

Runge-Kutta Theory and Constraint Programming

 Julien Alexandre dit Sandretto Alexandre Chapoutot
Numerical integration

Runge-Kutta with interval coefficients

Constraint approach to define new schemes

Experimentations

Cost function to define optimal schemes

Experimentations

Conclusion

Numerical integration

 ParisTech. universiteInitial value problem

$$
\dot{\mathbf{y}}=f(\mathbf{y}) \quad \text { with } \quad \mathbf{y}(0)=\mathbf{y}_{0}
$$

Time discretization $t_{0}=0<t_{1}<\cdots<t_{n}=T$
Compute a sequence of values: $\mathbf{y}_{0}, \mathbf{y}_{1}, \ldots, \mathbf{y}_{n}$ such that

$$
\forall i \in\{0, n\} \quad y_{i} \approx y_{i}\left(t_{i} ; y_{0}\right)
$$

s.t. $y_{n+1} \approx \mathbf{y}\left(t_{n}+h ; y_{n}\right)=y_{n}+\int_{0}^{h} f(y(s)) d s$

Tool: integration scheme to approx $\int_{0}^{h} f(y(s)) d s$ with an error $\mathcal{O}\left(h^{p+1}\right)$

- h is the integration step-size
- p is the order of the method (Taylor series or Runge-Kutta)

Julien Alexandre dit Sandretto - Runge-Kutta Theory and Constraint Programming September 28, 2016-3

Numerical integration

Initial value problem

$$
\dot{\mathbf{y}}=f(\mathbf{y}) \quad \text { with } \quad \mathbf{y}(0)=\mathbf{y}_{0}
$$

Time discretization $t_{0}=0<t_{1}<\cdots<t_{n}=T$
Compute a sequence of values: $\mathbf{y}_{0}, \mathbf{y}_{1}, \ldots, \mathbf{y}_{n}$ such that

$$
\forall i \in\{0, n\}, \quad \mathbf{y}_{i} \approx \mathbf{y}\left(t_{i} ; \mathbf{y}_{0}\right)
$$

s.t. $\mathbf{y}_{n+1} \approx \mathbf{y}\left(t_{n}+h ; \mathbf{y}_{n}\right)=\mathbf{y}_{n}+\int_{0}^{h} f(y(s)) d s$

Tool: integration scheme to approx $\int_{0}^{h} f(y(s)) d s$ with an error $\mathcal{O}\left(h^{p+1}\right)$

- h is the integration step-size
- p is the order of the method (Taylor series or Runge-Kutta)

Numerical integration

Initial value problem

$$
\dot{\mathbf{y}}=f(\mathbf{y}) \quad \text { with } \quad \mathbf{y}(0)=\mathbf{y}_{0}
$$

Time discretization $t_{0}=0<t_{1}<\cdots<t_{n}=T$
Compute a sequence of values: $\mathbf{y}_{0}, \mathbf{y}_{1}, \ldots, \mathbf{y}_{n}$ such that

$$
\forall i \in\{0, n\}, \quad \mathbf{y}_{i} \approx \mathbf{y}\left(t_{i} ; \mathbf{y}_{0}\right)
$$

s.t. $\mathbf{y}_{n+1} \approx \mathbf{y}\left(t_{n}+h ; \mathbf{y}_{n}\right)=\mathbf{y}_{n}+\int_{0}^{h} f(y(s)) d s$

Tool: integration scheme to approx $\int_{0}^{h} f(y(s)) d s$ with an error $\mathcal{O}\left(h^{p+1}\right)$

- h is the integration step-size
- p is the order of the method (Taylor series or Runge-Kutta)

Runge-Kutta schemes

s-stage Runge-Kutta described by a Butcher tableau:

c_{1}	a_{11}	a_{12}	\cdots	$a_{1 s}$
\vdots	\vdots	\vdots		\vdots
c_{s}	$a_{s 1}$	$a_{s 2}$	\cdots	$a_{s s}$
	b_{1}	b_{2}	\cdots	b_{s}

The integration scheme is given by:
$\mathbf{k}_{i}=f\left(t_{n}+c_{i} h_{n}, \quad \mathbf{y}_{n}+h \sum_{j=1}^{s} a_{i j} \mathbf{k}_{j}\right) \quad \mathbf{y}_{n+1}=\mathbf{y}_{n}+h \sum_{i=1}^{s} b_{i} \mathbf{k}_{i}$

- Explicit method (ERK): $a_{i j}=0$ for $i \leqslant j$
- Diagonal Implicit method (DIRK): $a_{i j}=0$ for $i<j$
- Implicit method (IRK) otherwise

Order p if $\mathbf{y}\left(t_{n} ; \mathbf{y}_{n-1}\right)-\mathbf{y}_{n}=C \cdot h^{p+1} \quad$ with $\quad C \in \mathbb{R}$.

Runge-Kutta vs Taylor

Taylor: only one method computed for different order (till 120 !) $\mathbf{y}_{n+1}=\mathbf{y}_{n}+\sum_{i=1}^{s} h^{i} f^{[i]}\left(\mathbf{y}_{n}\right) \Rightarrow$ computation from only one point!
Runge-Kutta: many methods with different order (often 4), computation from different points:

strong stability properties for various kinds of problems (A-stable, L-stable, algebraic stability, etc.), and may preserve quadratic algebraic invariant (symplectic methods)

Race for higher order schemes

Why higher order ?

High order implies low difference between solution and approximation!

A global competition

- Explicit Runge-Kutta order 14 with 35 stages with Maple [1]
- Radau order 17 with 9 stages with Mathematica [2]
[1] Feagin, Terry, "High-order Explicit Runge-Kutta Methods Using M-Symmetry", Neural, Parallel \& Scientific Computations, Vol. 20, No. 4,December 2012, pp. 437-458
[2] J Martín-Vaquero, "A 17th-order Radau IIA method for package RADAU", Applications in mechanical systems, Computers \& Mathematics with Applications, 2010

New scheme: a complex problem

Needs to solve constraints
High order polynomials (till p), number of constraints increases
exponentially (4 for $p=3,8$ for $p=4,17,37,85,200$)

1. $\sum_{1}^{s} b_{i}=1$
2. $\sum_{1}^{s} b_{i} c_{i}=1 / 2$
3. $\sum_{1}^{s} b_{i} c_{i}^{2}=1 / 3 \quad \sum_{1}^{s} \sum_{1}^{s} b_{i} a_{i j} c_{j}=1 / 6$

Classical approach
Solve by using polynomials with known exact zeros such as Legendre (for Gauss) or Jacobi (for Radau) [see Butcher]

Problems

- Discovery of new methods guided by solver and not by requirements !
- Solved numerically: additive approximations !

New scheme: a complex problem

Needs to solve constraints

High order polynomials (till p), number of constraints increases
exponentially (4 for $p=3,8$ for $p=4,17,37,85,200$)

1. $\sum_{1}^{s} b_{i}=1$
2. $\sum_{1}^{s} b_{i} c_{i}=1 / 2$
3. $\sum_{1}^{s} b_{i} c_{i}^{2}=1 / 3 \quad \sum_{1}^{s} \sum_{1}^{s} b_{i} a_{i j} c_{j}=1 / 6$

Classical approach
Solve by using polynomials with known exact zeros such as Legendre (for Gauss) or Jacobi (for Radau) [see Butcher]

- Discovery of new methods guided by solver and not by requirements !

New scheme: a complex problem

Needs to solve constraints

High order polynomials (till p), number of constraints increases
exponentially (4 for $p=3,8$ for $p=4,17,37,85,200$)

1. $\sum_{1}^{s} b_{i}=1$
2. $\sum_{1}^{s} b_{i} c_{i}=1 / 2$
3. $\sum_{1}^{s} b_{i} c_{i}^{2}=1 / 3 \quad \sum_{1}^{s} \sum_{1}^{s} b_{i} a_{i j} c_{j}=1 / 6$

Classical approach
Solve by using polynomials with known exact zeros such as Legendre (for Gauss) or Jacobi (for Radau) [see Butcher]

Problems

- Discovery of new methods guided by solver and not by requirements!
- Solved numerically: additive approximations !

Example of RK $(35,14)$

$c[2]=.11$, $c[3]=.556$, $c[4]=.8333$, $c[5]=.333$, $c[6]=1 ., c[7]=.669986979272772921764683785505998513938845229$
$6384603532851421391683474428303956826239, c[8]=.297068384213818357389584716808219413223332094$ $6989156873791682903324708698499266217383, c[9]=.727$ $27, c[10]=.14015279904218876527618748796694671762980646$ $30825329362873230163439023340348096838456, c[11]=.70070103977015073715109985483074933794140704$ $92655464089692218490447945746638665522966, c[12]=.36$ $364, c[13]=.26315789473684210526315789473684210526315789$ $47368421052631578947368421052631578947368, c[14]=.39217224665027085912519664250120864886371431$ $5266128052078483 \mathrm{e}-1, \mathrm{c}[15]=.81291750292837676298339315927803650618961237$
$26172385507744269795906758195776958783707, c[16]=.1666$ $666666666666666666666666666666666666667, c[17]=.9$,
$c[18]=.6412992574519669233127711938966828094810966516150832254029235721305050295351572963693 \mathrm{e}-1$,
$c[19]=.2041499092834288489277446343010234050271495052413337516288702042649259099754335560687$,
$c[20]=.3953503910487605656156713698273243723522272974566594505545766538389345381768585023057$,
$c[21]=.6046496089512394343843286301726756276477727025433405494454233461610654618231414976943$,
$c[22]=.7958500907165711510722553656989765949728504947586662483711297957350740900245664439313$,
$c[23]=.9358700742548033076687228806103317190518903348384916774597076427869494970464842703631$,
$c[24]=.1667$,
$c[25]=.8129175029283767629833931592780365061896123726172385507744269795906758195776958783707$,
$c[26]=.392172246650270859125196642501208648863714315266128052078483 \mathrm{e}-1$,
$c[27]=.364$,
$c[28]=.7007010397701507371510998548307493379414070492655464089692218490447945746638665522966$,
$c[29]=.1401527990421887652761874879669467176298064630825329362873230163439023340348096838456$,
$c[30]=.2970683842138183573895847168082194132233320946989156873791682903324708698499266217383$,
$c[31]=.6699869792727729217646837855059985139388452296384603532851421391683474428303956826239, \ldots$

Julien Alexandre dit Sandretto - Runge-Kutta Theory and Constraint Programming September 28, 2016-8

Coefficients given in floating numbers

Problems:

Constraints not satisfied \Rightarrow Method not at order p, but lower. . .
Validated integration (in a very short view):
Based on Local truncature error:
Validated bounds of $[I t e] \triangleq \mathbf{y}\left(t_{n} ; \mathbf{y}_{n-1}\right)-\mathbf{y}_{n}$, then
$\mathbf{y}\left(t_{n} ; \mathbf{y}_{n-1}\right) \in \mathbf{y}_{n}+[/ t e]$

Coefficients given in floating numbers

Problems:

Constraints not satisfied \Rightarrow Method not at order p, but lower. . .
Validated integration (in a very short view):
Based on Local truncature error:
Validated bounds of $[/ t e] \triangleq \mathbf{y}\left(t_{n} ; \mathbf{y}_{n-1}\right)-\mathbf{y}_{n}$, then $\mathbf{y}\left(t_{n} ; \mathbf{y}_{n-1}\right) \in \mathbf{y}_{n}+[/ t e]$

Wrong with floating numbers !

Runge-Kutta with interval coefficients

A Runge-Kutta method of order p approximates a solution $\mathbf{y}(\mathbf{t})$ by computing its Taylor series expansion (till p) without any derivative computation.

Indeed

A method of order p is defined in the way to be equal to the sum of Taylor expansion till $p^{\text {th }}$ term
\Rightarrow the order conditions or also called Butcher rules.

With interval coefficients

These constraints are fulfilled by inclusion, then RK methods with interval coefficients are valid!

Runge-Kutta with interval coefficients

A Runge-Kutta method of order p approximates a solution $\mathbf{y}(\mathbf{t})$ by computing its Taylor series expansion (till p) without any derivative computation.

Indeed

A method of order p is defined in the way to be equal to the sum of Taylor expansion till $p^{\text {th }}$ term
\Rightarrow the order conditions or also called Butcher rules.
With interval coefficients
These constraints are fulfilled by inclusion, then RK methods with interval coefficients are valid!
But intervals have to be tight...

Properties are preserved

Main interest of Runge-Kutta w.r.t. Taylor series is the properties:

- Stability: linear, algebraic, etc.
- Symplecticity (conservation of energy)
- Structural properties: singly diagonal, explicit, diagonal implicit, explicit first line, stiffly accurate (easier to solve, better behavior, etc)

Properties are preserved

Main interest of Runge-Kutta w.r.t. Taylor series is the properties:

- Stability: linear, algebraic, etc.
- Symplecticity (conservation of energy)
- Structural properties: singly diagonal, explicit, diagonal implicit, explicit first line, stiffly accurate (easier to solve, better behavior, etc)
\Rightarrow We want to preserve these properties !

Stability

"no analytical solution of a problem [...] numerical solutions [...] obtained for specified initial values. [...] stability behavior of the solutions for all initial values in the neighbourhood of a certain equilibrium point." [Hairer]

Example on linear problem

- $\dot{x}=\mathbf{A} x$, with exact solution: $x(t)=\exp (\mathbf{A} t) x_{0}$

Analytically stable if all trajectories remain bounded as $t \rightarrow \infty$ \Rightarrow If and only if $\operatorname{Re}\{\operatorname{Eig}(\mathbf{A})\}<0$

- Euler: $x\left(t^{*}+h\right) \approx x\left(t^{*}\right)+\mathbf{A} h x\left(t^{*}\right)=(\mathbf{I}+\mathbf{A} h) x\left(t^{*}\right)=\mathbf{F} x\left(t^{*}\right)$ Method is analytically stable if $x_{k+1}=\mathbf{F} x_{k}$ is analytically stable

Many classes of stability (A-, B-, A(α), Algebraic, \ldots), linked to the problem (linear or not, stiff component or not, etc)

Linear Stability

Example of explicit methods ($s=p$) [Hairer]

$$
R(z)=1+z \sum_{j} b_{j}+z^{2} \sum_{j, k} b_{j} a_{j k}+z^{3} \sum_{j, k, l} b_{j} a_{j k} a_{k l}+\ldots
$$

Stability domain given by $S=\{z \in \mathcal{C}:|R(z)| \leq 1\}$
For RK4: $R(z)=1+z+\frac{z^{2}}{2}+\frac{z^{3}}{6}+\frac{z^{4}}{24}$
After $z=x+i y$, and some processing:
$|R(x, y)|=\sqrt{(}\left(\left(\left(\left(\left(\left(\left(0.166667 * x^{3}\right) * y\right)+\left(\left(0.5 * x^{2}\right) * y\right)\right)-\right.\right.\right.\right.$
$\left.\left.\left.\left.\left((0.166667 * x) * y^{3}\right)\right)+((1 * x) * y)\right)-\left(0.166667 * y^{3}\right)\right)+y\right)^{2}+$
$\left(\left(\left(\left(\left(\left(\left(\left(0.0416667 * x^{4}\right)+\left(0.166667 * x^{3}\right)\right)-\left(\left(0.25 * x^{2}\right) * y^{2}\right)\right)+(0.5 *\right.\right.\right.\right.\right.$
$\left.\left.\left.\left.\left.\left.\left.\left.\left.x^{2}\right)\right)-\left((0.5 * x) * y^{2}\right)\right)+x\right)+\left(0.0416667 * y^{4}\right)\right)-\left(0.5 * y^{2}\right)\right)+1\right)^{2}\right)\right) \leq 1$

Linear Stability

Paving of stability domain for RK4 method with high precision coefficients (blue) and with error (10^{-8} and 10^{-2}) on coefficients (red).

Algebraically stable

Algebraically stable if:

- $b_{i} \geq 0$, for all $i=1, \ldots, s$
- $M=\left(m_{i j}\right)=\left(b_{i} a_{i j}+b_{j} a_{j i}-b_{i} b_{j}\right)_{i, j=1}^{s}$ is non-negative definite

Problem to solve

Solving the eigenvalue problem $\operatorname{det}(A-\lambda I)=0$ and proving $\lambda>0$.

For 3-stage Runge-Kutta methods:
$\left(m_{11}-\lambda\right) *\left(\left(m_{22}-\lambda\right) *\left(m_{33}-\lambda\right)-m_{23} * m_{32}\right)-m_{12} *\left(m_{21} *\right.$ $\left.\left(m_{33}-\lambda\right)-m_{23} * m_{31}\right)+m_{13} *\left(m_{21} * m_{32}-\left(m_{22}-\lambda\right) * m_{31}\right)=0$

With contractor programming (Fwd/Bwd + Newton)
Eq.(1) has no solution in $]-\infty, 0[\equiv M$ is non-negative definite.

Algebraically stable

Verification of theory

- Lobatto IIIC: contraction to empty set \Rightarrow algebraically stable
- Lobatto IIIA: solution found $(-0.0481125) \Rightarrow$ not algebraically stable

With floating number
Lobatto IIIC with error of 10^{-9} on $a_{i j}$: solution found $\left(-1.03041 \cdot 10^{-05}\right) \Rightarrow$ not algebraically stable

Algebraically stable

Verification of theory

- Lobatto IIIC: contraction to empty set \Rightarrow algebraically stable
- Lobatto IIIA: solution found $(-0.0481125) \Rightarrow$ not algebraically stable

With floating number

Lobatto IIIC with error of 10^{-9} on $a_{i j}$: solution found $\left(-1.03041 \cdot 10^{-05}\right) \Rightarrow$ not algebraically stable

Symplectic

Symplectic if $M=0$, with $M=\left(m_{i j}\right)=\left(b_{i} a_{i j}+b_{j} a_{j i}-b_{i} b_{j}\right)_{i, j=1}^{s}$
Problem to solve
$0 \in[M]$ with interval arithmetic
Verification of theory with Gauss-Legendre:

$$
M=10^{-17} \cdot\left(\begin{array}{ccc}
{[-1.38,1.38]} & {[-2.77,2.77]} & {[-2.77,1.38]} \\
{[-2.77,2.77]} & {[-2.77,2.77]} & {[-1.38,4.16]} \\
{[-2.77,1.38]} & {[-1.38,4.16]} & {[-1.38,1.38]}
\end{array}\right)
$$

Symplectic

Symplectic if $M=0$, with $M=\left(m_{i j}\right)=\left(b_{i} a_{i j}+b_{j} a_{j i}-b_{i} b_{j}\right)_{i, j=1}^{s}$
Problem to solve
$0 \in[M]$ with interval arithmetic
Verification of theory with Gauss-Legendre:

$$
M=10^{-17} \cdot\left(\begin{array}{ccc}
{[-1.38,1.38]} & {[-2.77,2.77]} & {[-2.77,1.38]} \\
{[-2.77,2.77]} & {[-2.77,2.77]} & {[-1.38,4.16]} \\
{[-2.77,1.38]} & {[-1.38,4.16]} & {[-1.38,1.38]}
\end{array}\right)
$$

With $a_{1,2}=2.0 / 9.0-\sqrt{15.0} / 15.0$ computed with float

$$
M=\left(\begin{array}{ccc}
{\left[-1.38 e^{-17}, 1.38 e^{-17}\right]} & {\left[-1.91 e^{-09},-1.91 e^{-09}\right]} & {\left[-2.77 e^{-17}, 1.38 e^{-17}\right]} \\
{\left[-1.91 e^{-09},-1.91 e^{-09}\right]} & {\left[-2.77 e^{-17}, 2.77 e^{-17}\right]} & {\left[-1.38 e^{-17}, 4.16 e^{-17}\right]} \\
{\left[-2.77 e^{-17}, 1.38 e^{-17}\right]} & {\left[-1.38 e^{-17}, 4.16 e^{-17}\right]} & {\left[-1.38 e^{-17}, 1.38 e^{-17}\right]}
\end{array}\right)
$$

Constraint approach to define new schemes

Consistency

- $c_{i}=\sum a_{i j}$ with $c_{1}<\cdots<c_{s}$

Order conditions

1. $\sum b_{i}=1$
2. $\sum b_{i} a_{i j}=1 / 2$
3. $\sum c_{i} b_{i} a_{i j}=1 / 6, \sum b_{i} c_{i}^{2}=1 / 3$
4. $\sum b_{i} c_{i}^{3}=1 / 4, \sum b_{i} c_{i} a_{i j} c_{j}=1 / 8$, $\sum b_{i} a_{i j} c_{j}^{2}=1 / 12, \sum b_{i} a_{i j} a_{j k} c_{k}=1 / 24$
Properies by construction

- Singly diagonal: $a_{1,1}=\cdots=a_{s, s}$
- Explicit: $a_{i j}=0, \forall j \geq i$
- Diagonal implicit: $a_{i j}=0, \forall j>i$
- Explicit first line: $a_{1,1}=\cdots=a_{1, s}=0$
- Stiffly accurate: $a_{s, i}=b_{i}, \forall i=1, \ldots, s$

Constraint solver

User interface (Python-Sympy) to describe the desired method

- Choice of number of stages and the order (≤ 5)
- Choice of structure: Singly diagonal, Explicit method, DIRK method, Explicit first line and/or Stiffly accurate
- Generation of Constraint Satisfaction Problem

Solver Branch \& Contract (Ibex)

- Contraction with Fwd/Bwd (or HC4)
- Bisection "largest first"

Re-discover the theory

Only one 2-stage method of order 4

```
Variables
b[2] in [-1,1];
c[2] in [0,1];
a[2] [2] in [-1,1];
Constraints
b(1) +b(2) -1.0=0;
b(1)*c(1) +b(2)*c(2) -1.0/2.0=0;
b(1)*(c(1))^2 +b(2)*(c(2))^2 -1.0/3.0=0;
b}(1)*\textrm{a}(1)(1)*\textrm{c}(1) +\textrm{b}(1)*\textrm{a}(1)(2)*\textrm{c}(2) 
    b}(2)*\textrm{a}(2)(1)*\textrm{c}(1)+\textrm{b}(2)*\textrm{a}(2)(2)*\textrm{c}(2
    -1.0/6.0=0;
b}(1)*(c(1))^3+b(2)*(c(2))^3 -1.0/4.0=0;
b}(1)*\textrm{c}(1)*\textrm{a}(1)(1)*\textrm{c}(1)+\textrm{b}(1)*\textrm{c}(1)*\textrm{a}(1)(2)*\textrm{c}(2) 
    b}(2)*\textrm{c}(2)*\textrm{a}(2)(1)*\textrm{c}(1)+\textrm{b}(2)*\textrm{c}(2)*\textrm{a}(2)(2)*\textrm{c}(2
    -1.0/8.0=0;
b(1)*a(1)(1)*(c(1))^2 +b(1)*a(1)(2)*(c(2))^2 +
    b}(2)*\textrm{a}(2)(1)*(\textrm{c}(1))^2+b(2)*a(2)(2)*(c(2))^
    -1.0/12.0=0;
b}(1)*\textrm{a}(1)(1)*\textrm{a}(1)(1)*\textrm{c}(1)+\textrm{b}(1)*\textrm{a}(1)(1)*\textrm{a}(1)(2)*\textrm{c}(2) 
    b(1)*a(1) (2)*a(2)(1)*c(1) +b(1)*a(1) (2)*a(2) (2)*c(2) +
    b}(2)*\textrm{a}(2)(1)*\textrm{a}(1)(1)*\textrm{c}(1) +\textrm{b}(2)*\textrm{a}(2)(1)*\textrm{a}(1) (2)*\textrm{c}(2) 
    b}(2)*\textrm{a}(2)(2)*\textrm{a}(2)(1)*\textrm{c}(1) +\textrm{b}(2)*\textrm{a}(2)(2)*\textrm{a}(2)(2)*\textrm{c}(2
    -1.0/24.0=0;
a(1)(1)+a(1)(2)-c(1) = 0; a(2)(1)+a(2)(2)-c(2) = 0;
c(1) < c(2);
end
```


Re-discover the theory and ...

No 2-stage method of order 5
Proof in 0.04s !

Now find new methods
Remark: it is hard to be sure that a method is new...

A method order 4, 3 stages, singly, stiffly accurate

This method is promising: capabilities wanted for a stiff problem, singly to optimize the Newton solving and stiffly accurate to be more efficient w.r.t. stiff problems (and DAEs).

$[0.161097,0.161097]$	$[0.105662,0.105662]$	$[0.172855,0.172855]$	$[-0.117419,-0.117419]$
$[0.655889,0.655889]$	$[0.482099,0.482099]$	$[0.105662,0.105662]$	$[0.068127,0.068127]$
$[1,1]$	$[0.388545,0.388545]$	$[0.505792,0.505792]$	$[0.105662,0.105662]$
	$[0.388545,0.388545]$	$[0.505792,0.505792]$	$[0.105662,0.105662]$

Table: New method S3O4

A method order 5, 3 stages, explicit first line

With only 6 non zero coefficients, this method is a good agreement between a method with order 4 and 4 intermediate computations (Gauss4) and order 6 with 9 intermediate computations (Gauss6). NB: there is no Gauss at order 5...
$\left.\begin{array}{c|ccc}{[0,0]} & {[0,0]} & {[0,0]} & {[0,0]} \\ {[0.355051,0.355051]} \\ {[0.844948,0.844948]}\end{array}\right)\left[\begin{array}{cc}{[0.152569,0.152659]} & {[0.220412,0.220412]} \\ {[0.087340,0.087340]} & {[0.578021,0.578021]}\end{array}\right]\left[\begin{array}{cc}{[0.018021,-0.018021]} \\ {[0.179587,0.179587]}\end{array}\right]$

Integration with the new schemes

Implemented in Dynlbex (a tool for validated simulation) Norm of diameter of final solution bounds the global error

Methods	time (s)	nb of steps	norm of diameter of final solution
S3O4	39	1821	$5.9 \cdot 10^{-5}$
Radau3	52	7509	$2 \cdot 10^{-4}$
Radau5	81	954	$7.6 \cdot 10^{-5}$

Table: S3O4 on a stiff problem (oil problem)

Methods	time (s)	nb of steps	norm of diameter of final solution
S3O5	92	195	5.9
Gauss4	45	544	93.9
Gauss6	570	157	7.0

Table: S3O5 on a problem with interval param. (vericomp p.61)

Discussion

- S3O4: Singly to optimize the Newton solving and stiffly accurate to be more efficient \Rightarrow As efficient than Radau at order 5, but faster than order 3!
- S3O5: With only 6 non zero coefficients, this method is a good agreement between a method with order 4 and 4 intermediate computations (Gauss4) and order 6 with 9 intermediate computations (Gauss6)
\Rightarrow More efficient than Gauss6 and 5 time faster !

Cost function to define optimal schemes

Problem: continuum of solutions
CSP can be under constrained (e.g., $p \leq s$)
Example of countless methods
Countless number of 2-stage; order 2; stiffly accurate; fully implicit
Optimization

- We could find the best one!
- How choose the cost function?

Cost function to define optimal schemes

Problem: continuum of solutions
CSP can be under constrained (e.g., $p \leq s$)
Example of countless methods
Countless number of 2-stage; order 2; stiffly accurate; fully implicit
Optimization

- We could find the best one!
- How choose the cost function?

Cost function to define optimal schemes

Problem: continuum of solutions
CSP can be under constrained (e.g., $p \leq s$)
Example of countless methods
Countless number of 2-stage; order 2; stiffly accurate; fully implicit
Optimization

- We could find the best one!
- How choose the cost function?

Cost function

Minimizing local truncature error

- Method with lower error for the same order
- Example of general form of ERK with 2 stages and order 2

0	0	0
α	α	0
	$1-1 /(2 \alpha)$	$1 /(2 \alpha)$

Ralston[1]: $\alpha=2 / 3$ minimizes the sum of square of coefficients of rooted trees in the Ite computation

- Minimizing the sum of squares of order constraints
- Cost easy to compute: direct from constraints
- Same result $\alpha \in[0.666 \ldots .6,0.666 \ldots 7]$!
[1] Ralston, Anthony. "Runge-Kutta methods with minimum error bounds." Mathematics of computation (1962).

Cost function

Minimizing local truncature error

- Method with lower error for the same order
- Example of general form of ERK with 2 stages and order 2

0	0	0
α	α	0
	$1-1 /(2 \alpha)$	$1 /(2 \alpha)$

Ralston[1]: $\alpha=2 / 3$ minimizes the sum of square of coefficients of rooted trees in the Ite computation
Our approach: maximizing the order

- Minimizing the sum of squares of order constraints
- Cost easy to compute: direct from constraints
- Same result $\alpha \in[0.666 \ldots 6,0.666 \ldots 7]$!
[1] Ralston, Anthony. "Runge-Kutta methods with minimum error bounds." Mathematics of computation (1962).

Detail of optimizer

Method in Ibex

Based on a branch and bound algorithm, with epsilon relaxation of constraints

Problem of relaxation

Implies to verify coefficients by a second step with solver and some fixed values (without relaxation)

Re-discover the theory

Theory

Countless 2-stage order 2 stiffly accurate fully implicit. But there is only one method at order 3: RadaullA.

Optimization of $(2,2)$

```
best feasible point (0.749999939992 ; 0.250000060009 ;
0.333333280449 ; 0.999999998633 ;
0.416655823215 ; -0.0833225527662 ;
0.749999932909 ; 0.250000055725)
cpu time used 0.3879s.
```

with a cost of $\left[-\infty, 2.89787805696 \cdot 10^{-11}\right]$: there is an order 3 !

Verification

We add constraints $b_{1}=0.75$ and $c_{2}=1$, then we find RadaulIA

Explicit 3 stages 3 order

Theory (again)
There is countless explicit $(3,3)$-methods, but there is no order 4 method with 3 stages.

With optimizer: Erk33

$[0,0]$	$[0,0]$	$[0,0]$	$[0,0]$
$[0.465904,0.465904]$	$[0.465904,0.465904]$	$[0,0]$	$[0,0]$
$[0.800685,0.800685]$	$[-0.154577,-0.154577]$	$[0.955262,0.955262]$	$[0,0]$
	$[0.195905,0.195906]$	$[0.429613,0.429614]$	$[0.374480,0.374480]$

Comparison to Kutta (known to be the best)
Euclidean distance between fourth order conditions ($1 / 4,1 / 8$, $1 / 12,1 / 24$) and obtained values:

- ERK33: [0.045221, 0.045221]
- Kutta: 0.058925
\Rightarrow Our method is then closer to fourth order than Kutta.

Integration with Erk33, on VanDerPol

Methods	time	nb of steps	norm of diameter of final solution
ERK33	3.7	647	$2.2 \cdot 10^{-5}$
Kutta $(3,3)$	3.55	663	$3.4 \cdot 10^{-5}$
RK4 $(4,4)$	4.3	280	$1.9 \cdot 10^{-5}$

Paving of stability domain

For RK4 method (blue) and for Erk33 (green): really close!

Conclusion

Done

- Solver to find new validated Runge-Kutta methods, which preserve properties
- Optimizer to tend to an higher order
- Some testes which prove that our approach is valid

Future

- Automatic generation of order conditions greater than 5
- Branch with high-level properties (not only structure), such as stability, symplecticity...

Questions ?

