Coherency Matrix Estimation of Heterogeneous Clutter in High-Resolution Polarimetric SAR Images

Gabriel Vasile, Member, IEEE, Jean-Philippe Ovarlez, Member, IEEE, Frederic Pascal, Member, IEEE, and Céline Tison

Abstract—This paper presents an application of the recent advances in the field of spherically invariant random vector (SIRV) modeling for coherency matrix estimation in heterogeneous clutter. The complete description of the polarimetric synthetic aperture radar (POLSAR) data set is achieved by estimating the span and the normalized coherency independently. The normalized coherency describes the polarimetric diversity, while the span indicates the total received power. The main advantages of the proposed fixed-point (FP) estimator are that it does not require any prior information about the probability density function of the texture (or span) and that it can directly be applied on adaptive neighborhoods. Interesting results are obtained when coupling this FP estimator with an adaptive spatial support based on the scalar span information. Based on the SIRV model, a new maximum-likelihood distance measure is introduced for unsupervised POLSAR classification. The proposed method is tested with both simulated POLSAR data and airborne POLSAR images provided by the Radar Aéroporté Multi-Spectral d’Etude des Signatures system. Results of entropy/alpha/anisotropy decomposition, followed by unsupervised classification, allow discussing the use of the normalized coherency and the span as two separate descriptors of POLSAR data sets.

Index Terms—Estimation, heterogeneous clutter, polarimetry, segmentation, synthetic aperture radar (SAR).

I. INTRODUCTION

A SYNTHETIC aperture radar (SAR) measures both the amplitude and phase of a backscattered signal, producing one complex image for each recording. With the sensors being able to emit or receive two orthogonal polarizations, fully polarimetric SAR (POLSAR) systems describe the interactions between the electromagnetic wave and the target area by means of the Sinclair matrix [1]. Among the difficulties encountered when using POLSAR imagery, one important feature is the presence of speckle. Occurring in all types of coherent imagery, the speckle is due to the random interference of the waves scattered by the elementary targets belonging to one resolution cell [2]. In general, POLSAR data are locally modeled by a multivariate zero-mean circular Gaussian PDF, which is completely determined by the covariance matrix [3].

The recently launched POLSAR systems are now capable of producing high-quality images of the Earth’s surface with meter resolution. The decrease of the resolution cell offers the opportunity to observe much thinner spatial features than the decametric resolution of the up-to-now available SAR images. Recent studies [4] show that the higher scene heterogeneity leads to non-Gaussian clutter modeling, particularly for urban areas. One commonly used fully polarimetric non-Gaussian clutter model is the product model [5]: The spatial non-homogeneity is incorporated by modeling the clutter as a product between the square root of a scalar random variable (texture) and an independent zero-mean complex circular Gaussian random vector (speckle). If the texture random variable is supposed to be a Gamma spatial distributed intensity, the product model is equivalent to the well-known K-distributed clutter model [6], [7].

For a Gaussian polarimetric clutter model, the estimation of the polarimetric coherency matrix is treated in the context of POLSAR speckle filtering. The POLSAR adaptive filtering

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>BN</td>
<td>Boxcar neighborhood.</td>
</tr>
<tr>
<td>FP</td>
<td>Fixed point.</td>
</tr>
<tr>
<td>i.i.d.</td>
<td>Independent and identically distributed.</td>
</tr>
<tr>
<td>LLMMSE</td>
<td>Locally linear minimum mean-squared error.</td>
</tr>
<tr>
<td>ML</td>
<td>Maximum likelihood.</td>
</tr>
<tr>
<td>MPWF</td>
<td>Multilook polarimetric whitening filter.</td>
</tr>
<tr>
<td>P</td>
<td>Generic span.</td>
</tr>
<tr>
<td>PDF</td>
<td>Probability density function.</td>
</tr>
<tr>
<td>PWF</td>
<td>Polarimetric whitening filter.</td>
</tr>
<tr>
<td>SCM</td>
<td>Sample covariance matrix.</td>
</tr>
<tr>
<td>SDAN</td>
<td>Span-driven adaptive neighborhood.</td>
</tr>
<tr>
<td>SIRP</td>
<td>Spherically invariant random process.</td>
</tr>
<tr>
<td>SIRVs</td>
<td>Spherically invariant random vectors.</td>
</tr>
</tbody>
</table>
techniques can roughly be divided into two main classes [8]:
based on the optimization of the spatial support and based
on the use of the local statistics to derive adaptive estimators.
These two directions are not exclusive since both of them
can be applied simultaneously [9], [10]. For example, the
refined Lee filter couples eight edge-aligned directional neigh-
borhoods with an adaptive estimator based on the LLMMSE
criterion [9].

In the context of the non-Gaussian polarimetric clutter
models, several studies tackled POLSAR parameter estimation us-
ing the product model. For deterministic texture, Novak et al.
derived the PWF by optimally combining the elements of the
polarimetric covariance matrix to produce a single scalar image
[11], [12]. Using the complex Wishart distribution, the PWF
for homogeneous surfaces has been generalized to an MPWF
[13], [14]. In general, the texture random variable is speci-
fied by the PDF. For Gamma-distributed texture, Lopes and
Sery [13] derived the ML estimator of the covariance matrix.
Moreover, the vector spatial LLMMSE filter applied on the
scalar ML texture estimator has also been introduced when the
texture variance and spatial correlation functions are a priori
known [13]. In [15], DeGrandi et al. performed an exten-
sive study on the dependence of the normalized second-order
moment of intensity on polarization state for a K-distributed
clutter model. This dependence was condensed in a graphical
form by a formalism called the polarimetric texture signature.
This study has been applied for target detection and texture
segmentation using the discrete wavelet transform generated
with the first derivative of a B-spline of order three as mother
wavelet [16].

The POLSAR information allows the discrimination of dif-
ferent scattering mechanisms. In [17], Claude and Pottier in-
troduced the target entropy and the entropy–alpha–anisotropy
(\(H - \alpha - A \)) model by assigning to each eigenvector the cor-
responding coherent single scattering mechanism. Based on
this decomposition, unsupervised classification for land appli-
cations was performed by an iterative algorithm based on the
complex Wishart density function [18], [19].

The objective of this paper is to present a new coherency
estimation technique [20] based on the SIRV model [21] and
to analyze the consequences that this model has on the con-
ventional POLSAR processing chain. This paper is organized
as follows. Section II is dedicated to the presentation of the
proposed estimation scheme. The heterogeneity of the polarimetric
 textured scenes is taken into account by coupling the ML
target vector descriptor in lexicographic basis for monostatic
POLSAR images [11], [25], [26];
4) the normalized polarimetric target vector descriptor in
lexicographic basis [6], [27], [28];
5) the polarimetric covariance matrix descriptor for
POLSAR data [13], [29].

In this paper, the polarimetric descriptors used are the target
vectors \(\mathbf{k} = [k_1, k_2, k_3]^T \) in the Pauli basis (monostatic
acquisition). The following section presents an application of the
recent advances, in the field of SIRV modeling [20], for
estimating span and normalized coherency matrices of high-
resolution POLSAR data.

A. Gaussian Model

The elements of a vector are generally modeled by a multi-
variate zero-mean complex Gaussian random process. The PDF
is given by the following expression [2]:

\[
p_m(k) = \frac{1}{\pi^m \det \{T \}} \exp \{ -\mathbf{k}^H \{T \}^{-1} \mathbf{k} \}
\]

(1)

where \(|T| = E \{ \mathbf{k} \mathbf{k}^H \} \) is the polarimetric coherency matrix,
\(\det \{ \} \) denotes the matrix determinant, \(\dagger \) is the conjugate
transpose operator, \(m \) is the dimension of the target vector
(\(m = 3 \) for monostatic POLSAR acquisitions), and \(E \{ \} \)
denotes the statistical mean over the polarimetric channels.

According to (1), a Gaussian stochastic process is completely
characterized by the coherency matrix. In this case, the ML
estimator of the polarimetric coherency matrix is the SCM
obtained by replacing the statistical mean by spatial averaging

\[
[\hat{T}]_{SCM} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{k}_i \mathbf{k}_i^H
\]

(2)

where \(N \) is the number of samples. The SCM is statistically
determined by the Wishart PDF [2].

Another POLSAR parameter is the span (or total power) \(P \)
genearly defined for each pixel as [1]

\[
P_{SLC} = k' \mathbf{k}.
\]

(3)
The corresponding multilook span can be estimated within a local neighborhood according to
\[P = E \{ k^t \k \} = \text{Tr} \{ [T] \} \tag{4} \]
where \(\text{Tr} \{ [T] \} \) denotes the trace of the matrix \([T]\). Hence, the common span estimator for the Gaussian case can directly be obtained from the SCM as
\[\hat{P}_{\text{SCM}} = \text{Tr} \left\{ [\hat{T}]_{\text{SCM}} \right\}. \tag{5} \]

B. SIRV Model

SIRVs and their applications to estimation and detection in communication theory were first introduced by Yao [21]. The SIRV is a class of nonhomogeneous Gaussian processes with random variance. The complex \(m \)-dimensional measurement \(k \) is defined as the product between the independent complex circular Gaussian vector \(z \) (speckle) with zero mean and covariance matrix \([M] = E\{zz^t\}\) and the square root of the positive random variable \(\tau \) (representing the texture)
\[k = \sqrt[\tau]{z}. \tag{6} \]

It is important to notice that, in the SIRV definition, the PDF of the texture random variable is not explicitly specified. As a consequence, SIRVs describe a whole class of stochastic processes defined by (6). This class includes the conventional clutter models having Gaussian, \(\mathcal{K} \)-distributed, Chi, Rayleigh, Weibull, or Rician PDFs [30].

For POLSAR data, the SIRV product model is the product of two separate random processes operating across two different statistical axes.

1) The polarimetric diversity is modeled by a multidimensional Gaussian kernel characterized by its covariance matrix \([M]\).

2) The randomness of spatial variations in the radar backscattering from cell to cell is characterized by \(\tau \). The corresponding random process operates along the spatial axis given by the image support. Relatively to the polarimetric axis, the texture random variable \(\tau \) can be viewed as an unknown deterministic parameter from cell to cell.

One major advantage of the SIRV clutter model is the high degree of generality with respect to other texture-aware models employed in the literature [4], [30]. Nevertheless, this model is founded on the validity of three basic assumptions: The texture random variable affects the backscattered power only; it is multiplicative and spatially uncorrelated. When applied to high-resolution POLSAR clutter, the SIRV model postulates that the texture descriptor \(\tau \) from (6) is identical for all polarization channels.

Now, let \(p(\tau) \) be the texture PDF associated to the SIRV model. The SIRP corresponding to (6) has the following PDF [31]:
\[
F \{ p(\tau), [M] \} = p_m(k) = \int_{0}^{+\infty} \frac{1}{(\pi \tau)^m \det \{[M]\}} \times \exp\left(-\frac{k^t \k^{-1} k}{\tau}\right) p(\tau) \, d\tau. \tag{7}
\]

1) **Model Identification**: When using the product model, an identification problem can be pointed out: The SIRV model is uniquely defined with respect to the covariance matrix parameter up to a multiplicative constant. Let \([M_1]\) and \([M_2]\) be two covariance matrices such that \([M_1] = \kappa \cdot [M_2] \forall \kappa \in \mathbb{R}_+^\ast\). Notice that the two sets of parameters defined as \(\{\tau_1, [M_1]\} \) and \(\{\tau_2 = (\tau_1/\sqrt{\kappa}), [M_2]\} \) describe the same SIRV. For solving this identification problem, the covariance matrix has to be normalized. In the following, the covariance matrix \([M]\) is normalized such that \(\text{Tr} \{ [M] \} = m\), with \(m \) being the dimension of the target vector.

One important consequence of the imposed normalization condition is that the resulting normalized polarimetric coherency matrix reveals information concerning the polarimetric diversity only: The total power information is transferred into the texture random variable. The POLSAR data can fully be characterized by coupling the normalized coherency matrix with the span descriptor
\[
P_{\text{SLC}} = k^t k = \tau(z^t z). \tag{8}
\]

When operating on the polarimetric statistical axis, the span for the SIRV case is given by
\[
P = E \{ \tau(z^t z); \tau \} = \tau \cdot E \{z^t z\} = \tau \cdot \text{Tr} \{ [M] \} = \tau \cdot m. \tag{9}
\]

An estimate of \(P \) can be obtained when considering \(\tau \) as an unknown deterministic parameter from cell to cell.

2) **Stationarity Definition**: In the following, several generic concepts are recalled. Given a SIRP, this process is wide-sense stationary if and only if both the texture random variable and the speckle random vector are wide-sense stationary. As the speckle is a zero-mean complex Gaussian vector, the latter means that the statistical samples \(k \), used in the estimation process must have the same theoretical covariance matrix \([M]\). This condition is called “matrix stationarity.”

However, as the results presented in this section can be applied whatever the texture PDF \((\forall p(\tau)) \), the previous properties can be reformulated using the SIRV class of stochastic processes.

1) One zero-mean Gaussian process with covariance matrix \([M] \); \(N(0, [M]) \). Being a “Gaussian stationary” process, it is also “SIRP stationary” and SIRV homogeneous. This model is widely used for POLSAR data analysis [32].

2) Two adjacent Gaussian processes with different covariance matrix: \(N = \{N^{(1)}(0, [M_1]), N^{(2)}(0, [M_2])\} \). The Gaussian mixture \(N \) is neither SIRP stationary nor SIRV homogeneous as the matrix stationarity condition is not
respected. Generally, such cases are treated by employing adaptive estimation schemes [8], [9] in order to approximate the local “Gaussian stationarity” condition.

3) One K-distributed process [33] with Gamma-distributed texture $p_G(\tau; \mathbf{\tau}, \nu)$ and covariance matrix $[M]$: $F_K = \{ p_G(\tau; \mathbf{\tau}, \nu), [M] \}$. This process is SIRP stationary as it is “K stationary”\(^2\), but obviously, it is not Gaussian stationary.

4) Two adjacent K-distributed processes with two different Gamma texture PDFs $p_G^{(1)}(\tau; \mathbf{\tau}_1, \nu_1)$, $p_G^{(2)}(\tau; \mathbf{\tau}_2, \nu_2)$ and the same covariance matrix $[M]$: $F_K = \{ F_K^{(1)} = \{ p_G^{(1)}(\tau; \mathbf{\tau}_1, \nu_1), [M] \}, F_K^{(2)} = \{ p_G^{(2)}(\tau; \mathbf{\tau}_2, \nu_2), [M] \} \}$. The K-distributed processes $F_K^{(1)}$ and $F_K^{(2)}$ are SIRP stationary and K stationary, but the mixture F_K is not K stationary. Despite this, the process F_K is SIRV homogeneous as it is possible to define a texture PDF which models the Gamma mixture. As a consequence, the results presented in this section can still be applied in this case.

In conclusion, the two properties to be verified in order to apply the SIRV model are the matrix stationarity and the “texture homogeneity.” Moreover, the latter considerably relaxes the “texture stationarity” condition required when using explicit texture models such as the Gamma or the Fisher PDF.

3) SIRV Parameter Estimation: In the field of target detection for radar applications, the SIRV model led to many investigations [34]–[37]. In (6) and (7), the normalized covariance matrix is an unknown parameter which can be estimated from the results presented in this section can still be applied in this case.

For a given $[M]$ and τ_i is given by

$$L_k(k_1, \ldots, k_N; [M], \tau_1, \ldots, \tau_N) = \frac{1}{\pi^{mN} \det \{ [M] \}^N} \times \prod_{i=1}^N \frac{1}{\nu_i + 1} \exp \left(-\frac{k_i[I[M]^{-1}k]^2_i}{\tau_i} \right).$$

For a given $[M]$, maximizing $L_k(k_1, \ldots, k_N; [M], \tau_1, \ldots, \tau_N)$ with respect to τ_i yields the texture ML estimator

$$\hat{\tau}_i = \frac{k_i[I[M]^{-1}k]^2_i}{m}.$$

Replacing τ_i in (10) by their ML estimates, the generalized likelihood is obtained as

$$L_k(k_1, \ldots, k_N; [M]) = \frac{1}{\pi^{mN} \det \{ [M] \}^N} \times \prod_{i=1}^N m^m \exp \left(-m \frac{k_i[I[M]^{-1}k]^2_i}{\tau_i} \right).$$

The ML estimator of the normalized covariance matrix in the deterministic texture case is obtained by canceling the gradient of L_k with respect to $[M]$ as the solution of the following recursive equation:

$$[M]_{FP} = f ([M]_{FP}) = \frac{m}{N} \sum_{i=1}^N k_i^2 [M]_{FP} k_i$$

$$= \frac{m}{N} \sum_{i=1}^N z_i^2 [M]_{FP} z_i. \quad (13)$$

This approach has been used in [38] by Conte et al. to derive a recursive algorithm for estimating the matrix $[M]$. This algorithm consists in computing the FP of f using the sequence $([M]_i)_{i \geq 0}$ defined by

$$[M]_{i+1} = f ([M]_i). \quad (14)$$

This study has been completed by the work of Pascal et al. [20], [39], which recently established the existence and the uniqueness, up to a scalar factor, of the FP estimator of the normalized covariance matrix, as well as the convergence of the recursive algorithm whatever the initialization. The algorithm can therefore be initialized with the identity matrix $[M]_0 = [I_m]$. One way to analyze the convergence of the FP estimator consists in evaluating the following criterion:

$$C(i) = \frac{\| [M](i+1) - [M](i) \|_F}{\| [M](i) \|_F}. \quad (15)$$

where $\| \cdots \|_F$ represents the Frobenius norm. When computing the FP estimator, (1-4) is iterated until C becomes smaller than a predefined lower limit. Note that only a few iterations suffice to reach an error that is less than 10^{-3} [20].

It has also been shown in [31] and [38] that the recursive estimation scheme from (14) can be applied to derive an exact ML estimator of the normalized covariance matrix

$$[M]_{ML} = \frac{m}{N} \sum_{i=1}^N h_m(z_i [M]_{ML} k_i)$$

with $h_m(q) = \int_0^\infty \tau^m \exp \left(-\frac{q}{\tau} \right) p(\tau) d\tau.$

(16)

In the previous equation, the exact ML estimator depends on the texture PDF through the SIRV density-generating function $h_m(q)$. Chitour and Pascal [40] have recently demonstrated that (16) admits a unique solution and that its corresponding iterative algorithm converges to the FP solution for every admissible initial condition. Pascal et al. [20], [39] have also demonstrated that the normalized covariance ML estimator developed under the deterministic texture case (13) yields also an approximate ML estimator under stochastic texture hypothesis.
We propose to apply these results in estimating normalized coherency matrices for high-resolution POLSAR data. The main advantage of this approach is that the local “scene heterogeneity” can be taken into account without any a priori hypothesis regarding the texture random variable τ ([14] does not depend on τ). The obtained FP is the approximate ML estimate under the stochastic τ assumption and the exact ML under the deterministic τ assumption. Moreover, the normalized polarimetric coherency matrix estimated using the FP method is unbiased and asymptotically Gaussian distributed [20], [39].

Note also that the texture estimator from (11) can directly be linked to the total scattered power (span) according to (9). By estimating the normalized coherency as the FP solution of (13), the derived estimate is independent of the total power, and it contains polarimetric information only. Using this matrix, it is possible to compute the SIRV span ML estimator for unknown deterministic τ

$$\hat{P}_{\text{MPWF}} = \frac{1}{N} \sum_{i=1}^{N} k_i [\hat{M}]_{11}^{-1} F P k_i. \quad (20)$$

The MPWF is the span ML estimator for Gaussian clutter with known power P, and it is unbiased [13], [14]. When compared to the span estimator from (5), the main advantage of the MPWF is that it takes into account the correlation between the different polarization channels (speckle) in the whitening process.

C. Spatial Support

In the estimation process, a certain number of samples must be gathered for deriving the observation vector. In this purpose, the boxcar sliding neighborhood is usually employed. The main drawback of nonadaptive BN is that the available number of samples is directly proportional with the loss of spatial resolution. In order to deal with this undesired effect, several strategies to obtain locally ANs were proposed for POLSAR data processing. In [8], three local neighborhoods are analyzed, and their performances are discussed with respect to different end-user applications (visual interpretation, classification, etc.). Experiments on real data sets have shown that the intensity-driven adaptive neighborhood (IDAN) represents, on the whole, a good tradeoff between preserving signal characteristics and gathering a significant number of samples for coherence and $H - \alpha - A$ parameter estimation [8], [43].

Recent studies have revealed that the original IDAN algorithm tends to introduce a bias with respect to the radiometry information [44]. The main reasons are the use of a symmetric confidence interval around the mean for the Gamma-distributed intensity and the estimation of the initial seed by the median computed within a 3×3 neighborhood. In order to deal with these problems, the SDAN algorithm has been introduced in [45]. It allows using heterogeneous scene models, such as SIRV, in the estimation step. Note that this approach is not optimal as the resulting AN is driven on the texture (span) information only. One may use other existing locally ANs (e.g., directional neighborhoods [9]), but, up to now, the existing AN algorithms are also tributary to the span information.

SDAN successively truncates the texture PDF using two symmetric confidence intervals around the mean. The truncation thresholds are expressed with Gamma-distributed texture. However, different PDFs can be truncated according to the same thresholds (initially set using a Gamma prior). In this paper, the SDAN is employed to eliminate eventual outliers from the local neighborhood. The main advantage of this approach consists in selecting spatially connected pixels within a certain confidence interval. Its main inconvenience is the estimation bias which can be induced by truncating the significant part of the unknown texture PDF.

Within the SIRV context, the SDAN algorithm operates under deterministic texture hypothesis: If τ is deterministic, the span statistics over matrix stationary areas is given by the Gamma PDF resulting from the complex Gaussian kernel. This is coherent with the general hypothesis adopted for POLSAR speckle filtering, stating that the local matrix stationarity property is revealed by changes in the span image when texture is absent [9].

D. Application to POLSAR Parameter Estimation

One way to derive the normalized coherency matrix is the normalized sample covariance estimator, obtained by locally
replacing the statistical mean by spatial average within the
sliding neighborhood \(W \)

\[
[\hat{M}]_{SCM}(i,j) = \frac{m}{\text{card} \{W(i,j)\}} [\hat{T}]_{SCM}
\]

with

\[
[\hat{T}]_{SCM} = \frac{1}{\text{card} \{W(i,j)\}} \sum_{(p,q) \in W(i,j)} k(p,q)k^\dagger(p,q)
\]

(21)

where \((i,j)\) represents the current range/azimuth position and \(\text{card} \{W\}\) denotes the cardinal of \(W\). The main advantage of the \([\hat{M}]_{SCM}\) estimator consists in deriving the polarimetric covariance matrix independently of the span for the Gaussian case. The normalized SCM estimator presents also one major disadvantage: It is not SIRP stationary, and, as a consequence, this estimator is not consistent over textured areas. Although the derivation of the normalized SCM estimator from the standard SCM estimator is straightforward, we could not find any specific paper to report its use for POLSAR data.

In this paper, we propose to extend the estimation of the normalized polarimetric coherency matrix by using a heterogeneous scene model over the sliding neighborhood. The FP estimator of the normalized covariance matrix for the SIRV model is applied using the procedure described in Section II-B. More precisely, the FP normalized coherency matrix is computed iteratively as

\[
[\hat{M}]_{FP}(i,j) = \frac{m}{\text{card} \{W(i,j)\}} \sum_{(p,q) \in W(i,j)} k(p,q)k^\dagger(p,q)\times \sum_{(p,q) \in W(i,j)} \frac{1}{[\hat{M}]_{FP}(i,j)}k(p,q)
\]

with \([\hat{M}]_{FP} = [I_m]\)

(22)

where \(l\) is the iteration index. Equation (22) gives the covariance matrix estimate of the SIRV complex Gaussian kernel without imposing any statistical constraint over the texture random variable \(\tau\). The resulting matrix \([\hat{M}]_{FP}\) is asymptotically Gaussian distributed. The proposed procedure (SDAN-FP) starts by computing the AN using the SDAN algorithm [45] at each range/azimuth position. The resulting AN is supposed to respect the matrix stationarity condition. Finally, the FP estimator is applied to derive the normalized polarimetric coherency matrix estimate under a compound Gaussian polarimetric clutter model (22).

Another physical parameter to be estimated is the total power. For the SIRV model, the PWF span estimator is the ML estimator; hence, it should be applied for textured areas. However, on Gaussian textureless areas, a stronger speckle reduction can be obtained using the MPWF estimator. In practical applications, the PWF and the MPWF estimators should be applied as follows: On Gaussian stationary regions, the best span estimator is the MPWF, while on SIRV homogeneous areas only, the PWF should be applied. We propose to deal with this tradeoff by applying the LLMMSE criterion for the span estimation [9]

\[
\hat{P}_{LLMMSE} = \hat{P}_{MPWF} + \alpha_{LLMMSE}(\hat{P}_{PWF} - \hat{P}_{MPWF})
\]

with

\[
\alpha_{LLMMSE} = \frac{\sigma^2_{PWF}(1+\sigma^2_n)}{\sigma^2_{MPWF} - \mu^2_{MPWF}\sigma^2_n}
\]

(23)

where \(\mu_{MPWF}, \sigma_{PWF}\), and \(\sigma_{MPWF}\) are the signal mean and standard deviations computed inside the local estimation neighborhood, respectively, and \(\sigma_n\) is the noise standard deviation (a priori known). In (23), the two span estimators can be computed according to (17) and (20).

In the last stage, it is also possible to unify these two descriptors by multiplying them according to the SIRV model from (6). An important remark is that, by multiplying the two descriptors, the separation between the total received power (span) and the polarimetric information (speckle normalized coherency) is lost. Finally, the resulting coherency matrix \([\hat{T}]\) does not obey the Wishart PDF as it depends on the estimated span PDF.

In summary, this section introduces a novel estimation scheme (see Fig. 1) for deriving normalized polarimetric coherency matrices and resulting estimated span. The proposed algorithm couples span-driven multiresolution techniques [45] with heterogeneous SIRV scene models [20] to deal with the polarimetric texture inside the estimation neighborhood. It is important to notice that the proposed FP estimator uses normalized coherency matrix inversion, and thus, it works only with Hermitian positive definite normalized coherency matrices. This constraint is still acceptable since, in practice, image coherency matrices are generally of full rank (three for monostatic POLSAR data) [46]. However, in the specific case of a noninvertible matrix, which can correspond to a strongly polarized scattered signal, the SIRV model can be applied by using only the nonzero signal subspace.

E. Distance Measures for POLSAR Segmentation

Classification of ground cover with POLSAR data is an important application [17]–[19], [47]–[49]. Generally, one has to find a distance between the pixel covariance matrix \([C]\) and the class center \([C]_c\). Based on this distance, conventional clustering methods have already been introduced with POLSAR data: “naive” Bayesian ML classifier or K-means [18], fuzzy K-means, or expectation maximization [47].

When the POLSAR data are modeled by a stochastic process with a known PDF, it is possible to derive optimal ML distance measures (e.g., the Wishart distance for Gaussian processes). In [27], Yueh et al. derived an optimal ML distance measure
for terrain cover classification using the normalized target vector in the lexicographical basis. The adopted normalization condition was the Euclidean norm, and the distance measure was computed applying the Bayesian ML classifier with the PDF of the normalized polarimetric data. Note that, in Yuhe’s approach, the covariance matrix is estimated using the SCM (ML estimator only with Gaussian clutter). In consequence, the derived optimal distance is a generalized ML distance for Gaussian clutter only.

We propose the following general binary hypothesis test for a given class \(\omega \):

\[
\begin{align*}
H_0 : [C] &= [C]_\omega \\
H_1 : [C] &\neq [C]_\omega.
\end{align*}
\]

According to the Neyman–Pearson Lemma, the likelihood ratio test (LRT) provides the most powerful test [50]

\[
\Lambda = \frac{p_n(k_1, \ldots, k_N/H_1)}{p_n(k_1, \ldots, k_N/H_0)}.
\]

(25)

For Gaussian clutter, maximizing the LRT from (25) and replacing the pixel coherency matrix \([T]\) with the ML estimate \(\hat{T}\) are equivalent to minimizing the conventional Wishart distance

\[
D_{\text{Wishart}}\left([\hat{T}]_{\text{SCM}}, [T]_\omega \right) = \ln \frac{\det{[T]_\omega}}{\det{[\hat{T}]_{\text{SCM}}}} + \text{Tr}\left\{ [T]_\omega^{-1}[\hat{T}]_{\text{SCM}} \right\}.
\]

(26)

This distance has been widely used for supervised and unsupervised POLSAR data clustering [18], [19], [47].

In the case of the SIRV model, one can rewrite the hypothesis test as

\[
\begin{align*}
H_0 : [M] &= [M]_\omega &\iff k = \sqrt{\tau z}, \text{ with } z \sim N(0, [M]) \\
H_1 : [M] &\neq [M]_\omega &\iff k = \sqrt{\tau z}, \text{ with } z \sim N(0, [M]_\omega).
\end{align*}
\]

(27)

where \(\tau \) is the unknown deterministic texture.

For a given class \([M]_\omega\), the LRT with respect to the texture \(\tau \) and the normalized coherency matrix \([M]\) is given by

\[
\Lambda_{\text{SIRV}} = \frac{\prod_{n=1}^{N} \frac{1}{\pi^{N/2} \det([M]_\omega)}}{\prod_{n=1}^{N} \frac{1}{\pi^{N/2} \det([M])}} \exp\left\{ \frac{k_n^\dagger [M]^{-1} k_n}{\tau_n} \right\} \exp\left\{ \frac{k_n^\dagger [M]_\omega^{-1} k_n}{\tau_n} \right\}.
\]

(28)

Notice that the likelihood function in (28) does not use the stochastic texture description as the PDF \(p(\tau) \) is supposed unknown in the SIRV model. As previously stated in Section II-B3, the texture parameter \(\tau \) can be considered either as a random variable with unknown PDF \(p(\tau) \) or as an unknown deterministic parameter with PDF \(p(\tau) = \delta(\tau - \tau_n) \) which characterizes yet a particular SIRV process. It can be shown that the ML estimation of the coherency matrix yields a good approximate ML estimate in the first case and the true ML estimate in the second case [31], [38]. With the general PDF being unknown, it is therefore impossible to derive a texture-independent closed-form expression for the likelihood ratio of the test given by (27). This procedure is here simplified, considering a particular SIRV process with a texture characterized by an unknown deterministic parameter. Consequently, each resolution cell is now associated with its own

\[
\Lambda_{\text{SIRV}} = -N \ln \frac{\det{[M]_\omega}}{\det{[M]}} - \sum_{n=1}^{N} k_n^\dagger ([M]^{-1} - [M]_\omega^{-1}) k_n / \tau_n.
\]

(29)

Now, since \(\tau_n \)'s and \([M]\) are unknown, they are replaced by their ML estimates from (11) and (13). The resulting generalized LRT \(\Lambda_{\text{SIRV}} \) is given by

\[
\ln(\Lambda_{\text{SIRV}}) = -N \ln \frac{\det{[M]_\omega}}{\det{[M]}} - m \sum_{n=1}^{N} k_n^\dagger [M]_\omega^{-1} k_n + Nm.
\]

(30)

Maximizing the generalized LRT over all classes is equivalent to minimizing the following SIRV distance:

\[
D_{\text{SIRV}}\left([M]_\omega, [M]_\omega \right) = \ln \frac{\det{[M]_\omega}}{\det{[M]}} + \frac{m}{N} \sum_{n=1}^{N} k_n^\dagger [M]_\omega^{-1} k_n.
\]

(31)

Notice that computing the distance from (31) needs the original scattering vectors \(k_n \).

In this paper, the distance measure from (31) is used as a dissimilarity measure in the conventional K-means clustering for POLSAR data. The full description of the K-means algorithm can be found in [18].

In summary, this section introduces a new distance measure between normalized coherence matrices. The resulting approximate generalized ML distance is optimal for POLSAR data characterized by the SIRV model.

An interesting remark concerning the SIRV distance can be observed in (31). On the one hand, when the texture (span information) is high, the second term of the SIRV distance \(D_{\text{SIRV}} \) becomes small, and the distance measure is dominated by the determinant ratio. This usually corresponds to strongly polarized targets with a dominant scattering mechanism (e.g., dihedral, trihedral, etc.). On the other hand, with smaller span values, the distance is dominated by the second term which takes into account the \(N \) observed samples. This second case often corresponds to distributed targets.

III. RESULTS AND DISCUSSION

This section has two main objectives. The first one consists in evaluating the performance of the normalized coherence estimation techniques presented in Section II. The second objective is to show the improvement in the conventional
POLSAR processing chain brought by introducing the normalized coherence matrix related to the SIRV model.

Three different estimation techniques are analyzed: the normalized SCM coupled with the 7×7 BN (BN-SCM) and the FP estimator coupled either with the 7×7 BN (BN-FP) or with the SDAN (SDAN-FP). In all three cases, the corresponding span image is estimated using the LLMMSE estimator from (23). The parameters used for the SDAN algorithm are $L_{eq} = 3$ and $N_{\text{max}} = 50$.

A. Simulated POLSAR Data

As, for real data, it is impossible to find reference regions with known coherency matrix, the effectiveness of the estimation schemes is demonstrated using simulated POLSAR data [30].

1) Gaussian Case: The first POLSAR data set consists of four adjacent Gaussian regions as presented in Fig. 2. Each of the four quadrants is associated with a known deterministic texture value and a known theoretical covariance matrix. Using these parameters, each component of the polarimetric target vector is simulated accordingly. Fig. 2(a) shows the initial span image computed using (3), and Fig. 2(b) shows the resulting amplitude color composition of the three target vector components.

The LLMMSE span P and the normalized coherency matrix $[M]$ are estimated using the three different estimation schemes. Note that, in the Gaussian case, the optimal ML estimation technique is the BN-SCM from Fig. 3(a) and (d). Inside each quadrant, the stochastic process characterizing the data is Gaussian stationary; hence, it is also SIRV homogeneous. The BN-FP estimation yields quite similar results, from the visual point of view, as shown in Fig. 3(b) and (e). However, the use of the BN is associated with the well-known edge-blurring effect as the matrix stationarity condition is not respected over the transitions between the quadrants. The SDAN-FP estimation reduces this undesired effect as presented in Fig. 3(c) and (f). As a general remark, the blurring is more present within the normalized coherency diagonal elements than within the span images due to the use of the adaptive LLMMSE span estimator.

In order to objectively assess the estimation performances, the mean and the variance for each element of the normalized coherency are computed over the SE quadrant. A global error measure ϵ for the normalized coherency matrix is also introduced as

$$\epsilon = \frac{1}{N} \sum_{i=1}^{N} \frac{\|\tilde{M}_i - [M_{\text{ref}}]\|_F}{\|M_{\text{ref}}\|_F}$$

(32)

where $[M_{\text{ref}}]$ is the reference normalized coherency matrix used for data simulation. As observed in Table I, the best results are obtained using the BN-SCM estimator. Being the ML estimator for Gaussian stationary regions, the SCM is used as a benchmark for the SDAN and the FP estimator. The mean value is well preserved for both BN-FP and SDAN-FP estimates, while the variance of the BN-FP is smaller than the measured variance of the SDAN-FP. The latter observation is explained by the fact that the BN is optimal on such SIRV homogeneous regions. One can also note that, despite the mean of each element of the normalized coherency being quite similar, a better error measure is provided by the ϵ parameter. Using the Frobenius norm, which is a norm associated to the inner product on the ring of all complex matrices, the corresponding error ϵ shows that the smallest error is obtained for the optimal BN-SCM estimator. When introducing the FP estimator, ϵ increases, and it increases even more by using the SDAN adaptive spatial support. This behavior corresponds to the expected theoretical observations. However, it is important to notice that, for both BN-FP and SDAN-FP, the error is not increased by more than 7% with respect to the ML estimator. This is acceptable for the POLSAR applications where the clutter is characterized by a Gaussian stationary stochastic process.

A similar objective performance assessment is carried out for the estimation of the span image. Table II shows the span mean ratio and the speckle coefficient of variation computed for the same Gaussian stationary region. As for the normalized coherency, the bias in the estimated radiometry is less than 7% for all three estimation techniques. An interesting remark consists in the fact that, when using the FP estimator, the bias from Table II is also linked with the average computed over the corresponding homogeneous region. Even if the mean ratio is a standard parameter for evaluating the speckle filter radiometric bias, this parameter is not so well adapted for the FP estimation. Although being asymptotically Gaussian distributed, the FP estimator is outperformed by the SCM (ML estimator for Gaussian clutter) with a fixed number of samples. Consequently, the average over a homogeneous area should be coupled with the estimation of the FP normalized coherence over the same homogeneous population for optimal performances. This effect can be noticed with the SDAN-FP span, where the local SDAN can gather more than 49 samples over Gaussian stationary areas. The resulting SDAN-FP span estimator exhibits a radiometric bias that is less than 1% (same as for the BN-SCM).

In summary, the subjective and objective performance assessment carried out for Gaussian POLSAR clutter shows that, despite being suboptimal, the proposed FP estimator and the SDANs give good overall performances. The corresponding error measure is less than 7% for all estimation schemes.
2) SIRV Case: The second simulated POLSAR data set proposes the same four quadrants but with Gamma-distributed texture [Fig. 4(a)]: Each quadrant is K distributed. The texture coefficient of variation used for simulation is equal to three, which corresponds to a highly non-Gaussian clutter (urban areas). Fig. 4(b) shows the initial span image. Fig. 4(c) shows the corresponding amplitude color composition of the three target vector components.

The overall data set is not SIRV homogeneous as the matrix stationarity condition is not respected on the boundaries; however, each quadrant is SIRP stationary. In the following, we shall use only the “SIRV homogeneity” assumption over each quadrant, namely, the texture PDF is supposed unknown. Fig. 5 shows the LLMMSE span P and the normalized coherency matrix $[M]$ estimated using the three different estimation schemes.

As the data set is not Gaussian, the PWF span estimator is dominant in the LLMMSE criterion, and the corresponding speckle reduction is performed using only three samples. Hence, concerning the LLMMSE span estimation, BN-SCM, BN-FP, and SDAN-FP [Fig. 5(a)–(c)] look similar from the visual point of view.

The effectiveness of the FP estimator in compound Gaussian clutter can be observed in Fig. 5(e) and (f). While the BN-SCM normalized coherency [Fig. 5(d)] presents a "patchy" appearance, the BN-FP estimation [Fig. 5(e)] provides better visual homogeneity within each quadrant.
Fig. 4. Simulated POLSAR data, SIRV case (200 × 200 pixels). (a) Texture image. (b) Initial one-look span estimated using (3). (c) Amplitude color composition of the target vector elements $k_1 - k_3 - k_2$.

Fig. 5. Simulated POLSAR data, SIRV case (200 × 200 pixels). Square root of the LLMMSE span image using the normalized coherency estimated by (a) BN-SCM, (b) BN-FP, and (c) SDAN-FP. Color composition of the normalized coherency diagonal elements $[M]_{11} - [M]_{33} - [M]_{22}$ estimated by (d) BN-SCM, (e) BN-FP, and (f) SDAN-FP.

spatial support [Fig. 5(f)] assures better edge preservation for the transitions between quadrants. One important issue is that the diagonal elements of the BN-FP normalized coherency for the SIRV case [Fig. 5(e)] have the same visual aspect as for the previous Gaussian POLSAR data set [Fig. 3(e)]. This shows that the FP estimate of the covariance matrix does not depend on the texture PDF.

Using the same reference region as for the Gaussian case, Table III presents the mean and the variance for each element of the normalized coherency and also the overall error measure ϵ computed for the three estimation schemes. BN-FP and SDAN-FP outperform BN-SCM in retrieving the reference value and also in terms of variance reduction. Since the matrix stationarity is always assured within the reference region, BN-FP outperforms the SDAN-FP also. Finally, another interesting result consists in the fact that Table III indicates the same BN-FP value for the ϵ error parameter as in the Gaussian case (Table I). This objective issue confirms the visual comparison mentioned in the previous paragraph.

Objective performance assessment has been carried out for the LLMMSE span estimation also. Table IV presents the Kolmogorov–Smirnov (KS) test with respect to the reference span used for simulation. The resulting KS values, computed over the entire span image, indicate that BN-FP outperforms BN-SCM. The best results are reported when using the SDAN-FP estimator. Note that the KS distance is rather small $\epsilon \in (0.07, 0.12)$ in all three cases.

B. Airborne POLSAR Data

To illustrate the improvements in the standard POLSAR processing chain, the results obtained with high- and very high resolution airborne data are reported. Both data sets were acquired by the airborne French Aerospace Laboratory (ONERA) RAMSES system [51].

1) High-Resolution POLSAR Data: The first POLSAR data set was acquired in Brétigny, France. The mean incidence angle is 30°. It represents a fully polarimetric (monostatic mode) X-band acquisition with a spatial resolution of approximately 1.5 m in range and azimuth.

Fig. 6(a) shows the color composition of the target vector amplitudes. The target area is composed of three buildings, a
either the diagonal elements of herency that are present on the roof of the building from Fig. 7(c). This effect is reduced in the SDAN-target) induced by coupling the BN spatial support with the large dips on a spatial profile near the boundaries of a pointwise BN-SCM and BN-FP are tributary to the “ring effect” (two pointwise structures surrounding the building. However, both from Fig. 7(a). This can be observed on the isolated brilliant whitening in the estimation process than the BN-SCM span image superposed over the airborne photograph from Fig. 6(b).

The LLMMSE span and the normalized coherency matrix are estimated using the three different estimation schemes (Fig. 7). The BN-FP span illustrated in Fig. 7(b) exhibits better whitening in the estimation process than the BN-SCM span from Fig. 7(a). This can be observed on the isolated brilliant pointwise structures surrounding the building. However, both BN-SCM and BN-FP are tributary to the “ring effect” (two large dips on a spatial profile near the boundaries of a pointwise target) induced by coupling the BN spatial support with the LLMMSE estimator [52]. This effect is reduced in the SDAN-FP span image as it can be observed over the metallic structures that are present on the roof of the building from Fig. 7(c).

Visual assessment is carried out also with the normalized coherency [M] estimates. Color compositions, constructed from either the diagonal elements of [M] or the corresponding H−α−A parameters [17], are computed for the three estimation techniques [Fig. 7(d)–(i)]. Both parameters exhibit the same behavior:

1) BN-SCM: patchy appearance mainly due to the texture;
2) BN-FP: blurring as the matrix stationarity condition is not respected;
3) SDAN-FP: higher spatial feature preservation but more variance.

As the target area is highly heterogeneous, the SDAN-FP estimation is a good tradeoff between robust estimation and spatial resolution preservation.

Finally, it is possible to derive the SDAN-FP polarimetric coherency matrix as a product between the span image [Fig. 7(c)] and the corresponding normalized coherency [Fig. 7(f)]. In Fig. 8(a)–(c), the SDAN-FP coherency is compared with the conventional coherency matrices obtained by the SCM estimator coupled with two spatial supports: the BN and the IDAN [8]. Subjective visual assessment can be expressed in terms of the hue—saturation—lightness color space [53] by associating the lightness to the span and the saturation to the polarimetric diversity. The SDAN-FP coherency from Fig. 8(c) exhibits better performances in terms of lightness and saturation, which means that both the span and the normalized coherency are better estimated. The corresponding H−α classification maps [17] are shown in Fig. 8(d)–(f). For H−α classification also, the SDAN-FP coherency provides better performances as it achieves stronger noise reduction than the IDAN filter.

One key issue to be discussed is whether the normalized coherency matrix and the span should be aggregated in the final estimation step or not (the question mark from Fig. 1). Most of the existing processing chains use the conventional coherency matrix for representing POLSAR data for unsupervised land cover classification [18], [19], [43], [47] and for target detection applications [12], [33]. Due to the SIRV model identification problem discussed in Section II-B, the complete description of the POLSAR data set is achieved by estimating the span and the normalized coherency independently. The latter describes the polarimetric diversity, while the span indicates the total received power. Moreover, the FP estimation of the normalized coherency does not depend on the span information. Given these facts, we propose to investigate this problem in the framework of unsupervised POLSAR classification. The classification scheme discussed in the following is the standard Wishart H−α segmentation [18]. For segmenting the

![Image 58x342 to 304x471](image1)

![Image 137x569 to 488x697](image2)

Fig. 6. Brétigny, RAMSES POLSAR data, X-band (501 × 501 pixels). (a) Amplitude color composition of the target vector elements k1 − k3 − k2. (b) Optical image (137 × 137 pixel zoom of the initial span superposed for illustrating the region of interest).

parking lot, and the surrounding agricultural areas. For further illustration, a non-Gaussian urban (building) region has been selected, namely, the span image superposed over the airborne photograph from Fig. 6(b).

Table III

<table>
<thead>
<tr>
<th>Parameter (3378 pixels)</th>
<th>Value</th>
<th>Mean</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>M11</td>
<td>1.79</td>
<td>1.75</td>
<td>0.35</td>
</tr>
<tr>
<td>M22</td>
<td>0.77</td>
<td>0.75</td>
<td>0.27</td>
</tr>
<tr>
<td>M33</td>
<td>0.43</td>
<td>0.49</td>
<td>0.23</td>
</tr>
<tr>
<td>Σ (M12)</td>
<td>-0.19</td>
<td>-0.19</td>
<td>0.35</td>
</tr>
<tr>
<td>Σ (M22)</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>Σ (M32)</td>
<td>0.16</td>
<td>0.18</td>
<td>0.18</td>
</tr>
<tr>
<td>Mean normalized error (α)</td>
<td>0.51</td>
<td>0.19</td>
<td>0.28</td>
</tr>
</tbody>
</table>

Table IV

<table>
<thead>
<tr>
<th>Span (3378 pixels)</th>
<th>K-S test</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLMMSE</td>
<td>0.111</td>
</tr>
<tr>
<td>BN-SCM</td>
<td>0.100</td>
</tr>
<tr>
<td>BN-FP</td>
<td>0.068</td>
</tr>
</tbody>
</table>

Simulated POLSAR Data, SIRV Case: The KS Test

KS = maxx |Fα(x) − Fref(x)| FOR THE SPAN DISTRIBUTION
Fig. 7. Brétigny, RAMSES POLSAR data, X-band (137 × 137 pixels). Square root of the LLMMSE span image using the normalized coherency estimated by (a) BN-SCM, (b) BN-FP, and (c) SDAN-FP. Color composition of the normalized coherency diagonal elements $[M]_{11} - [M]_{33} - [M]_{22}$ estimated by (d) BN-SCM, (e) BN-FP, and (f) SDAN-FP. Color composition of the polarimetric $H-\alpha-A$ parameters estimated by (g) BN-SCM, (h) BN-FP, and (i) SDAN-FP.

Fig. 8. Brétigny, RAMSES POLSAR data, X-band (137 × 137 pixels). Color composition of the coherency diagonal elements $[T]_{11} - [T]_{33} - [T]_{22}$ estimated by (a) BN, (b) IDAN, and (c) SDAN-FP after multiplication with the LLMMSE span from Fig. 7(c). $H-\alpha$ classification results using (d) BN, (e) IDAN, and (f) SDAN-FP.
normalized coherency, we have modified the Wishart $H-\alpha$ algorithm by replacing the Wishart distance with the SIRV ML distance discussed in Section II-E. For comparison, we have also used the scalar Gamma K-means classification with $H-\alpha$ initialization.

Fig. 9 shows the POLSAR unsupervised classification results using three descriptors estimated by SDAN-FP: span [Fig. 9(a)], coherency [Fig. 9(b)], and normalized coherency [Fig. 9(c)]. The selected scene is composed of both Gaussian (agricultural fields) and non-Gaussian (urban) areas. This case is encountered in many practical POLSAR classification applications. Fig. 9(e) shows the eight-class segmentation map obtained using the SDAN-FP coherency matrix. When compared to the scalar unsupervised classification map [Fig. 9(d)] obtained using the span only, one can observe the high degree of similarity between them. This leads to the following conclusion concerning the Brétigny data set: The Wishart $H-\alpha$ classification is mainly influenced by the information contained in the span image. The same behavior has been reported over alpine glaciers, with L-band E-SAR data [45]. Regarding the polarimetric information, Fig. 9(f) shows the classification map computed using the normalized coherency matrix and the associated SIRV distance. The visual assessment in Fig. 9(e) and (f) reveals that a significant part of the polarimetric information is lost when using the standard coherency matrix: The building class separation is lost, as well as the natural canonical targets (trihedral, dihedral, etc.) that are present over different “field” classes. One important remark concerning the Wishart $H-\alpha$ classification is that a large number of samples are usually...
assigned to the class feature vector when iterating the K-means clustering algorithm. Due to this, locally Gaussian areas (agricultural fields) may become heterogeneous regions as neither the matrix stationarity nor the texture homogeneity conditions are respected.

The same behavior can also be observed in Fig. 9(g)–(i) with the classification maps obtained after basic scattering mechanism identification [54]. The use of polarimetric indicators, derived from the eigenvector–eigenvalue decomposition of the normalized coherency matrix, allows the interpretation of each cluster scattering mechanism from Fig. 9(d)–(f). In all three cases, the POLSAR parameters were computed using the SDAN-FP normalized coherency from Fig. 9(f). The observed scene is then classified into three canonical scattering types: even bounce (blue or cyan), odd bounce (red or dark red), and volume scattering (green) [55].

2) Very High Resolution POLSAR Data: The second POLSAR data (Fig. 10) set was acquired in Toulouse, France, with a mean incidence angle of 50°. It represents a fully polarimetric (monostatic mode) X-band acquisition with a spatial resolution of approximately 50 cm in range and azimuth.

Fig. 11 shows the visual assessment of the proposed estimation scheme applied to very high resolution POLSAR data acquired in an urban environment. The obtained results are visually compared to those obtained by the refined Lee filter operating under Gaussian clutter hypothesis [9]. With a 50-cm spatial resolution, the SDAN-FP normalized coherency from Fig. 11(c) reveals higher variability in polarimetric signatures than with a 1.5-m spatial resolution [Fig. 7(f)]. Fig. 11(b) shows the color composition of the diagonal elements of the SDAN-FP coherency matrix after multiplication by the corresponding LLMMSE span. When compared to the polarimetric coherency derived by the refined Lee filter [Fig. 11(a)], the SDAN-FP coherency better preserves the polarimetric and radiometric signatures over thin spatial features (brilliant points and edges), while over larger structures (buildings, fields, and roads), the two images look similar. This can also be observed in the eight-class segmentation maps obtained by Wishart $H-\alpha$ clustering [Fig. 11(d) and (e)]. It is important to stress that, for very high resolution urban POLSAR data, the polarimetric coherency matrix is not Wishart distributed. Hence, the unsupervised $H-\alpha$ classification based on the SIRV distance measure can
properly be applied using the SDAN-FP normalized coherency. The result is shown in Fig. 11(f). Finally, the three classification maps are interpreted according to the basic scattering mechanism identification procedure [54]. The subjective visual assessment indicates that quite realistic results are obtained using the SDAN-FP normalized coherency descriptor [Fig. 11(i)]. Buildings and cars are mainly retrieved in the red “odd-bounce” class, while “even-bounce” scattering mechanism (cyan class) appears on the flat regions (roads).

In conclusion, the joint analysis of the span and the normalized coherency presents several advantages with respect to the coherency matrix descriptor: separation between the total received power and the polarimetric information, estimation of the normalized coherency matrix independently of the span, and the existence of the SIRV distance measure for unsupervised ML classification of normalized coherencies. However, the span–normalized-coherency description of POLSAR images raises new problems which still remain under investigation. The first issue concerns the use of span for testing the matrix stationarity condition for the normalized coherency estimation. This test is currently used for POLSAR data speckle filtering, and it is founded on the basic principle that changes within the polarimetric signature are revealed by changes in the total received power. Consequently, one may envisage other estimation schemes dedicated to the SIRV model with stochastic texture by considering external estimators of matrix stationarity. The second important remark concerns the Wishart unsupervised classification scheme. Although all statistical requirements employed for unsupervised classification are met, the polarimetric information is quite difficult to extract using the K-means clustering. As it can be noticed in Fig. 9(c), the polarimetric signatures are strongly mixed, and the class boundaries are smoothed within high-resolution POLSAR images (even for highly heterogeneous target areas). Therefore, other clustering strategies should be better suited to capture the spatial distribution of different polarimetric signatures. One starting point could be the POLSAR segmentation by likelihood approximation [56], spectral clustering ensemble [57], or the support vector machines kernel-based nonlinear classification [58].

Finally, one can observe that span information does also, in some cases, contribute to classification quality (e.g., discrimination of roads in Fig. 9 and buildings in Fig. 11), although the polarimetric signature clustering suffers. Based on the SIRV model, the separation span/polarimetric signature is achieved. Future work is needed to objectively assess the classification potential of these two descriptors separately.

IV. GENERAL REMARKS

One critical point of the SIRV model is linked to the scalar texture (span) descriptor τ. The validity of the product model for POLSAR data has been investigated in many papers over the last decades [7], [11]–[13], [28].

Yueh et al. [27] derived the generalized likelihood of the normalized polarimetric target vector in Gaussian clutter. This approach has been extended to the K-distributed clutter in [6] and [28]. Note that this extension is not optimal since the covariance matrix parameter is replaced by the SCM, or the SCM depends on the texture PDF $p(\tau)$, and it is not the ML estimator of the covariance matrix in the K-distributed clutter. The exact ML normalized covariance estimator can be derived using Yao’s representation theorem for SIRVs, and its exact expression is given in (16).

The product model has also been used by Novak et al. [11], [12] for deriving the PWF. Based on this result, Lopes and Sery [13] derived the MPWF as well as the adaptive LLMMSE filter for Gaussian and K-distributed clutter. The SIRV representation theorem allows the derivation of the PWF as an ML estimator of the deterministic texture. Once the texture parameter is obtained for every resolution cell, further statistical processing can be applied over a population of texture parameters (e.g., the proposed LLMMSE span filter).

For Gaussian clutter, Lee et al. [18], [19], [47] introduced optimal polarimetric covariance matrix classification schemes based on the Wishart distance. The proposed methods can be extended to the SIRV model by using the SIRV distance presented in Section II-E. Moreover, the asymptotic distribution of the MPWF estimator is derived in [39]. The MPWF estimator computed with N samples (secondary data) converges in distribution to the normalized SCM computed with $N[m/(m + 1)]$ secondary data. Since the normalized SCM is the SCM up to a scale factor, we may conclude that, in problems invariant with respect to a scale factor on the covariance matrix, the FP estimate is asymptotically equivalent to the SCM computed with $N[m/(m + 1)]$ secondary data.

We can conclude that Yao’s representation theorem allows optimal multivariate signal processing of POLSAR data in a general framework. The SIRV model provides the methodology for retrieving the conventional cases (multivariate Gaussian and multivariate K distribution). This methodology can also be generalized to other heterogeneous clutter models defined by explicit texture PDFs (inverse Gamma, Fisher, etc.) [59].

More recent studies have revealed the presence of different scattering characteristics between the cross- and copolar terms of the Sinclair matrix [16], [60]. In consequence, the POLSAR clutter could be modeled by different texture random variables for each polarization channel. Such a stochastic model already exists in the literature, and it is known as the generalized SIRV model [61]. Unfortunately, the covariance matrix generalized SIRV estimator of the Gaussian kernel could not be found, without taking into account any a priori information about the texture multivariate PDF. Future work should investigate the coupling between SIRVs and multiple single-channel spatial texture descriptors, such as the nonstationary anisotropic Gaussian-kernel model [62].

Despite being quite general, the SIRV clutter model supposes the matrix stationarity condition to be verified over the observation vector. We proposed the use of an adaptive spatial support based on the scalar span information. The resulting SDAN operates under deterministic texture hypothesis, and it states that the local matrix stationarity property is revealed by changes in the span image.

One limitation of the proposed estimation scheme concerns the determination of the SIRV homogeneous neighborhood surrounding a pixel. The strategy adopted for this paper consists
in testing the matrix stationarity condition using the span, under deterministic texture assumption. Despite not being optimal in the context of the SIRV model, the proposed approach does not require additional a priori information regarding the local clutter statistics.

Finally, the SDAN-FP algorithm is more computation intensive than other existing POLSAR speckle filtering algorithms developed for Gaussian clutter [8]–[10], and it handles single-look complex data only. Further work should address the expansion of the proposed approach to adaptive nonlinear filtering of multilook POLSAR data.

V. CONCLUSION AND PERSPECTIVES

This paper has presented a new estimation scheme for deriving normalized coherency matrices and the resulting estimated span with high-resolution POLSAR images. The proposed approach couples nonlinear ML estimators with SDANs for taking the local scene heterogeneity into account. The heterogeneous clutter in POLSAR data was described by the SIRV model. Two estimators were introduced for describing the POLSAR data set: the FP estimator of the normalized coherency matrix and the corresponding LLMMSE span. The FP estimation is independent on the span PDF and represents an approximate ML estimator for a large class of stochastic processes obeying the SIRV model. Moreover, the derived normalized coherency is asymptotically Gaussian distributed.

For the SIRV clutter, a new ML distance measure was introduced for unsupervised POLSAR classification. This distance was used in conventional K-means clustering initialized by the $H - \alpha$ polarimetric decomposition. Other extensions of the existing unsupervised or supervised POLSAR clustering methods (e.g., Bayes ML or fuzzy K-means) can be derived by replacing the conventional Wishart distance with the proposed SIRV distance.

The effectiveness of the proposed estimation scheme was illustrated by high- and very high resolution ONERA RAMSES X-band POLSAR data. The reliability of the obtained results was demonstrated by quantitative performance assessments using simulated POLSAR data.

This work has many interesting perspectives. We believe that this paper contributes toward the description and the analysis of heterogeneous clutter over scenes exhibiting complex polarimetric signatures. The proposed approach presents a high degree of generality as no explicit stochastic texture model is needed. Finally, the proposed estimation scheme can be extended to other multidimensional SAR techniques using the covariance matrix descriptor, such as the following: multibaseline interferometer, polarimetric interferometer, or multifrequency polarimetry. Future work should address the quantitative performance analysis of classification and target detection algorithms based on these estimators.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers and the associate editor for the helpful comments and suggestions.

REFERENCES

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
Jean-Philippe Ovarlez (M’06) was born in Denain, France, in 1963. He received the Master of Engineering degree from the Ecole Supérieure d’Electronique Automatique et Informatique (ESIEA), Paris, France, the Diplôme d’Études Approfondies degree in signal processing from the University of Paris XI, Paris, in 1987, and the Ph.D. degree in physics from the University of Paris VI, Paris, in 1992.

In 1992, he joined the Electromagnetic and Radar Division, French Aerospace Laboratory (ONERA), Palaiseau, France, where he is currently the Chief Scientist and a member of the Scientific Committee, ONERA Physics Branch. Since January 2008, he has been with the French–Singaporean SONDRA Laboratory, Supelec, Gif-sur-Yvette, France, on a part-time basis to supervise signal processing activities. His current activities of research are centered in the topic of signal processing for radar and synthetic aperture radar applications such as time–frequency analysis, imaging, detection, and parameter estimation.

Frederic Pascal (M’06) was born in Sallanches, France, in 1979. He received the Master’s Degree (“Probabilities, Statistics and Applications: Signal, Image et Networks”) with merit in applied statistics from the University of Paris VII, Paris, France, in 2003 and the Ph.D. degree in signal processing from the University of Paris X, Paris, in 2006, where it was advised by Pr. Philippe Forster (“Detection and Estimation in Compound Gaussian Noise”). This Ph.D. thesis was in collaboration with the French Aerospace Laboratory (ONERA), Palaiseau, France.

From November 2006 to February 2008, he was a Postdoctoral Fellow with the Signal Processing and Information Team, Laboratory Système et Applications des Technologies de l’Information et de l’Energie, National Council for Scientific Research (CNRS), Ecole Normale Supérieure, Cachan, France. Since March 2008, he has been an Assistant Professor with the SONDRA Laboratory, Supelec, Gif-sur-Yvette, France. His research interests are estimation in statistical signal processing and radar detection.

Céline Tison received the Master of Engineering and Ph.D. degrees from the Ecole Nationale Supérieure des Télécommunications (Telecom Paris), Paris, France, in 2001 and 2004, respectively. She is currently with the Altimetry and Radar Department, Centre National d’Études Spatiales (the French space agency), Toulouse, France. She works on radar instrument design and radar signal processing. Her main research interests, in the framework of synthetic aperture radar (SAR) image processing, include SAR image information extraction, in particular, for high-resolution urban imagery, high-resolution interferometry, and polarimetry.

Céline Tison received the Master of Engineering and Ph.D. degrees from the Ecole Nationale Supérieure des Télécommunications (Telecom Paris), Paris, France, in 2001 and 2004, respectively. She is currently with the Altimetry and Radar Department, Centre National d’Études Spatiales (the French space agency), Toulouse, France. She works on radar instrument design and radar signal processing. Her main research interests, in the framework of synthetic aperture radar (SAR) image processing, include SAR image information extraction, in particular, for high-resolution urban imagery, high-resolution interferometry, and polarimetry.

Céline Tison received the Master of Engineering and Ph.D. degrees from the Ecole Nationale Supérieure des Télécommunications (Telecom Paris), Paris, France, in 2001 and 2004, respectively. She is currently with the Altimetry and Radar Department, Centre National d’Études Spatiales (the French space agency), Toulouse, France. She works on radar instrument design and radar signal processing. Her main research interests, in the framework of synthetic aperture radar (SAR) image processing, include SAR image information extraction, in particular, for high-resolution urban imagery, high-resolution interferometry, and polarimetry.

Céline Tison received the Master of Engineering and Ph.D. degrees from the Ecole Nationale Supérieure des Télécommunications (Telecom Paris), Paris, France, in 2001 and 2004, respectively. She is currently with the Altimetry and Radar Department, Centre National d’Études Spatiales (the French space agency), Toulouse, France. She works on radar instrument design and radar signal processing. Her main research interests, in the framework of synthetic aperture radar (SAR) image processing, include SAR image information extraction, in particular, for high-resolution urban imagery, high-resolution interferometry, and polarimetry.