more expressive scripting language than vanilla
Bitcoin, but not Turing complete scripts because the round
bounds are known in advance.



Fairness with Penalties Secure Cash Distribution End

The see-saw construction: multiparty (contd.)

Properties of the multiparty see-saw

Quadratic round complexity (ladder is linear).

Party Pi who aborts pays compensation to all other parties.

In the ladder Pi can abort and then nobody learns the secret.

This is crucial for reactive functionalities:

Consider poker: suppose that in round j all parties exchange
shares to reveal the top card on the deck.
If Pi didn’t like this top card, we must not allow Pi to abort in
round j + 1 without punishment.

The circuits verify a signed extension of the entire execution
transcript, and that this extension conforms with the protocol.

⇒ needs more expressive scripting language than vanilla
Bitcoin, but not Turing complete scripts because the round
bounds are known in advance.



Fairness with Penalties Secure Cash Distribution End

The see-saw construction: multiparty (contd.)

Properties of the multiparty see-saw

Quadratic round complexity (ladder is linear).

Party Pi who aborts pays compensation to all other parties.

In the ladder Pi can abort and then nobody learns the secret.

This is crucial for reactive functionalities:

Consider poker: suppose that in round j all parties exchange
shares to reveal the top card on the deck.
If Pi didn’t like this top card, we must not allow Pi to abort in
round j + 1 without punishment.

The circuits verify a signed extension of the entire execution
transcript, and that this extension conforms with the protocol.

⇒ needs more expressive scripting language than vanilla
Bitcoin, but not Turing complete scripts because the round
bounds are known in advance.



Fairness with Penalties Secure Cash Distribution End

The see-saw construction: poker

No need to run reactive secure MPC that corresponds to
rounds of the see-saw.

Invoke (preprocess) at start an unfair SFE that:

Shuffles the deck according to the parties’ random inputs.
Computes commitments to shares of all the cards.
Deals shares of the hands and shares of the rest of the cards to
all parties, and also delivers all the commitments to all parties.

Make the cash distribution transactions whose circuits verify
the signatures of a transcript, then scan it while performing
arithmetic calculations.

The F?CR circuit in each round of the see-saw will verify
signatures of a transcript, then enforce betting rules or expect
a party to reveal a share of a card.

For example: if all partied called and the top card on the deck
should be revealed, then the next see-saw circuits will require
each party to reveal her share of the top card.



Fairness with Penalties Secure Cash Distribution End

The see-saw construction: poker

No need to run reactive secure MPC that corresponds to
rounds of the see-saw.

Invoke (preprocess) at start an unfair SFE that:

Shuffles the deck according to the parties’ random inputs.
Computes commitments to shares of all the cards.
Deals shares of the hands and shares of the rest of the cards to
all parties, and also delivers all the commitments to all parties.

Make the cash distribution transactions whose circuits verify
the signatures of a transcript, then scan it while performing
arithmetic calculations.

The F?CR circuit in each round of the see-saw will verify
signatures of a transcript, then enforce betting rules or expect
a party to reveal a share of a card.

For example: if all partied called and the top card on the deck
should be revealed, then the next see-saw circuits will require
each party to reveal her share of the top card.



Fairness with Penalties Secure Cash Distribution End

The see-saw construction: poker

No need to run reactive secure MPC that corresponds to
rounds of the see-saw.

Invoke (preprocess) at start an unfair SFE that:

Shuffles the deck according to the parties’ random inputs.
Computes commitments to shares of all the cards.
Deals shares of the hands and shares of the rest of the cards to
all parties, and also delivers all the commitments to all parties.

Make the cash distribution transactions whose circuits verify
the signatures of a transcript, then scan it while performing
arithmetic calculations.

The F?CR circuit in each round of the see-saw will verify
signatures of a transcript, then enforce betting rules or expect
a party to reveal a share of a card.

For example: if all partied called and the top card on the deck
should be revealed, then the next see-saw circuits will require
each party to reveal her share of the top card.



Fairness with Penalties Secure Cash Distribution End

The see-saw construction: poker

No need to run reactive secure MPC that corresponds to
rounds of the see-saw.

Invoke (preprocess) at start an unfair SFE that:

Shuffles the deck according to the parties’ random inputs.
Computes commitments to shares of all the cards.
Deals shares of the hands and shares of the rest of the cards to
all parties, and also delivers all the commitments to all parties.

Make the cash distribution transactions whose circuits verify
the signatures of a transcript, then scan it while performing
arithmetic calculations.

The F?CR circuit in each round of the see-saw will verify
signatures of a transcript, then enforce betting rules or expect
a party to reveal a share of a card.

For example: if all partied called and the top card on the deck
should be revealed, then the next see-saw circuits will require
each party to reveal her share of the top card.



Fairness with Penalties Secure Cash Distribution End

Some open questions

Lower bound of linear number of rounds for fairness with
penalties in the F?CR-hybrid model?

Bounds for the minimal deposit amounts? Rational analysis?

Constructing secure cash distribution with penalties from
blackbox secure MPC and F?CR?

Thank you.

version 0.3



Fairness with Penalties Secure Cash Distribution End

Some open questions

Lower bound of linear number of rounds for fairness with
penalties in the F?CR-hybrid model?

Bounds for the minimal deposit amounts? Rational analysis?

Constructing secure cash distribution with penalties from
blackbox secure MPC and F?CR?

Thank you.

version 0.3


	Fairness with Penalties
	Fairness with Penalties

	Secure Cash Distribution
	Secure Cash Distribution

	End
	End


