


found in previous studies will also be of importance within a
physiological range of MTU lengths and relative positions. For
this purpose, we measured isometric forces exerted at the
proximal and distal tendons of lateral gastrocnemius (LG) and
plantaris (PL) complex (LG�PL) as well as at the distal tendon
of SO muscle, while activating the synergistic muscle group
simultaneously. The secondary aim of this study was to assess
the extent of EMFT effects on LG�PL length-force character-
istics and derived parametric estimates, such as maximum
isometric force, MTU slack, and optimum lengths.

METHODS

Animal Conditions

Experiments were performed on nine male Wistar rats (body mass
311.1 � 4.5 g). All surgical and experimental procedures were
approved by the Committee on the Ethics of Animal Experimentation
at the VU University Amsterdam and in strict agreement with the
guidelines and regulations concerning animal welfare and experimen-
tation set forth by Dutch law.

According to standard procedures in our laboratory (e.g., Ref. 31)
the animals were anesthetized by an intraperitoneal injection of
urethane solution (1.2 ml/100 g body mass, 12.5% urethane solution).
Extra doses were administered if necessary (1.5 ml maximally) until
withdrawal reflexes to a pain stimulus were suppressed completely.
Body temperature was controlled by a rectal thermometer and main-
tained at �37°C during surgery and data collection by adjusting the
temperature of an electrical heating pad. A controlled air conditioning
system kept ambient temperature and air humidity at a constant level
(22° and 70%, respectively). Regular irrigation with isotonic saline
prevented dehydration of exposed tissues. At the end of the measure-
ments, the animals were euthanized with a pentobarbital (Euthasol
20%) overdose injected intracardially, followed by double-sided
pneumothorax.

Surgical Procedures

The skin and most of the biceps femoris muscle covering the dorsal
side of the left hindlimb were removed to expose the superficial
posterior crural compartment, which contains SO, LG, medial gas-
trocnemius, and PL muscles. Both the LG and PL originate from the
lateral epicondyle of the femur, with their proximal tendons merged
and twisted together. Medial gastrocnemius was excised fully by
resecting its distal tendon from the Achilles tendon and carefully
cutting the muscle fibers that insert onto the medial side of its distal
aponeurosis, which is shared with the LG. The SO, LG, PL muscle
group was dissected free from surrounding structures, preserving the
bone insertions, as well as the connective tissue linkages and the
neurovascular tract at the interface between the SO and LG�PL
muscle bellies. Intermuscular connective tissues between the SO and
LG�PL muscle bellies was found both proximally and distally of the
neurovascular tract, which runs centrally between SO and LG muscle
bellies (Fig. 1). Intermuscular linkages between the SO and PL
muscles were found deeper in the dorsal compartment, along the
medial edge of SO.

A bipolar cuff electrode connected to a constant current source
(Digitimer DS3, Digitimer, Hertfordshire, UK) was folded around the
sciatic nerve. The peroneal nerve, innervating the muscles in the peroneal
and anterior crural compartments, was severed. With the hindlimb held
in the reference position Pref (i.e., ankle and knee joints at 90°;
included angles between the adjacent segments), markers were placed
on the distal tendon of SO, on the proximal and distal tendons of
LG�PL, and on two fixed locations in the tibial compartment (Fig. 2).
These were used to identify the position of the distal tendons corre-
sponding to Pref for the ankle angle at 90° (Pref

A ) and the position of the
LG�PL proximal tendon corresponding to Pref for the knee angle at

90° (Pref
K ) and to apply MTU length changes relatively to the reference

positions (�P) during data collection. The reference length (Lref) is
then defined as the MTU length at the reference position Pref. The
reference length for the SO (Lref,SO) depends only on distal tendon
position, whereas the reference length for LG�PL (Lref,LG�PL) de-
pends on the position of both proximal and distal LG�PL tendons.

The distal SO tendon was carefully dissected free from the rest of
the Achilles tendon and subsequently cut and connected to a force
transducer (ALPHA load beam transducer, 25 N maximum capacity,
maximum output error �0.1%, compliance 0.0162 mm/N; BLH
Electronics, Toronto, Canada) with Kevlar thread. The proximal and
distal tendons of the LG�PL complex were freed from the skeleton
by cutting a small bone fragment from the lateral femoral condyle and
from the calcaneus, respectively, and then connected to force trans-
ducers (Z6 bending beam load cell, 50 N maximum capacity, maxi-
mum output error �0.1%, compliance 0.0048 mm/N; HBM, Darm-
stadt, Germany) with Kevlar thread. Similar to a previous study (31),
we confirmed that force differences between the proximal and distal
tendon of LG�PL greater than 1.2·10�3 N cannot be ascribed to the
measurement system. Force transducers were positioned in such a way
that forces could be measured in the muscle’s line of pull, and that the
relative position of the muscles and tendons mimicked that of the in
vivo situation. For each contraction, the whole hindlimb of the rat was
videotaped (DCR-TRV6E, 2000 Sony; 720 � 576 pixels, 25 fps).

Nerve stimulation. The sciatic nerve was stimulated supramaxi-
mally (0.4 � 0.1 mA, 500 ms, 100 Hz), eliciting a tetanic contraction
of LG, PL, and SO simultaneously. Two twitches were evoked before
each contraction to enable the muscles to adapt to the imposed length
and relative position. A 2-min recovery time was allowed in between
subsequent stimulations. Nerve stimulation, force signal acquisition,
and A/D conversion were controlled and sequenced by using a data
acquisition board (PCI-6221, National Instruments, Austin, TX).

Experimental protocol. Before acquiring data, multiple (�10–15)
contractions at high and low lengths were performed to minimize

Fig. 1. Intermuscular and extramuscular connections of soleus (SO). A: lateral
view of the neurovascular tract (NEU-VAS) embedding the nerves and blood
vessels for SO muscle. This tract runs from the ventral side of lateral
gastrocnemius (LG) to the dorsal side of SO muscle belly. The picture was
taken after collection of force data, following disruption of the intermuscular
connective tissues at the interface between SO and LG and plantaris complex
(LG�PL) muscles. The LG�PL was pulled in proximoposterior direction and
the SO distally to make the tract visible. B: schematic overview of the
connective tissue linkages observed between the SO and LG�PL. Intermus-
cular connections are present at the whole interface between SO (dark gray)
and LG (light gray) proximally and distally of the neurovascular tract (repre-
sented by lines crossing the interface).
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history effects (18). Isometric forces exerted at all three tendons were
measured simultaneously for different lengths and relative positions
of LG�PL and SO muscles. These were selected based on ankle and
knee joint angles observed during normal movements, such as walk-
ing, swimming, ladder walking, and trotting (2, 5, 7, 39). Changes in
MTU length corresponding to those joint angles were assessed via a
musculoskeletal model of the rat hindlimb (23). The experiment
consisted of the two following set of imposed muscle lengths and
relative positions.

Length-force characteristics of SO and LG�PL complex. The
proximal LG�PL tendon was kept at Pref

K (�P 	 0 mm LG�PL
proximal displacement from Pref). The distal LG�PL and SO tendons
were repositioned together in steps of 1 mm from �2 mm below Pref

A

increasing to �1 mm over SO optimum length, which was found at a
smaller displacement of the distal tendon than optimum length of
LG�PL. To prevent possible damage to SO, the muscles were not
lengthened any further, and thus LG�PL optimum length was not
included in the data set.

SO and LG�PL forces at different positions of LG�PL proximal
tendon. Length changes of LG�PL without length changes of SO
were obtained by repositioning the proximal LG�PL tendon exclu-
sively. In steps of 1 mm, LG�PL was lengthened from Pref

K �3 mm,
corresponding to �45° knee angle, to Pref

K �3 mm, corresponding to
�130° knee angle (Fig. 2). Effects of such length changes of LG�PL
proximally were assessed for three different positions of the distal
tendons of LG�PL and SO, i.e., from Pref

A �2 mm (corresponding to
�130° ankle angle) to Pref

A �2 mm (corresponding to �60° ankle angle).
The distal tendons of LG�PL and SO were always repositioned together
and in equal steps. This resembles the natural condition in which those
muscles have a similar moment arm at the ankle joint (23, 35).

Data Analysis and Statistics

Isometric forces were assessed from the force-time series: passive
force (FP) was assessed by calculating the mean for a 50-ms time
window before the tetanic contraction and total force was assessed by
calculating the mean for the 50 ms before the end of the tetanic
contraction. Active force (FA) was calculated as the difference be-
tween total and passive force at equal MTU length and relative
position. SO and LG�PL MTU lengths were expressed as the devi-
ation (�PSO, �PLG�PL) from the length at Pref. MTU length of
LG�PL at Pref was assessed with the video images from ImageJ
software (v. 1.46b, National Institutes of Health, Bethesda, MD). SO
MTU length could not be assessed because the SO proximal tendon is
covered by the LG�PL muscle bellies.

Length-force characteristics obtained from protocol 1 were super-
imposed at optimum length of SO and then averaged across animals.
Active forces were fitted with a third order polynomial (37) because
only five MTU lengths were measured. For each LG�PL proximal
position (PLG�PL

K ) imposed with the second protocol, passive and
active forces exerted at the SO distal tendon were (without any fitting)
averaged, yielding three curves, each corresponding to a different
simulated ankle configuration (130, 90, 60°). Two different measures
of mechanical interaction among the triceps surae muscles were
obtained from the second protocol: 1) changes in SO force as a result
of proximal LG�PL length changes and 2) LG�PL forces measured
at the same MTU length but with a different length and relative
position of SO. The latter measure of mechanical interaction provides
three data points of LG�PL proximal and distal forces at equal MTU
length, but with different lengths and relative positions of the SO
muscle.

Fig. 2. Experimental setup and protocol. A:
rat hindlimb in the experimental setup. Prox-
imal and distal tendons of LG�PL as well as
the distal tendon of SO were connected to
separate force transducers. The femur was
fixed with a metal clamp and the foot with a
plastic plate. A bipolar cuff electrode was
placed on the sciatic nerve. The reference
markers (proximal: black circles; distal:
white circles) applied on the tendons and on
the anterior tibial compartment identified the
reference position (Pref), i.e., the muscle-
tendon unit (MTU) length corresponding to
a 90–90° knee-ankle joint-configuration. B:
experimental protocol. The applied posi-
tional changes for distal LG�PL tendons
and SO tendons (Pref

K �3 to Pref
K �3 mm cor-

responding to 45 to 130° knee extension and
Pref

A �2 to Pref
A �2 mm corresponding to 130

to 60° ankle dorsiflexion). Distal SO and
distal LG�PL tendons were always reposi-
tioned together and in equal steps.
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LG�PL length-passive force data obtained from the second pro-
tocol were fitted with an exponential function as proposed by Hoang
et al. (12) (Fig. 3):

FP � ag � �ekg�x�Lg� � 1� (1)

where ag, kg and Lg are the three constants estimated by nonlinear
least square method. According to Hoang’s method, Lg provides the
estimate for LG�PL passive slack length. However, it was not always
possible to calculate a plausible estimate of the passive slack length
based only on Lg because the fitted passive length-force curve did not
always cross the zero-force level when extrapolating toward lower
muscle lengths. Therefore, we used a 5*10�5 N/mm threshold
(�0.05% of the mean maximal passive force) on the derivative of the
passive length-force function to estimate slack length for each animal
and condition (Fig. 3, vertical dashed lines).

The three LG�PL length-active force data sets obtained from the
second protocol were each fitted with a fourth order polynomial
function by using a nonlinear least squares criterion. Maximal active
force and the corresponding optimum length were estimated for each
of the active-force curves. The ranges of variation between passive as
well as active fitted curves were assessed by calculating root mean
square errors (RMSE) for the full range of LG�PL lengths tested (i.e.,
10 mm MTU length range). This analysis for passive and active forces
was applied to both proximally and distally exerted force of LG�PL.
Ranges of variation between estimates were calculated for each
animal and expressed as a percentage of the mean estimated value
among the three different SO relative positions. Also, differences
between estimates based on proximal rather than distal LG�PL
tendon forces were assessed.

Two-way ANOVA for repeated measures (factors: position of
SO�LG�PL distal tendons and location of LG�PL force measure-
ment) was performed to test for differences between the force in
proximal and distal tendons of LG�PL when repositioning
SO�LG�PL distal tendons together. Two-way ANOVA for repeated
measures (factors: position of LG�PL proximal tendon and position
of SO�LG�PL distal tendons) was used to test for effects of
repositioning the proximal tendon of LG�PL on active and passive
forces exerted at the distal SO tendon. Two-way ANOVA for repeated
measures (factors: LG�PL length and SO relative position) was also
performed to compare LG�PL active and passive isometric forces
measured at the same LG�PL MTU-length, but with a different SO
muscle relative position. When a significant main effect was found,
Bonferroni post hoc pairwise comparisons were used to assess at
which muscle lengths force differences were significant (P � 0.05).

RESULTS

Length-Force Characteristics of SO and LG�PL Complex

SO maximal active force (1.47 � 0.06 N) was found for a
SO MTU length of 1.9 � 1.4 mm beyond Lref,SO, whereas SO
force at Lref,SO was 1.35 � 0.07 N (Fig. 4A). SO passive forces
were near zero at Lref,SO (0.009 � 0.006 N) and 0.023 � 0.009
N at optimum length. At the reference position, MTU length of
LG�PL was 43.2 � 2.5 mm, whereas LG�PL active force
was 11.8 � 1.5 N at the proximal tendon and 11.9 � 1.5 N at
the distal tendon. Within the applied length range for LG�PL,
no optimum length was found. Proximally and distally mea-
sured LG�PL passive forces at Lref,LG�PL were 0.141 � 0.058
N and 0.155 � 0.045 N, respectively. Neither for passive nor
for active force were forces exerted at the proximal tendon of
LG�PL significantly different from those exerted at the distal
tendon (Fig. 4B, P 	 0.51, P 	 0.57). These data indicate that
SO optimum length was found at an imposed SO MTU length
of � Pref

A �2 mm. The LG�PL reference position, correspond-
ing to 90–90° knee-ankle angles, as well as the MTU lengths
imposed in the second protocol were located on the ascending
limb of the LG�PL length-force characteristics.

Effects of LG�PL Proximal Position on Distal SO Forces

ANOVA indicated a significant main effect of the position
of the proximal LG�PL tendon on both active and passive
distal forces of the SO muscle, which was kept at a constant
MTU length (Fig. 5). In addition, a significant interaction
between the proximal position of LG�PL and the distal posi-
tion of LG�PL�SO on SO force was found. Repositioning the
proximal LG�PL tendon from Pref

K �3 mm to Pref
K �3 mm

resulted in an increase of SO force, which was maximally 0.15
N for active and 0.011 N for passive SO. These force incre-
ments correspond to 12% and 56% of the active and passive
SO force measured at Pref

K , respectively, which is 10% and
0.8% of SO maximal active force. Bonferroni post hoc pair-
wise comparisons indicated a significant change in passive as
well as active SO force compared with SO force at Pref

K when
the LG�PL proximal tendon was repositioned by only 1 mm,

Fig. 3. Assessment of length-passive force
characteristics of LG�PL. LG�PL proxi-
mal passive forces for a single animal. The
dataset obtained for different distal positions
of the LG�PL�SO tendons is fitted with
exponential functions (see Eq. 1 in METHODS).
The vertical dashed lines indicate the
LG�PL passive slack length estimates for
each of the 3 different length-force curves.
Repositioning of the distal LG�PL and SO
tendons [from reference length (Lref)�2 mm
to Lref �2 mm] correspond to dorsiflexion of
the ankle from 60 to 130°. The slack-length
estimates were defined as the zero-force
level by taking into account a 5*10�5 N/mm
threshold (�0.05% of the measured maxi-
mal passive force).
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corresponding to a 10–15° knee joint flexion or extension. At
the highest MTU lengths tested corresponding to maximum
ankle dorsiflexion (Pref

A �2 mm), repositioning the LG�PL
proximal tendon to maximum knee extension (Pref

K �3 mm)
caused a small (9.2 � 8.1 mN) but significant (P 	 0.010)
decrease in SO active force. These results indicate significant
mechanical interactions between active synergistic muscles for
in vivo lengths and relative positions. The interaction effect
indicates that the extent of force transmitted between SO and
LG�PL is affected by the MTU length of SO.

Effects of SO Muscle Relative Position on LG�PL Length-
Force Characteristics

The length-force characteristics (Fig. 6) measured at the
proximal and distal tendons of LG�PL overlap at three lengths
(L 	 42, 43, and 44 mm) where LG�PL was kept at the same
MTU length but the SO muscle was at a different length and
relative position (i.e., most distally at Pref

A �2 mm and most
proximally at Pref

A �2 mm). ANOVA revealed a significant
main effect of SO relative position on LG�PL forces, both

Fig. 4. Active and passive length-force char-
acteristics of SO (A) and LG�PL (B). Force
data are plotted as a function of SO and
LG�PL MTU lengths expressed as the de-
viation relative to the ankle reference posi-
tion Pref

A . The increase in muscle length was
obtained by changing the position of the
distal tendons of LG�PL and SO (see Fig.
2). The proximal tendon of LG�PL was
kept at Pref

K , corresponding to a knee angle of
90°. The shaded area represents maximum
variation in the position of Lref. Experi-
mental data points of SO and LG�PL
active forces are fitted with third order
polynomials. Values are shown as means �
SD (n 	 9). F_SO, soleus force; F_LG�PL,
lateral gastrocnemius and plantaris force;
L_REF,SO, soleus muscle-tendon unit length
at reference position (or SO MTU length at
REF); L_REF_LG�PL, lateral gastrocnemius
and plantaris muscle-tendon unit length at ref-
erence position (or LG�PL MTU length at
REF).

Fig. 5. Effects of lengthening LG�PL prox-
imally on soleus forces. Passive (A) and
active (B) forces exerted at the distal tendon
of SO (means � SD, n 	 9) plotted as a
function of the position of the LG�PL prox-
imal tendon (�P) from Pref

K �3 to Pref
K �3 mm.

The corresponding simulated knee angles are
showed above. This relationship was as-
sessed for 3 different simulated ankle con-
figurations (from Pref

A �2 to Pref
A �2 mm for

LG�PL�SO distal tendons, corresponding
to an ankle-angle range from 60 to 130°).
LG�PL proximal position (�P) is expressed
as the deviation from the position corre-
sponding to a 90° knee angle. Significant
force increments compared with the SO
force at �P 	 0 (Pref

K ) are shown (*P �
0.05).
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Fig. 6. LG�PL length-force characteristics for different relative positions of SO. Passive (A and C) and active (B and D) forces exerted at the distal and proximal
tendons of LG�PL (means � SD, n 	 9) plotted as a function of its MTU length for 3 different simulated ankle positions (Œ 130°, � 90°, o 60°). The same
MTU length provided significantly different passive as well as active isometric forces of LG�PL depending on the relative position of SO (from Pref

A �2 mm
to Pref

A �2 mm, *P � 0.05). Each graph includes a magnified selection of the area in which 3 data points of LG�PL proximal and distal forces at equal MTU
length (LLG�PL 	 42, 43, 44 mm), but with different lengths and relative positions of the SO muscle measured. Passive forces measured at the same MTU length
decreased with increasing ankle joint angle (A) and increased with increasing ankle joint angles (C). Differences between proximally and distally measured
LG�PL forces were not significant for those lengths at which multiple data points were available (P 	 0.071 active LG�PL, P 	 0.11 passive LG�PL).
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proximally and distally. For each of these LG�PL lengths,
isometric LG�PL forces were not equal. Passive length-force
curves of distal LG�PL were shifted toward lower force levels
with increasing ankle angles (Fig. 6A), but toward higher force
levels with increasing ankle angles for proximal LG�PL (Fig.
6C). However, differences between proximal and distal
LG�PL forces were not significant for the considered subset of
data points (P 	 0.071, active forces; P 	 0.11, passive
forces). The maximum RMSE (passive: 0.08 � 0.06 N; active
0.79 � 0.49 N) between the three length-force curves was up
to 50% of LG�PL force measured at Lref,LG�PL (Table 1).
These results indicate that LG�PL length-force characteristics
are not unique but are dependent on the relative position of SO.

Effects of SO muscle relative position on estimates of
LG�PL muscle properties. The estimated passive slack length
varied between 1 and 3 mm (on average 8.7% of the mean
passive slack length estimate within the same animal) due to
changes in SO muscle relative position (Table 2). The passive
slack length estimate varied between 2 and 5 mm (on average
14.6% of the mean estimate within the same animal) as a result
of differences between proximally and distally measured
LG�PL forces. Estimated maximal active force of LG�PL
varied by 0.69 � 1.0 N (4.8%) among the length-force curves
obtained for the three different SO relative positions. The
variation in maximal active force estimates based on LG�PL
force exerted proximally or distally was 0.24 � 0.14 N (1.6%).
On average across SO muscle relative positions and location of
LG�PL force measurement, the variation in optimum length
estimates was smaller than 3 mm for all animals tested (on
average 0.5 � 1.0 mm). Thus estimation of key parameters of
LG�PL length-force characteristics is affected by the relative
position of SO, with passive slack length varying the most.

DISCUSSION

The most important and novel finding in this study is that SO
and LG�PL muscles transmit forces at their muscle belly
interface within a physiological range of muscle length and
relative positions. This result confirms our hypothesis that
epimuscular myofascial force transmission is present within
the rat triceps surae muscle group in a functional subset of
muscle conditions.

Functionally Relevant Effects of Epimuscular Myofascial
Force Transmission

This is the first study reporting the effects of mechanical
interaction between SO muscle and two synergists via epi-
muscular myofascial pathways in the rat over a physiological
range of muscle lengths and relative positions. Because SO is
a single-joint muscle, the force it can exert is commonly
assumed to depend solely on its distal tendon position, varying
with ankle-joint angle. In contrast, our results show that ma-
nipulating the position of the proximal LG�PL tendon, as
associated with knee extension, causes a significant increase in
SO passive and active forces. This finding is consistent with
previous evidence of mechanical interactions between various
muscles in the rat (for a review see Ref. 16). Earlier in situ
studies in the rat have found 5–52% changes in the active force
exerted by a restrained synergist when lengthening an agonistic
muscle by 9–14 mm (15, 19, 31, 40, 41, 44, 47, 64). However,
the MTU lengths involved in those studies were beyond the
physiological operating range and a single muscle was changed
length distally, yielding unphysiological muscle relative posi-
tions. Our results indicate that significant but generally smaller
(12% of active SO force with knee and ankle at 90°) degrees of
mechanical interaction can be observed between SO and
LG�PL if tested within the constraints of normal movement
(i.e., 6 mm lengthening LG�PL proximally).

Using the same synergistic muscle group as the present
study, Maas and Sandercock (35) investigated EMFT for
physiological muscle lengths and relative positions in a nearly
intact cat hindlimb. Ankle moments of SO muscle were mea-
sured at various knee (70–140°) and ankle (50–100°) angles:
under these conditions, no effect of EMFT on the moment
exerted by SO muscle was found, despite the evidence of
strong connective tissue linkages between these muscles (35).
Our results contradict those findings, proving the existence of
mechanical interaction between SO and LG�PL within their
functional range. Several factors may explain these opposite
results: 1) In our study, the distal LG�PL and SO tendons

Table 1. Maximal RMSE between estimated length-force
curves

RMSE, mN* %†

Passive, proximal 62.5 � 25.1 44.2
Passive, distal 78.0 � 60.7 50.3
Active, proximal 1,124.5 � 652.8 9.5
Active, distal 785.8 � 497.8 6.6

Values are means � SD (%) RMSE between the LG�PL fitted passive and
active length-force curves. *The comparison between the curves obtained
either with the proximally or distally measured LG�PL tendon forces are
reported separately. RMSE values are obtained comparing curve pairs after the
fitting procedure. †Percentage of the mean measured LG�PL force at LG�PL
reference length (Lref,LG�PL).

Table 2. Variability range between estimates of passive slack length, maximal active force, and optimum length

Estimates Variability range, mean � SD* %†

Passive slack length, mm SO relative position 2.1 � 0.7 5.3
proximal-distal LG�PL 2.9 � 1.1 14.6

Maximal active force, mN SO relative position 699.1 � 1,074 4.8
proximal-distal LG�PL 244.3 � 144.6 1.6

Optimum length, mm SO relative position 0.5 � 1.0 1.2
proximal-distal LG�PL 0.3 � 0.5 0.7

*Variability ranges were evaluated from the reconstructed passive and active lateral gastrocnemius and plantaris complex (LG�PL) length-force
characteristics. The range of variation for muscle properties estimates was calculated depending on the relative position of soleus (SO) and on the difference
between proximally and distally measured LG�PL forces. †Percentage of the mean calculated estimate among the 3 fitted curves for each animal.
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were separated, whereas in the cat study these tendons merge
into the intact Achilles tendon. Effects of EMFT may be
counteracted by effects of a common elasticity (56): lengthen-
ing LG�PL proximally, thus increasing force at the distal
tendon of SO, can result in a higher length of the Achilles
tendon and shortening of the SO muscle belly. 2) There may be
differences in stiffness of the epimuscular linkages between
species, but such differences have not yet been characterized.
3) In contrast to our study, in the experiment by Maas and
Sandercock, SO muscle was excited exclusively. In such a
condition, there is no active force produced by gastrocnemius
and plantaris muscle fibers to be transmitted to SO. This
suggests that only active gastrocnemius and plantaris muscles
can affect force exerted at the distal tendon of SO.

Although a physiologically relevant range of MTU lengths
was applied and these muscles are active simultaneously dur-
ing normal movements (48), several nonphysiological factors
were still involved in the present study. Firstly, we excited the
muscle maximally whereas during most tasks muscle activa-
tion is submaximal and it has already been shown that effects
of EMFT are significantly affected by firing rate (40). Sec-
ondly, to measure forces exerted by the SO and those exerted
by the LG separately, it was required to separate their distal
tendons. In an intact limb both tendons merge to the Achil-
les tendon. Thirdly, simplifications and assumptions in-
volved in the biomechanical model (18) used to translate
joint angles to translational tendon positions may introduce
inaccuracies in the physiological range of lengths and rela-
tive positions set for the present experiment. By using a
subset of joint angle ranges (ankle: 60–130°, knee: 45–130°,
included angles), we expect such errors to be minimal. Finally,
our focus on the SO and LG�PL interface required resection
of the surrounding muscles, namely medial gastrocnemius and
biceps femoris, as well as separation of the superficial posterior
compartment. This approach allowed us to quantify the inter-
action between the targeted muscles exclusively. However, any
possible force pathway between the whole muscle group and
the surrounding tissues via extramuscular connections was
discarded a priori. Potential mechanical interactions with those
structures as well as with antagonist muscles may occur in vivo
and affect force transmission to the distal tendons of SO and
LG�PL (15, 33, 47).

Assessment of Length-Force Characteristics of Human
Biarticular Muscles

We found significantly different LG�PL forces exerted at
the same MTU length as a result of changes in the relative
position of SO. This has important implications for the exper-
imental techniques used to determine length-force characteris-
tics in humans in vivo. A critical assumption for this approach
is that the force produced by a muscle depends on muscle
length and activation level only. Considering the gastrocne-
mius muscle, this implies that dorsiflexion of the ankle should
shift up the gastrocnemius length-moment curve in a parallel
fashion, because only force exerted by the one-joint SO is
expected to change (see for example Fig. 3 in 11). In contrast,
nonparallel gastrocnemius length-ankle moment curves have
been reported for different ankle joint angles (22). Note that
none of the other studies using this method (12, 60, 61) show
the actual raw MTU length-moment data to verify parallelism.

Our results show that the assumption of mechanical indepen-
dency is not valid for the rat plantar flexors. Accordingly,
values of length-force curve parameters span a relatively large
range of solutions dependent on the relative position of the
one-joint muscle and the location of force measurement, i.e.,
proximal or distal (Table 1). The effects of EMFT may par-
tially explain the previously reported variability when recon-
structing length-force curves for human muscles. A 3–6%
RMSE error between the passive length-force curves measured
on the same day and 1 wk apart have been reported (12). In
another study, an estimated 4–7% random sampling error was
found (60). Because it is not possible to control the relative
position of neighboring muscles during in vivo measurements
in humans, we conclude that those data can be subjected to
contamination due to effects of EMFT.

Mechanisms of Mechanical Interaction between Synergistic
Muscles

The force changes measured at the distal SO tendon as a
result of lengthening LG�PL proximally can be explained by
two mechanisms: 1) direct transmission of force generated by
LG�PL muscle fibers via the connective tissue network to the
distal tendon of SO and 2) effects of myofascial loads on the
sarcomere length within SO and LG�PL, as predicted by using
finite element models (67). In agreement with this second
explanation, we observed a significant decrease in SO distal
active force occurring at the highest imposed muscle lengths
for LG�PL and SO (Fig. 5B, Pref

A �2 mm, corresponding to a
60° ankle angle). The active length-force characteristics of SO
indicate that this condition (Fig. 4, Lref,SO�2 mm) corresponds
to a MTU length close to its optimum. The observed SO distal
force decrease, with increasing LG�PL length proximally, is
therefore consistent with SO fibers being stretched beyond
optimum by intermuscular linkages, while the overall MTU
length of SO was kept constant. As predicted with use of a 3D
finite-element model including intermuscular connective tissue
linkages, proximal and distal force difference can cause an
uneven strain distribution between sarcomeres located proxi-
mally and distally within muscle fibers (66). However, the
experimental approach exploited here does not allow to distin-
guish whether SO force changes are caused by SO sarcomere
lengths affected by myofascial loads or direct transmission of
LG�PL force.

Implications of In Vivo EMFT for Human Function and
Pathology

Our results confirm that synergistic muscles are mechani-
cally interdependent when operating within their normal con-
text. However, the extent of EMFT should be carefully eval-
uated to assess the implications for normal function in humans.
An ultrasound study on human subjects found no effects of
knee angle on pennation angle and fascicle length of passive
and active SO (24). In addition, the relationship between
fascicle length and MTU length of medial gastrocnemius
muscle was found to be similar at different knee and ankle joint
angles (13), also suggesting mechanical interaction with SO to
be negligible. Our present results contradict these findings,
because differences in LG�PL passive and active forces were
observed at equal MTU lengths. Also the findings of several
imaging studies in humans indicate that the functional output
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of healthy neighboring muscles and muscle groups is partially
determined by their relative positions. Changes in SO fascicle
(43) and muscle belly length (4) upon stimulation of only
medial gastrocnemius have been reported. In addition, passive
knee joint movement was found to cause local length changes
or displacements of SO muscle (4, 21, 55). These findings
suggest that EMFT can play a role in vivo, and thus the central
nervous system has to take this into account in the neural
control of movement, for instance during a sit-to-stand task,
which involves a relatively large knee extension with minimal
ankle joint movement (6). Considering the human hand, the
fingers are not independent from each other in terms of move-
ment and force production (8, 25, 27, 46). Such coupling has
been explained by neural factors but also by mechanical factors
(57, 58). With regard to the latter, predominantly connections
between the tendons of the extrinsic muscles have been con-
sidered (25, 28, 59). However, also myofascial linkages be-
tween the heads of extrinsic muscles may play a role (34). In
fact, there is evidence of mechanical interaction via EMFT
between the long flexor of the thumb and the other digits (63).

Considering pathological conditions in which connective
tissues are stiffer than normal, subsequent changes in the
magnitude of forces transmitted between muscles may explain
alterations in the functional output of the affected muscles.
Scar tissue formation following muscle-tendon injury has been
associated with a reduction in the range of muscle tissue
displacement and strain (50, 51). In addition, EMFT has been
discussed as a potential cause of movement limitations in
spastic paresis (15) and as a codeterminant of muscle func-
tional output after tendon transfer surgeries in patients with
spastic cerebral palsy (53). In fact, previous experiments in the
rat that used different muscle preparations to assess the effects
of tenotomy and aponeurotomy on the target and neighboring
muscles (1, 20, 30, 65) suggest that epimuscular connective
tissues may affect joint neutral position and range of movement
after surgery. Also, scar tissue formation and merging of donor
muscles with adjacent structures were found as long-term
effects of hamstring tendon harvesting for anterior cruciate
ligament reconstruction (54), which may relate to the variable
outcomes of such surgeries. The above illustrates the func-
tional relevance of EMFT in healthy as well as pathological
conditions of our muscular system.

Conclusions

We found mechanical interactions between rat ankle plantar
flexors for physiological positions of their muscle bellies and
for MTU lengths corresponding to a range of motion of the
ankle and knee joints found during normal movements. We
conclude that isometric muscle force is determined not only by
MTU length, but also by the relative position of the neighbor-
ing synergists. An important implication of these results is that
frequently obtained muscle parameters, such as passive slack
and optimum length, cannot be described by a single value for
skeletal muscles within their in vivo context.
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