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Suppression of Acoustic  Noise in Speech Using 
Spectral Subtraction 

Abstract-A stand-alone noise suppression  algorithm is presented for 
reducing the spectral effects of acoustically added noise in speech. Ef- 
fective performance of digital  speech  processors  operating  in  practical 
environments  may  require  suppression of noise from the digital  wave- 
form.  Spectral  subtraction offers a computationally efficient, processor- 
independent approach to effective digital  speech  analysis.  The method, 
requiring about the same computation as high-speed convolution, sup- 
presses stationary noise from speech by subtracting  the  spectral noise 
bias calculated during nonspeech activity. Secondary  procedures are 
then  applied to attenuate the residual noise  left after subtraction. Since 
the algorithm resynthesizes a speech waveform, it can  be  used  as a pre- 
processor to narrow-band voice communications systems, speech recog- 
nition systems, or speaker authentication systems. 

I.  INTRODUCTION 

B ACKGROUND  noise acoustically added to speech can 
degrade  the  performance  of digital voice processors used 

for  applications  such as speech  compression,  recognition,  and 
authentication [ 11 , [2] . Digital voice systems will be  used in 
a variety of  environments,  and  their  performance  must be 
maintained at  a level near that measured using noise-free input 
speech.  To  ensure  continued reliability, the effects of back- 
ground  noise can be  reduced by using noise-cancelling  micro- 
phones,  internal  modification  of  the voice processor  algorithms 
to  explicitly compensate  for signal contamination,  or  pre- 
processor noise reduction. 

Noise-cancelling microphones,  although essential for ex- 
tremely high  noise environments such  as the helicopter  cockpit, 
offer little  or no noise reduction above 1 kHz [3] (see Fig. 5 ) .  
Techniques available for voice processor  modification to ac- 
count  for  noise  contamination are being developed [4] , [ 5 ] .  
But due  to the time,  effort, and  money  spent  on  the design 
and  implementation of these voice processors [6] -[8] , there 
is a reluctance to  internally modify  these  systems. 

Preprocessor noise reduction E121 , [21] offers the advantage 
that noise stripping is done on  the waveform itself with  the 
output being  either digital or  analog  speech.  Thus, existing 
voice processors  tuned to clean speech  can continue to be 
used unmodified.  Also, since the output is speech,  the noise 
stripping becomes  independent  of  any specific subsequent 
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speech  processor  implementation (it could  be  connected to  a 
CCD channel  vocoder  or  a digital LPC vocoder). 

The objectives of this effort were to develop  a  noise  sup- 
pression technique,  implement  a  computationally efficient 
algorithm,  and  test  its  performance in  actual  noise  environ- 
ments. The approach used  was to estimate  the  magnitude 
frequency  spectrum  of  the  underlying  clean  speech  by  sub- 
tracting the noise  magnitude  spectrum  from the noisy  speech 
spectrum.  This  estimator  requires  an  estimate of the  current 
noise  spectrum.  Rather  than  obtain this noise estimate  from 
a  second  microphone  source [9] , [lo] , it is approximated 
using the average  noise magnitude  measured  during  nonspeech 
activity. Using this approach, the spectral approximation error 
is then defined,  and  secondary  methods  for  reducing it are 
described. 

The  noise  suppressor is implemented using about  the same 
amount of computation as required in a  high-speech  convolu- 
tion. It is tested on speech  recorded in a  helicopter  environ- 
ment.  Its  performance is measured using the Diagnostic  Rhyme 
Test (DRT) [ 111 and is demonstrated using isometric  plots of 
short-time  spectra. 

The paper is  divided into sections which develop  the spectral 
estimator,  describe  the  algorithm  implementation,  and  demon- 
strate  the  algorithm  performance. 

11. SUBTRACTIVE NOISE SUPPRESSION  ANALYSIS 
A. Introduction 

This section describes the  noise-suppressed spectral estimator. 
The estimator is obtained  by  subtracting an estimate of the 
noise spectrum  from  the  noisy  speech  spectrum.  Spectral  in- 
formation  required to describe  the  noise  spectrum is obtained 
from  the signal measured  during  nonspeech activity. After 
developing  the spectral estimator,  the spectral error is com- 
puted and four  methods  for  reducing  it are presented. 

The following  assumptions were  used in developing  the 
analysis. The background  noise is acoustically or digitally 
added to  the speech. The background noise environment 
remains locally stationary to  the degree that  its spectral mag- 
nitude  expected value just prior to speech activity equals  its 
expected value during  speech activity. If the  environment 
changes to a  new  stationary  state,  there exists enough  time 
(about 300 ms) to estimate  a  new  background noise spectral 
magnitude  expected value before  speech activity commences. 
For  the slowly  varying nonstationary noise environment,  the 
algorithm  requires  a  speech activity detector to signal the 
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program that speech  has ceased and  a new noise bias can  be 
estimated. Finally, it is assumed that significant noise reduc- 
tion is  possible by removing the  effect  of noise from  the mag- 
nitude  spectrum  only. 

Speech, suitably low-pass filtered and digitized, is analyzed 
by windowing data from  half-overlapped input  data buffers. 
The  magnitude  spectra  of  the  windowed data are calculated 
and the spectral noise bias calculated  during  nonspeech activity 
is subtracted  off.  Resulting negative amplitudes are then 
zeroed out. Secondary residual noise suppression is  then 
applied. A time waveform is recalculated  from  the  modified 
magnitude. This waveform  is then overlap  added to  the previ- 
ous  data to  generate  the output speech. 

B. Additive Noise Model 
Assume that  a windowed noise  signal n(k )  has  been  added to 

a  windowed  speech signal s(k), with their sum  denoted  by X@). 

Then 

x(k )  = s(k) + n(k). 

Taking the Fourier  transform gives 

X(e'") = S(ei")  + N(eiw) 

where 

x(k) ++ X(ei") 

k=O 

2n 1, X(eiw)ejwk dw. 
1 =  

x(#%)= - 

C. Spectral Subtraction Estimator 
The spectral subtraction filter H(eiw) is Calculated by re- 

placing the noise spectrum N(e iw)  with  spectra  which can be 
readily measured. The magnitude (N(eiw)( of N(eiw) is re- 
placed by  its average  value p ( e J w )  taken  during  nonspeech 
activity,  and  the phase e,(ei") of N(eiw) is  replaced by the 
phase ex(eiw) of X(eiw). T2ese  substitutions result in the 
spectral subtraction  estimator S(e iw) :  

D. Spectral Error 
The spectral error e(e'") resulting from this estimator is 

given by 

=$(e 'W)  - s(eiW> = N ( e i w )  - p(e'"> ejex. 

A number  of simple modifications are  available to reduce 
the  auditory  effects  of  this spectral error. These include: 
1) magnitude averaging; 2) half-wave rectification; 3) residual 
noise reduction;  and 4) additional signal attenuation  during 
nonspeech activity. 

E. Magnitude  Averaging 

Since the spectral error equals the difference  between  the 
noise  spectrum N and its mean p, local averaging of spectral 
magnitudes  can  be used to reduce  the  error.  Replacing 
IX(eiw)I with IX(ejW)I where 

Ix(ej")l E IXi(e'")I 
1 M-1 

i=O 

Xi(&" = i th time-windowed  transform  of x ( k )  

gives 

The rationale behind averaging is that  the spectral error  be- 
comes approximately 

e(e'"> = - s (e iw> zs - p 

where 

Thus,  the sample mean  of IN(eiw)l will converge to p(e'") as 
a  longer average  is taken. 

The  obvious  problem  with this modification is that  the speech 
is nonstationary,  and  therefore  only  limited  time averaging is 
allowed.  DRT results show that averaging  over  more than 
three  half-overlapped  windows  with  a  total  time  duration of 
38.4 ms will decrease intelligibility. Spectral  examples and 
DRT scores  with and without averaging  are  given in the 
"Results" section. Based upon these results, it appears that 
averaging coupled  with  half rectification offers some  improve- 
ment. The  major  disadvantage of averaging  is the risk of some 
temporal smearing of  short transitory sounds. 

F, Half- Wave Rectification 
For  each  frequency w where the  noisy signal spectrum mag- 

nitude IX(eIW)I is less than  the average  noise spectrum mag- 
nitude p(ei"), the  output is  set to  zero. This modification 
can  be  simply implemented  by half-wave rectifying H(eiw). 
The estimator  then  becomes 

$(e jw>  = HR(ejW)X(ejW) 

where 

The input-output relationship between X(eiW) and $(eiw) at 
each  frequency c3 is shown in Fig. 1 .  

Thus,  the  effect of  half-wave rectification is to bias down  the 
magnitude  spectrum  at  each  frequency w by  the noise  bias 
determined at  that  frequency. The bias value can,  of  course, 
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Fig. 1. Input-output relation between X(@) and $(eiw). 

change from  frequency to frequency as  well  as from analysis 
time  window to time  window.  The  advantage  of half rectifica- 
tion is that  the noise floor is reduced  by p(e iw) .  Also, any 
low variance coherent  noise  tones are essentially eliminated. 
The disadvantage  of  half rectification can exhibit itself in  the 
situation where the  sum of the noise plus  speech at  a frequency 
w is  less than p(e'"). Then  the  speech  information  at  that 
frequency is incorrectly  removed,  implying  a possible decrease 
in intelligibility. As discussed in  the section on "Results," for 
the  helicopter  speech data base this processing did not reduce 
intelligibility as measured using the  DRT. 

C. Residual Noise Reduction 

After half-wave rectification, speech  plus noise lying above 
p remain.  In  the  absence  of  speech activity the  difference 
N R -  - N  - p i e n ,  which shall be  called the noise residual, will 
for uncorrelated noise exhibit itself in the  spectrum as ran- 
domly  spaced  narrow  bands  of  magnitude spikes (see  Fig. 7). 
This noise residual will  have a  magnitude  between  zero  and  a 
maximum value measured  during  nonspeech activity. Trans- 
formed  back to the  time  domain,  the noise residual will sound 
like the sum  of tone generators  with  random  fundamental 
frequencies  which are turned  on and off  at  a rate of about  20 
ms. During  speech activity the noise residual will also be per- 
ceived at those  frequencies  which are not masked by  the 
speech. 

The audible  effects  of  the  noise residual can  be  reduced by 
taking  advantage  of its frame-to-frame  randomness. Specifi- 
cally, at  a given frequency bin, since the noise residual will 
randomly  fluctuate  in  amplitude  at  each analysis frame,  it 
can  be suppressed by replacing its  current value with  its 
minimum value chosen  from  the  adjacent analysis frames. 
T&$g the minimum value is used only  when  the  magnitude 
of S ( e i w )  is  less than  the  maximum noise residual calculated 
during  nonspeech activity. The  motivation  behind tEs replace- 
ment  scheme is threefold:  first, if the  amplitude  of &'(eiW) lies 
below the maximum noise residual, and it varies radically from 
analysis frame to frame,  then  there is a  high  probability that 
the  spectrum at  that frequency is due to  noee;  therefore, sup- 
press it  by taking the minimum;  second, if S(e iw)  lies below 
the  maximum but has  a  nearly  constant value, there is a  high 

probability that the  spectrum  at  that frequency is due tolow 
energy  speech;  therefore,*taking the minimum will retain the 
information;  and  third, if S(e iw)  is greater than the  maximum, 
there is speech  present at  that  frequency;  therefore, removing 
the bias is sufficient. The amount of noise  reduction using this 
replacement  scheme was judged  equivalent to  that obtained  by 
averaging  over three  frames.  However,  with this approach  high 
energy  frequency  bins are not averaged together.  The disad- 
vantage to the  scheme is that more  storage is required to  save 
the  maximum noise residuals and  the  magnitude values for 
three  adjacent  frames. 

The residual noise reduction  scheme is implemented as 

where 

and 

max INR(ejw)I = maximum value of noise residual 
measured  during  nonspeech activity. 

H. Additional Signal Attenuation During Nonspeech Activity 
The  energy content of $(ei") relative to p(eiW) provides an 

accurate  indicator  of  the  presence  of  speech activity within  a 
given  analysis frame. If speech activity is absent,  then S(e iw)  
will consist of  the noise residual which  remains  after half-wave 
rectification and  minimum value selection. Empirically,it was 
determined that  the average (before versus after)  power  ratio 
was down at least 12 dB.  This  implied  a  measure for  detecting 
the absence  of  speech given by 

If T was  less than - 12 dB,  the  frame was  classified  as having 
no speech activity. During the absence  of  speech activity there 
are at least three  options prior to resynthesis: do nothing,  at- 
tenuate  the  output  by  a  fixed  factor, or set the  output  to zero. 
Having some signal present  during  nonspeech activity was 
judged to give the higher  quality result. A possible reason for 
this is that noise present  during  speech activity is partially 
masked by  the speech. Its perceived magnitude  should be 
balanced by the presence of the same amount  of noise during 
nonspeech activity. Setting  the  buffer to zero  had  the effect 
of  amplifying  the  noise  during  speech activity. Likewise,  doing 
nothing  had  the effect of  amplifying the noise during  nonspeech 
activity. A reasonable,  though by  no means  optimum  amount 
of  attenuation was found to  be -30 dB.  Thus,  the output 
spectral estimate  including output  attenuation  during  non- 
speech activity is given by 

$ ( e j w ) =  { $(eiw) 

T > - 1 2 d B  
cX(eiw) T Q - 12 dB 

where 20 log,, c = -30 dB. 
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PROCESS 

Fig. 2. Data segmentation and advance. 

111. ALGORITHM IMPLEMENTATION 
A. Introduction 

Based on  the  development  of  the last section, a complete 
analysis-synthesis algorithm can be constructed. This section 
presents  the specifications required to implement a spectral 
subtraction noise suppression system. 

B. Input-Output Data Buffering and Windowing 

Speech from  the A-D converter is  segmented  and  windowed 
such that  in  the absence of  spectral  modifications, if the  syn- 
thesis speech segments are added  together,  the resulting overall 
system reduces to an  identity.  The  data are segmented and 
windowed  using the result [ 121 that if a sequence is separated 
into half-overlapped data  buffers, and  each  buffer is multiplied 
by a Hanning window, then the  sum  of these windowed se- 
quences adds back up  to the original sequences. The window 
length is chosen to be  approximately twice as large  as the 
maximum expected  pitch  period  for  adequate  frequency reso- 
lution  [13] . For the sampling rate of 8.00 kHz a window 
length  of 256 points  shifted in steps of 128  points was used. 
Fig. 2 shows the  data  segmentation  and advance. 

C Frequency Analysis 

The  DFT  of  each  data  window is taken  and  the magnitude 
is computed. 

Since real data are being transformed,  two  data windows  can 
be transformed using one FFT [14] . The FFT size  is set equal 
to  the  window size of  256.  Augmentation  with  zeros was not 
incorporated. As correctly  noted by Allen [15] , spectral 
modification followed by inverse transforming can distort  the 
time waveform due  to temporal aliasing  caused by circular 
convolution  with  the time response  of the  modification. 
Augmenting the  input time waveform with  zeros  before spec- 
tral modification will  minimize this aliasing. Experiments 
with  and  without  augmentation using the  helicopter speech 
resulted in negligible differences,  and  therefore  augmentation 
was not  incorporated. Finally, since  real data are analyzed, 
transform  symmetries were taken advantage of to reduce 
storage requirements essentially in half [I41 . 

D. Magnitude  Averaging 
As was described in  the previous section,  the variance of  the 

noise spectral  estimate is reduced by averaging  over as many 
spectral  magnitude  sets as possible. However, the  nonstation- 
arity  of the speech  limits  the total time interval available for 
local averaging. The  number of  averages  is limited by  the 
number  of analysis windows  which can be  fit  into  the stationary 
speech time interval. The choice of window length and  averag- 
ing interval must  compromise  between conflicting require- 
ments.  For  acceptable  spectral  resolution a window  length 
greater than twice the  expected largest pitch period is required 
with a 256-point window being used. For minimum noise 
variance a large number of  windows  are required for averaging. 
Finally, for acceptable time  resolution a narrow analysis inter- 
val is required. A reasonable compromise between variance 
reduction  and time resolution appears to be three averages. 
This results in an effective analysis time interval of 38 ms. 

E. Bias Estimation 
The  spectral  subtraction  method requires an  estimate at 

each  frequency  bin of the  expected value  of noise magnitude 
spectrum p~ : 

PN =E{INI). 
This estimate  is  obtained by averaging the signal  magnitude 
spectrum 1x1 during  nonspeech  activity. Estimating pN in 
this  manner places certain  constraints when implementing  the 
method. If the noise remains stationary  during  the  subsequent 
speech activity, then an initial startup or calibration period of 
noise-only signal  is required. During this period (on the order 
of a third of a second) an estimate of pN can  be computed. If 
the noise environment is nonstationary,  then a new estimate 
of p N  must  be calculated prior to bias removal each  time  the 
noise spectrum changes. Since the  estimate is computed using 
the  noise-only signal during  nonspeech  activity, a voice switch 
is required. When the voice switch is off, an  average  noise 
spectrum can be recomputed. If the noise  magnitude  spec- 
trum is  changing faster than an estimate of  it can  be com- 
puted,  then time averaging to estimate pN cannot be used. 
Likewise,  if the  expected value  of the noise spectrum changes 
after an estimate of it  has  been  computed,  then noise reduc- 
tion  through bias  removal  will be less effective or  even harm- 
ful, i.e.,  removing speech where little noise  is present. 

F. Bias Removal and Half- Wave Rectification 
The spectral  subtraction spectral estimate S is obtained by 

subtracting  the  expected noise  magnitude spectrum p from the 
magnitude  signal spectrum 1x1. Thus 

A 

IS^(k) I=IX(k) I -p(k)  k = 0 , 1 ; . . , L - I  

OK 

where L = DFT buffer  length. 
After  subtracting,  the differenced values  having  negative 

magnitudes are set to zero (half-wave rectification). These 
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negative differences represent frequencies where the sum of 
speech plus local noise  is  less than the  expected noise. 

G. Residual Noise  Reduction 
As discussed in the previous section, the noise that remains 

after the mean is removed can be suppressed or even removed 
by selecting the minimum magnitude value from the three 
adjacent analysis frames in  each  frequency bin where the 
current  amplitude is  less than the maximum noise residual 
measured during  nonspeech activity. This replacement pro- 
cedure follows bias removal and half-wave rectification. Since 
the minimum is chosen from values on each side of the current 
time  frame,  the  modification  induces  a one frame delay. The 
improvement in performance was judged superior to three 
frame averaging in  that an equivalent amount of noise sup- 
pression resulted without  the adverse effect of high-energy 
spectral smoothing. The following section presents examples 
of spectra  with and without residual noise reduction. 

H. Additional Noise Suppression During Nonspeech Activity 
The final improvement in noise reduction is  signal suppres- 

sion during nonspeech  activity. As  was discussed, a balance 
must be maintained between the magnitude and characteristics 
of the noise that is perceived during speech activity and the 
noise that is perceived during speech absence. 

An effective speech activity detector was defined using spec- 
tra generated by the spectral  subtraction algorithm. This 
detector required the  determination of a threshold signaling 
absence of speech activity. This threshold (T  = - 12 dB) was 
empirically determined to ensure that only signals definitely 
consisting of background noise would be attenuated. 
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Fig. 3. System block diagram. 

I. Synthesis 
After bias removal, rectification, residual noise removal, and 

nonspeech signal suppression a time waveform is reconstructed 
from the modified magnitude corresponding to the  center win- 
dow. Again, since only real data are generated, two time win- 
dows are computed simultaneously using one inverse FFT. 
The data windows are then overlap added to form the output 
speech sequence. The overall system block diagram is  given in 
Fig. 3. 

VI. RESULTS 
A.  Introduction 

Examples of the performance of spectral subtraction will be 
presented in two forms: isometric plots of time versus fre- 
quency magnitude spectra,  with and without noise cancella- 
tion; and intelligibility and  quality measurement obtained 
from the Diagnostic Rhyme Test (DRT) [ 11 J . The DRT is a 
well-established method  for evaluating speech processing 
devices. Testing and scoring of the DRT data base  was pro- 
vided by Dynastat  Inc. [12]. A limited single speaker DRT 
test was used. The DRT data base consisted of 192 words 
using speaker RH recorded in  a  helicopter  environment.  A 
crew of 8 listeners was used. 

The results are presented as follows: 1) short-time ampli- 
tude spectra of helicopter speech; 2) DRT intelligibility and 
quality scores on LPC vocoded speech using as input  the  data 

given in 2); and 3) short-time  spectra showing additional im- 
provements in  noise rejection through residual noise suppres- 
sion and nonspeech signal attenuation. 

B. Short-Time Spectra of Helicopter Speech 

Isometric  plots of time versus frequency magnitude spectra 
were constructed  from  the data  by computing and displaying 
magnitude spectra from 64 overlapped Hanning windows. 
Each line represents a 128-point frequency analysis. Time 
increases from  bottom  to  top and frequency  from  left to right. 

A 920 ms section of speech recorded with a noise-cancelling 
microphone in  a  helicopter  environment is presented. The 
phrase “Save your” was filtered at 3.2 kHz and sampled at 
6.67 kHz. Since the noise was acoustically added,  no under- 
lying clean speech signal is available. Fig. 4 shows the digitized 
time signal. Fig. 5 shows the average  noise magnitude spec- 
trum computed by averaging  over the first 300 ms of non- 
speech activity. The short-time  spectrum of the noisy signal 
x is shown in Fig. 6 .  Note the high amplitude,  narrow-band 
ridges corresponding to the  fundamental (1550 Hz) and first 
harmonic (3100 Hz) of the  helicopter  engine, as  well  as the 
ramped noise floor above 1800 Hz. Fig. 7 shows the result 
from bias removal and rectification. Figs. 8 and  9 show the 
noisy spectrum and the spectral  subtraction  estimate using 
three frame averaging. 

These figures indicate that considerable noise rejection has 
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Fig. 4. Time waveform of helicopter  speech. “Save your”. 
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Fig. 5. Average noise magnitude of helicopter noise. 

Fig. 6 .  Short-time  spectrum  of helicopter speech. Fig. 7. Short-time  spectrum using bias removal and half-wave 
rectification. 

Fig. 8. Short-time  spectrum of helicopter  speech using three  frame Fig. 9. Short-time  spectrum using bias removal and half-wave rectifi- 
averaging. cation  after three  frame averaging. 
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been  achieved,  although  some noise residual remains. The 
next  step was to quantitatively  measure  the  effect  of spectral 
subtraction on intelligibility and  quality.  For this task  a 
limited single speaker  DRT was invoked to  establish an anchor 
point for credibility. 

C Intelligibility and Quality Results using the DRT 
The  DRT  data base consisted  of 192 words  recorded in a 

helicopter  environment.  The data base  was filtered at  4 kHz 
and  sampled at 8 kHz.  During the pause between  each  word, 
the noise bias was updated. Six output speech files  were 
generated: 1) digitized original;  2) speech resulting from bias 
removal and rectification without averaging; 3) speech result- 
ing from  bias removal and rectification using three averages; 
4) an LPC vocoded version of original speech; 5) an LPC 
vocoded version of 2); and 6)  an LPC vocoded version  of 3). 
The last three  experiments were conducted to measure intelli- 
gibility and  quality  improvements resulting from  the use  of 
spectral subtraction as a  preprocessor to  an LPC analysis- 
synthesis device. The LPC vocoder used  was a  nonreal-time 
floating-point  implementation [ 171 . A ten-pole  autocorrela- 
tion implementation was  used with  a  SIFT  pitch  tracker [ 181 . 
The channel  parameters used for  synthesis were not quantized. 
Thus,  any  degradation  would not be attributed to parameter 
quantization,  but  rather to  the all-pole approximation to the 
spectrum  and to  the buzz-hiss  approximation to the  error 
signal. In  addition,  a  frame rate of 40 frames/s was  used which 
is typical of 2400  bit/s  implementations.  The  vocoder on 3.2 
kHz filtered clean speech achieved a  DRT  score  of 88. 

In  addition to intelligibility, a  coarse measure of  quality [ 191 
was conducted using the same DRT data base. These quality 
scores are neither  quantitatively  nor qualitatively equivalent 
to the  more  rigorous  quality tests such as PARM or DAM [20] . 
However, they do indicate on  a relative  scale improvements 
between data sets. Modern 2.4  kbit/s  systems are expected to 
range from 45 to 50 on  composite acceptability; unprocessed 
speech,  88-92. 

The results of the tests are  summarized  in Tables I-IV. 
Tables I and I1 indicate that spectral subtraction  alone  does 
not decrease intelligibility, but  does increase quality, especially 
in the areas of  increased  pleasantness  and  inconspicuousness  of 
noise background.  Tables I11 and  IV clearly indicate that spec- 
tral subtraction can  be  used to improve the intelligibility and 
quality  of  speech processed through an LPC bandwidth  com- 
pression device. 

D. Short-Time Spectra Using Residual Noise Reduction and 
Nonspeech Signal Attenuation 

Based on  the  promising results of these preliminary  DRT 
experiments, the algorithm was modified to incorporate resid- 
ual  noise reduction  and  nonspeech signal attenuation. Fig. 10 
shows the  short-time  spectra using the  helicopter  speech data 
with  both modifications  added.  Note that now noise between 
words has been  reduced  below  the  resolution of  the  graph,  and 
noise within  the  words has been significantly attenuated  (com- 
pare  with Fig. 7). 

TABLE I 
DIAGNOSTIC RHYME TEST SCORES 

Orig ina l  i (No Average) s^ (Three  Average) 

Voicing 95 92 91 

Nasal i ty  a2 78 77 

Sustention 92 87 a6 

S i b i l a t i o n  75 a3 a4 

Graveness 6a 70 66 

Compactness 88 87 a8 

Total 84 a3 a2 

TABLE I1 
QUALITY RATINGS 

O r i g i n a l  S (No Average) S (Three  Averages) 

Naturalness o f  
Signal 

63 60 61 

Inconspicuousness 
o f  Background 

36 38 42 

I n t e l l i g i b i l i t y  30 32 33 

Pleasantness 20 

Overa l l  27 
A c c e p t a b i l i t y  

Composite 
A c c e p t a b i l i t y  

26 

31 

33 

32 

25 

29 

29 

TABLE I11 
DIAGNOSTIC RHYME TEST SCORES 

LPC on A LPC on A LPC on 
Or ig ina l  S without  averaging S with  averaging 

Voicing 84  90  86 

Nasal i ty  56 63  52 

Sustention 49 52 56 

S i b i l a t i o n  61 

Graveness 61 

70 

62 

88 

59 

Compactness 83 83 93 

Total 66 70 72 

TABLE IV 
QUALITY RATINGS 

O r i g i n a l  S without   averaging s w i t h  averaging 
LPC on A LPC on ~ LPC on 

53 49 5a 

34 36 39 

Naturalness 
o f  Signal 

Inconspicuousness 
o f  Background 

I n t e l l i g i b i l i t y  za 30 26 

Pleasantness 15 28 20 

Overa l l  24 26 26 
A c c e p t a b i l i t y  

Composite 
A c c e p t a b i l i t y  

23 29 25 

- 
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Fig. 10. Short-time spectrum using bias removal, half-wave rectifica- 
tion, residual noise reduction,  and nonspeech signal attenuation 
(helicopter speech). 

v. SUMMARY AND CONCLUSIONS 

A preprocessing noise suppression  algorithm using spectral 
subtraction  has  been  developed,  implemented,  and  tested. 
Spectral  estimates  for  the  background noise  were obtained 
from  the  input signal during  nonspeech activity. The  algo- 
rithm can be implemented using a single microphone  source 
and requires about  the same computation as a  high-speech 
convolution. Its performance was demonstrated using short- 
time  spectra  with  and  without noise suppression and quantita- 
tively tested for  improvements in intelligibility and  quality 
using the Diagnostic Rhyme  Test  conducted  by  Dynastat Inc. 

Results indicate overall  significant improvements in quality 
and intelligibility when  used as a  preprocessor to an LPC speech 
analysis-synthesis  vocoder. 
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