A note on zero-sum 5-flows in regular graphs

S. Akbari\(^a,b\), N. Ghareghani\(^d,b\), G. B. Khosrovshahi\(^b,e\), S. Zare\(^c\)

\(^a\)Department of Mathematical Sciences, Sharif University of Technology
\(^b\)School of Mathematics, Institute for Research in Fundamental Sciences (IPM)
\(^c\)Department of Mathematical Sciences, Amirkabir University of Technology
\(^d\)Department of Mathematical Sciences, K.N. Toosi University of Technology
\(^e\)Department of Mathematical Sciences, University of Tehran

\textbf{Abstract}

Let \(G\) be a graph. A zero-sum flow of \(G\) is an assignment of non-zero real numbers to the edges such that the sum of the values of all edges incident with each vertex is zero. Let \(k\) be a natural number. A zero-sum \(k\)-flow is a flow with values from the set \(\{\pm 1, \ldots, \pm (k-1)\}\).

It has been conjectured that every \(r\)-regular graph, \(r \geq 3\), admits a zero-sum 5-flow. In this paper we give an affirmative answer to this conjecture, except for \(r = 5\).

\textbf{1. Introduction}

Nowhere-zero flows on graphs were introduced by Tutte [7] in 1949 and since then have been extensively studied by many authors. A great deal of research in the area has been motivated by Tutte’s 5-Flow Conjecture which states that every 2-edge connected graph can have its edges

\(^*\) E-mail addresses: sakbari@sharif.edu (S. Akbari), gha@gmail.com (N. Ghareghani), rezagbk@ipm.ir (G.B. Khosrovshahi), sa_zare@yahoo.com (S. Zare).

\(^†\) Keywords: Zero-sum flow, regular graph.

\(^‡\) AMS (2000) \textit{Subject classification:} 05C21, 05C22.

\(^§\) Corresponding author: S. Akbari.
directed and labeled by integers from \{1, 2, 3, 4\} in such a way that Kirchhoff’s current law is satisfied at each vertex. In 1983, Bouchet [4] generalized this concept to bidirected graphs. A bidirected graph \(G \) is a graph with vertex set \(V(G) \) and edge set \(E(G) \) such that each edge is oriented as one of the four possibilities:

\[\begin{align*}
\bullet & \rightarrow \bullet \\
\bullet & \leftarrow \bullet \\
\bullet & \rightarrow \bullet \\
\bullet & \leftarrow \bullet
\end{align*} \]

Let \(G \) be a bidirected graph. For every \(v \in V(G) \), the set of all edges with tails (respectively, heads) at \(v \) is denoted by \(E^+(v) \) (respectively, \(E^-(v) \)). The function \(f : E(G) \rightarrow \mathbb{R} \) is a bidirected flow of \(G \) if for every \(v \in V(G) \), we have

\[\sum_{e \in E^+(v)} f(e) = \sum_{e \in E^-(v)} f(e). \]

If \(f \) takes its values from the set \(\{\pm 1, \ldots, \pm (k-1)\} \), then it is called a nowhere-zero bidirected \(k \)-flow.

Consequently, Bouchet proposed the following interesting conjecture.

Bouchet’s Conjecture. [4, 8] Every bidirected graph that has a nowhere-zero bidirected flow admits a nowhere-zero bidirected 6-flow.

Bouchet proved that his conjecture is true if 6 is replaced by 216. Then Zyka reduced 216 to 30 [9].

Let \(G \) be a graph. A zero-sum flow for \(G \) is an assignment of non-zero real numbers to the edges such that the sum of the values of all edges incident with each vertex is zero. Let \(k \) be a natural number. A zero-sum \(k \)-flow is a flow with values from the set \(\{\pm 1, \ldots, \pm (k-1)\} \). The following conjecture was posed on the zero-sum flows in graphs.

Zero-Sum Conjecture (ZSC). [1] If \(G \) is a graph with a zero-sum flow, then \(G \) admits a zero-sum 6-flow.

The following conjecture is an improved version of ZSC for regular graphs.

Conjecture A. [2] Every \(r \)-regular graph (\(r \geq 3 \)) admits a zero-sum 5-flow.

Recently, in connection with this conjecture the following two theorems were proved.

Theorem 1. [1] Let \(r \) be an even integer with \(r \geq 4 \). Then every \(r \)-regular graph has a zero-sum 3-flow.

Theorem 2. [2] Let \(G \) be an \(r \)-regular graph. If \(r \) is divisible by 3, then \(G \) has a zero-sum 5-flow.
Remark 1. There are some regular graphs with no zero-sum 4-flow. To see this consider the graph given in Figure 1. To the contrary assume this the graph has a zero-sum 4-flow. Since the sum of the values of all edges incident with each vertex is zero, for every \(v \in V(G) \), \(-2\) or \(2\) should appear in the neighborhood of \(v \). On the other hand two numbers with absolute value \(2\) can not appear in the neighborhood of a vertex. So all edges of \(G \) with values \(\pm 2\) form a perfect matching. But by celebrated Tutte’s Theorem [3, p.76], \(G \) has no perfect matching, a contradiction.

![Figure 1. A 3-regular graph with no zero-sum 4-flow](image)

In 2010, the following result was proved.

Theorem 3. [2] Bouchet’s Conjecture and ZSC are equivalent.

Motivated by Bouchet’s Conjecture and along with Theorem 3 we focused our attention to establish the Conjecture A. We show that except \(r = 5 \), Conjecture A is true.

2. The Main Result

In this section we prove that every \(r \)-regular graph, \(r \geq 3, r \neq 5 \), admits a zero-sum 5-flow. Before establishing our main result we need some notations and definitions.

Let \(G \) be a finite and undirected graphs with vertex set \(V(G) \) and edge set \(E(G) \), where multiple edges and loops are admissible. A \(k \)-regular graph is a graph where each vertex is of degree \(k \). A subgraph \(F \) of a graph \(G \), is a factor of \(G \) if \(F \) is a spanning subgraph of \(G \). If a factor \(F \) has all of its degrees equal to \(k \), it is called a \(k \)-factor. Thus a 2-factor is a disjoint union of finitely
many cycles that cover all the vertices of G. A k-factorization of G is a partition of the edges of G into disjoint k-factors. For integers a and b, $1 \leq a \leq b$, an $[a,b]$-factor of G is defined to be a factor F of G such that $a \leq d_F(v) \leq b$, for every $v \in V(G)$. For any vertex $v \in V(G)$, let $N_G(v) = \{ u \in V(G) \mid uv \in E(G) \}$.

The following two theorems are also needed.

Theorem 4. [6] Every $2k$-regular multigraph admits a 2-factorization.

Theorem 5. [5] Let $r \geq 3$ be an odd integer and let k be an integer such that $1 \leq k \leq \frac{2r}{3}$. Then every r-regular graph has a $[k-1,k]$-factor each component of which is regular.

Lemma 1. Let G be an r-regular graph. Then for every even integer q, $2r \leq q \leq 4r$, there exists a function $f : E(G) \to \{2, 3, 4\}$ such that for every $u \in V(G)$, $\sum_{v \in N_G(u)} f(uv) = q$.

Proof. First assume that r is an odd integer. For every edge $e = uv$, we add a new edge $e' = uv$ to the graph G and call the resultant graph by G'. Clearly, G' is a $2r$-regular multigraph. By Theorem 4, G' admits a 2-factorization with 2-factors F_1, \ldots, F_r. Now, for every $e \in F_i, 1 \leq i \leq r$, we define a function $g : E(G') \to \{1, 2\}$ as follows:

$$g(e) = \begin{cases} 2, & 1 \leq i \leq \frac{q-2r}{2}; \\ 1, & \frac{q-2r}{2} < i. \end{cases}$$

Therefore for each $v \in V(G')$, $\sum_{e \in N_G'(u)} g(uv) = q$. Now, define a function $f : E(G) \to \{2, 3, 4\}$ such that for every $e = uv \in E(G)$, $f(e) = g(e) + g(e')$, where $e' = uv$ in G'. Then for every $u \in V(G)$, $\sum_{v \in N_G(u)} f(uv) = q$, as desired.

Now, let r be an even integer. Since G is an r-regular graph, by Theorem 4, G admits a 2-factorization with 2-factors $F_1, \ldots, F_{\frac{r}{2}}$. Now, for every $e \in F_i, 1 \leq i \leq \frac{r}{2}$, we define a function $f : E(G) \to \{2, 3, 4\}$ as follows:

$$f(e) = \begin{cases} 4, & 1 \leq i \leq \lfloor \frac{q-2r}{4} \rfloor; \\ 3, & \lfloor \frac{q-2r}{4} \rfloor < i \leq \lfloor \frac{q-2r}{4} \rfloor; \\ 2, & \lfloor \frac{q-2r}{4} \rfloor < i. \end{cases}$$

It is not hard to verify that for every $u \in V(G)$, $\sum_{v \in N_G(u)} f(uv) = q$, as desired. □
Now, we are in a position to prove our main theorem.

Theorem 6. Let \(r \geq 3 \) and \(r \neq 5 \). Then every \(r \)-regular graph has a zero-sum 5-flow.

Proof. First we prove the theorem for \(r = 7 \). Let \(G \) be a 7-regular graph. Then by Theorem 5, \(G \) has a \([3, 4]\)-factor, say \(H \), whose components are regular. Let \(H_1 \) be the union of the 3-regular components of \(H \) and let \(H_2 \) be the union of 4-regular components of \(H \). By Theorem 4, \(H_2 \) can be decomposed into two 2-factors \(H_2' \) and \(H_2'' \). Assign 1 and 2 to all edges of \(H_2' \) and \(H_2'' \), respectively. By Lemma 1, there exists a function \(f : E(H_1) \to \{2, 3, 4\} \) such that for every \(u \in V(H_1) \), \(\sum_{v \in N_{H_1}(u)} f(uv) = 8 \). Now, assign \(-2\) to every edge in \(E(G) \setminus E(H) \) and we are done.

Now, let \(r \geq 9 \) be an odd integer. By Theorem 5, for every \(k, k \leq \frac{2r}{3}, G \) has a \([k - 1, k]\)-factor whose components are regular. Let \(k = \lceil \frac{2r}{3} \rceil \), \(k' = r - k \), and \(H \) be a \([k - 1, k]\)-factor of \(G \) such that \(H_1 \) be the union of \((k - 1)\)-regular subgraph of \(H \) and \(H_2 = H \setminus H_1 \). It can be easily checked that \(k \leq 2k' \leq 2k - 4 \). Hence by Lemma 1, there exists a function \(f : E(H_1) \to \{2, 3, 4\} \) such that for every \(u \in V(H_1) \), \(\sum_{v \in N_{H_1}(u)} f(uv) = 4k' + 4 \). Also by Lemma 1, there exists a function \(f : E(H_2) \to \{2, 3, 4\} \) such that for every \(v \in V(H_2) \), \(\sum_{u \in N_{H_2}(v)} f(uv) = 4k' \). Finally assign \(-4\) to every edge of \(E(G) \setminus E(H) \). Now, by Theorem 1 and Theorem 2 the proof is complete. \(\square \)

Acknowledgements. The authors are indebted to the School of Mathematics, Institute for Research in Fundamental Sciences (IPM) for the support. The research of the first author and the second author were in parts supported by grants from IPM (No. 88050212) and (No. 88050042), respectively.

References

