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ABSTRACT: 
 
This work aims to parameterize the urban structure types (UST) in Santiago de Chile on statistical block level. In connotation of 
remote sensing UST are defined as land-use structure entities. Central input data for this object-oriented approach is spatially very 
high resolution panfused and atmospherically corrected Quickbird data. To analyse and assess the structural properties of urban land-
cover objects within block level entities, basic and robust land-cover class descriptions are developed. For enhanced class 
descriptions several image object scales are created. Based on defined UST and additional field data a set of test areas is selected for 
four municipalities assigned to different socio-spatial clusters in Santiago de Chile. In all test areas the distribution of the basic land-
cover classes is parameterized using complex sub-object and relational image object descriptions. The central features to characterise 
the UST in this study are percentage area and density of subscale land-cover class objects. To carry out this analysis, the expert 
knowledge on UST is valuable to choose specific reference objects within the statistical block level. After the concept is 
implemented at the smallest scale, the approach can successfully be applied to the whole municipality once specific structural 
information are aggregated. The work is linked to activities of the project Risk Habitat Megacity and developed in close cooperation 
with the Helmholtz Centre for Environmental Research - UFZ in Leipzig, Germany. Finally, the resulting land-use structure entities 
will be linked to socio-spatial characteristics in the above mentioned cluster with respect to urban vulnerability. 
 
 

                                                                    
 

1. INTRODUCTION 

The process of urbanisation is a global issue and examined at 
global, regional and local scale. To analyse the dynamics of 
urbanisation and their processes it is important to get deeper 
understanding of urban morphological processes and the 
physical patterns of a city. The internal structure is witness for 
physical and social implications.. To identify the structure of 
residential areas, industrial sites or open spaces are essential to 
comprehend the difference and identity in a city (Pacione, 
2005). 
The Risk Habitat Megacity project (2007 to 2011) is a research 
initiative, focusing on highly dynamic urban agglomerations as 
a space of opportunity and a space of risk (Heinrichs & 
Kabisch, 2006). Santiago de Chile - the “anchor city” of this 
project – is characterized by a process of rapid urbanization 
with changes in land use and urban morphology. These changes 
are caused by an expansion of planned areas, a strong private 
real estate market, and informal housing settlements, which 
reduce the number of open spaces and green areas. The purpose 
of the land use management field of application in this project is 
to formulate and implement intervention strategies that will lead 
to the reduction of physical and social vulnerabilities.  
Obtaining information about land use which concerns the 
management of urban and suburban regions is particularly 
important (Jensen & Cowen, 1999). Furthermore, the physical 
structure and the composition of urban areas are key factors in 
urban planning issues (Netzband & Jürgens, 2010). Looking at 
the numerous applications in the field of urban remote sensing, 
it is optimistic to assume that a single sensor can provide all the 
information (Gamba et al., 2005). Presently, a new generation 
of satellite sensors is available. The use of the high or very high 

resolution (VHR) images captured by these sensors allows for 
the improved mapping and analysis of spatial urban land use 
and land cover. 
This paper focuses on the mapping of urban land use structure 
using VHR imagery. In order to approach the spatial 
heterogeneity of the investigation area, new methods such as 
object-based classification are applied.  
Several studies exist which focus on the characterization of 
urban areas using object-based classification. Since artificial 
objects consist of regular shapes and are arranged in linear 
alignment to neighboring objects, they are not unique in the way 
in which non-built-up land cover objects are. In most cases, 
there is a correlation between certain urban structures and land 
use. Thus, different structure types can be distinguished by 
gathering information about these two spatial components. 
Unfortunately, there is no standardized definition of urban 
structure types (UST). Wickop (1999) provides the following 
definition: “Areas with physignomically homogeneous 
character, which are marked in the built-up area by 
characteristic formation of buildings and open spaces”. Based 
on this definition, it is possible to distinguish spatial units which 
have similar environmental conditions.  
A city-wide mapping of UST based on visual interpretation of 
color infrared aerial photographs (CIR) has been conducted in 
different German metropolitan regions. A few research 
activities have been concerned with urban structuring using 
advanced remote sensing techniques. Banzhaf & Höfer (2008), 
Höfer et al. (2009) and Wurm et al. (2009) used object-oriented 
methods to derive UST from CIR and from VHR satellite 
images. In this work, spatial units were characterized by their 
land cover, land use and the type of urban fabric (Wurm et al., 
2009). The results of this approach are connected to socio-



 

environmental studies such as socio-spatial differentiation or 
socio-ecological investigation on neighbourhoods exposed to 
natural hazards (Netzband et al., 2009).  
 

2. METHODS AND ANALYSIS 

2.1 Area of Investigation 

The Metropolitan Area of Santiago de Chile (MAS) is divided 
into 34 municipalities (INE 2002) with almost 6 million 
inhabitants (Borsdorf et al., 2006). Within this paper, four 
municipalities, so-called comunas, were analyzed, located in the 
Centre, Peri-centre, Periphery, and Eastern Peri-centre (Fig. 
1).  

 
Figure 1.  Location of case study within Santiago de Chile 

 
Santiago de Chile is still affected by the spatial patterns of the 
past, such as urban cores built during periods of colonialization 
or strong polarization of urban spaces. Formerly, the 
differentiation in social status was heavily bound to location 
within the city (Borsdorf & Hidalgo, 2009). For the last two 
decades, the social distance between rich (ciudad rica) and poor 
(ciudad pobre) has persisted, but at a different scale and 
distribution; thus, the spatial pattern of segregation is changing 
(Heineberg, 2007). Currently, many new and strict delimitation 
measures in small areas are replacing social exclusivity at a 
larger scale. Borsdorf & Hidalgo (2009) analyzed highly 
segregated and protected islands within the urban 
neighbourhoods, which led to the physical fragmentation of the 
urban space.  
 
2.2 Satellite Data and Pre-processing 

For this analysis, Quickbird satellite imagery was used. The 
data for Santiago was gathered on two different dates. On the 
first (2006/12/19), the city was recorded from north to south, 
and on the second (2007/01/06) from northeast to southwest 
(Höfer et al., 2009). The two Quickbird scenes were 
geometrically corrected while using a panchromatic Landsat 
scene (1999) as the spatial reference image. The geometric 
accuracy was improved by performing a geometric correction 
on the basis of aerial photographs from the Chilean GEOCEN 
institute with a geometric resolution of 2 meters. The histogram 
matching was calculated after the scenes were atmospherically 
corrected. Additionally, pansharpening was performed on the 

Quickbird data. Principal Component Analysis (PCA) turned 
out to be the best transformation technique in this case (Ebert & 
Höfer, 2009).  
 
2.3 Ground Reference Information 

The purpose of the field work in Santiago de Chile was the 
acquisition of ground reference data, for which several 
parameters were surveyed. After prior consultation with local 
experts from the Instituto de Estudios Urbanos y Territoriales 
(Pontificia Universidad Católica de Chile), several building 
blocks were selected. These statistical blocks are representative 
for different UST. Figure 2 describes the definition of USTs 
adapted to Santiago de Chile. The ones actually present within 
the four test sites are highlighted.  
 

 
Figure 2.  Outline of defined UST in Santiago de Chile (after 

Höfer et al., 2009) 
 
2.4 Classification Process 

Since this paper deals with practical applications, the major part 
of it is concerned with the implementation of classification 
methods. The results cover the structuring of the metropolitan 
area. The working scheme is presented in Figure 3. 
 

	  
Figure 3.  Workflow to derive urban land use structure 



 

 
2.4.1 Image Segmentation: 
Single pixels do not represent real world objects. However, their 
mutual relationships among each other do (Taubenböck & Roth, 
2007). Using their spectral and textual characteristics, 
meaningful image objects can be distinguished (Herold et al., 
2002). The eCognition software was employed in this study, 
which was successfully used for segmentation techniques in the 
field of remote sensing.    

 
Figure 4.  Segmentation hierarchy 

 
For this study, a combination of top-down and bottom-up 
approaches was applied (Fig. 4). First, the highest level, Level 
0, was separated using thematic layer information of the 
outlined statistical blocks. During the next step, the lowest 
Level 1 was created, using a multi-resolution segmentation. 
Level 2 above was generated by copying the image objects of 
Level 1 (Fig. 4). Within this level, image objects were 
combined, using the merge region algorithm. Since this study 
tends to analyze UST, it is necessary to separate building 
structures as well as possible. Level 3 was created to separate 
roofs and surrounding targets. Due to the lack of height 
information from external data, it is more difficult to classify 
building objects. Roof edges are especially difficult to detect 
using spectral information since the target materials have 
similar brightness values (e.g. barren land and ceramic roofs or 
grey concrete and asphalt). To solve this challenge, a Laplacian 
filter image was included in this segmentation. The 
segmentation technique on Level 3 is the so-called spectral 
difference segmentation. For this technique, all spectral bands 
were used and the factor for the maximum spectral difference 
was set to 200. On the same level, image objects were also 
merged to larger entities. 
 
2.4.2 Classifying Land Cover Objects: 
The classification methodology is based on user-defined fuzzy 
class descriptions. In this study, nine land cover classes were 
selected: Green Areas, Barren Land, Ceramics, Metal, 
Concrete/Asbestos, Rivers and Creeks, Pools, Transportation 
Axes and Shadow. The selection of these classes is based on the 
results of the field work in Santiago de Chile. The most 
important indicators to distinguish between different UST are, 
besides the amount of green areas, the existence of pools and 
the distribution of roof materials such as ceramic roof tiles or 
sheet metal roofs. As mentioned before, the demarcation of grey 
concrete and asphalt is very difficult using multi-spectral 
satellite data. The class descriptions of all classes are based on 
spectral features or thematic information and are not derived 
from spatial features.   
The first level contains two classes: Vegetated and Non-
vegetated areas (Fig. 5). To distinguish these classes, the 
Normalized Difference Vegetation Index (NDVI = (NIR – R) / 
(NIR + R)) was applied.  
 

 
Figure 5.  Land cover classification on different level 

 
On the second level, non-vegetated areas are separated into 
pervious and impervious surfaces and water bodies (Fig. 5). 
Waterways and streets are also included, and a black body mask 
is created. For this procedure, pervious and impervious surface 
types were classified using the “blue” NDVI (bNDVI = (NIR - 
Blue) / (NIR + Blue)) and the Ratio of the mean layer 3 (Ratio 
Layer3 = Red / Brightness). Dark objects within the scene 
include water and shadows. Natural as well as artificial water 
bodies are exclusively present in areas where no vegetation is 
classified. Shaded areas are only interesting in this work in 
relation to man-made objects and not in relation to natural 
targets like trees. As a consequence, a black body mask was 
created to separate water bodies and shadows from other land 
cover objects in the areas without vegetation cover. Since the 
brightness value of water and shadow is similar, a general black 
body mask was implemented using the Normalized Difference 
Water Index (NDWI = (G - NIR) / (G + NIR)). Once the dark 
objects had been classified, it was necessary to distinguish water 
bodies. Chen et al. (2008) developed the so-called Spectral 
Shape Index (SSI = ABS (R + B – 2 * G)) for this purpose. 
Finally, the streets and waterways classes were classified using 
the feature “Thematic object attribute”. The streets class only 
contains linear structures. This description of form 
characteristics means that other transportation facilities are not 
included, e.g. parking lots. 
Level 3 contains information about different built-up materials 
(Fig. 5). This working step creates objects which can be 
associated with building complexes in the best case. As 
mentioned before, the spectral overlap between built-up 
materials is one problem when classifying single building 
objects. Since it is not possible to extract single buildings, a 
generalized approach was used. These classes cover ceramic 
roof tiles, sheet metal roofs, grey concrete and asphalt. The best 
feature to extract ceramics has been discussed above. The Ratio 
Layer 3 was used before to classify pervious soils. Metal shows 
different brightness values (channel 1) than ceramics or 
concrete/asbestos. Taking this information into account, the so-
called Normalized Layer 1 (Normalized Layer1 = (Layer1max – 
Mean Layer1) / (Layer1max – Layer1min)) was calculated for 
which it was necessary to compute statistical values.  
 
2.4.3 Mapping and Analysis of UST: 
Reflecting the description of the UST (Fig. 2), it is obvious that 
this typification involves artificial structures. Generally 
speaking, UST are combinations of socio-spatial parameters and 
environmental factors. Based on this knowledge, it is necessary 
to analyze the physical structure of single parcels to derive a 
classification hierarchy.   
Having this in mind, a few samples were selected for each UST 
present in the four test sites. These samples represent “pure 



 

structures”, including only parcels which were classified as such 
during the field work campaign. These “pure structure” entities 
are dominated by a single land-use type, e.g. standardized 
single-family houses of the middle class. Based on this 
selection, a separability analysis was performed. First the 
“Feature Space Optimization” tool in eCognition was used. 
Beside textural information such as area of sub-objects, density 
of sub-objects, asymmetry of sub-objects and direction of sub-
objects, were the “Relative area of sub-objects” and the “Clark 
Aggregation Index” employed. For the last two features, several 
land cover classes (Chap. 2.4.2) were used. 
To create a meaningful classification hierarchy, it is necessary 
to include both, the results of the separability analysis and the 
expert knowledge. The experience gained from field work is an 
important factor for understanding the distribution of the 
features for each class and to develop an optimal classification 
tree. This approach is presented in Figure 6.  
 

 
Figure 6. UST classification hierarchy 

 
Green spaces were selected to separate certain structural classes 
from each other. The thresholds between the three classes were 
set by interpreting the results of the separability analysis. In the 
next step, the class “0-30% Green Areas” was split into two 
sub-classes, according to the amount of barren land. The class 
“0-20% Barren Land” includes the dense urban core, which is 
characterized by a high rate of impervious surface. In contrast to 
this class, “> 20% Barren Land” contains social housing types 
and standardized single-family houses. After this second 
hierarchy level, social housing types and standardized single-
family houses were separated by the amount of the built-up 
material “Ceramic” (Fig. 5-14). Beyond the characterization of 
these classes the amount and distribution of additional land 
cover objects is of great importance to compose certain 
structure types. Textural information is of minor importance in 
this study and does not show positive results. 
Using this classification method, it is possible to distinguish 
between all UST.. Since this approach was developed for the 
four test sites within the municipalities and not for the entire 
municipalities, it is difficult to assign these classes to a whole 
municipality. For this, the UST had to be aggregated into more 
generalized classes which could also include the missing UST 
listed in Figure 2. To generate these Aggregated Urban 
Structure Types (AUST), the same three features as in Figure 6 
were employed: a) Relative area of Green Areas, b) Relative 
area of Barren Land and c) Relative area of Ceramic. Beside 
this information of the percentages of these land cover classes, 
the “Existence of Pools” could be used as a feature to describe 
“exclusive residential districts with non-standardized houses”.  
 
2.5 Classification Results 

Based on the analysis of the structural composition of the  

existing UST in the four test sites, the following parameters 
were selected to distinguish between structural entities:  
a) amount of green areas, b) amount of impervious soils,  
c) amount of built-up materials such as ceramics and metal,  
d) distribution of built-up materials such as ceramics and metal 
and, e) existence of pools. 
The municipality of Santiago is identical to the Centre as socio-
spatial cluster. The analysis shows that this section is mostly 
covered with high-rise buildings in mixed neighborhoods. The 
test site in the cluster Eastern Peri-centre is characterized by 
exclusive residential districts with non-standardized houses. 
Test sites in the other two socio-spatial clusters Peri-centre and 
Periphery are dominated by building complexes of social 
housing. While the Peri-centre is almost entirely covered with 
this AUST, the Periphery contains more structural categories 
(Fig. 7). In this area, green and former agricultural areas as well 
as residential districts with standardized houses for the middle 
class are present. This municipality is a good example of the 
high degree of fragmentation in Santiago de Chile. While the 
centre and the (Eastern) Peri-centre are still affected by the 
connection between social status and location within the city, 
the spatial distance between ciudad rica and ciudad pobre has 
largely disappeared in the Periphery. 
For this project, an object-based accuracy assessment was 
performed. The geometrical accuracy could not be taken into 
account since there was a lack of reference information. The 
geometrical form of built-up objects would be particularly 
important to analyze. To derive the error matrices, manually 
selected samples were used. These test samples delineated the 
reference to check classification quality by comparing the 
classification with reference values. The accuracy assessment 
was performed on the following land cover classes: Ceramic, 
Metal, Concrete/asbestos, Green areas, Pools and Barren land. 
The “Transportation axis” class as well as the “Rivers and 
creeks” class were not included, since these classes were 
derived from external layer information. A total number of 180 
random samples were selected, with 30 samples for each class. 
 

 
Figure 7. Municipal urban land use structure in the Periphery 

 
The overall accuracy of the classification is 81% and the Kappa 
statistics show similar results with a value of 0.78. The 
“Ceramic”, “Metal”, “Concrete/asbestos” and “Green areas” 
classes show positive results of the user's and producer's 
accuracy. Difficulties were experienced with the “Pools” and 
“Barren land” classes. Half of the “Pool” samples remain 
unclassified and result in very low producer accuracy. Looking 
at the “Barren land” class, confusion with the “Concrete” class 
can be detected. 



 

The five AUST were compared to 20 samples for each class. 
The overall accuracy had a value of 82.3% and the overall 
Kappa statistics had a comparable value of 0.77. Confusion 
occurred between the green areas/former agricultural areas and 
exclusive residential districts with non-standardized houses. 
These classes were characterized by similar features such as 
good facilities (pools) and plenty of green spaces. Furthermore, 
residential districts with standardized houses for the middle 
class and social housing showed overlaps, which can be 
explained by the same features - the non-existence of pools and 
the lack of green spaces. In this particular area, the class “high-
rise buildings in mixed neighborhoods” refers also to industrial 
and commercial sites (Fig. 7), since this class only occurs in the 
historical centre of the city. For this reason, confusion of this 
AUST with other classes is difficult to understand. 
 
2.6 Discussion 

Looking at the results of this study, most UST described were 
successfully distinguished. Several classes were easily 
classified, but some others were mislabeled. One of the limiting 
factors for good results is that the outcome of the land use 
classification always depends on the accuracy of the land cover 
classification (Barnsley et al., 2001). The definition of land 
cover classes is based on the expert knowledge of local 
scientists (Pontificia Universidad Católica de Chile) as well as 
the knowledge gathered during fieldwork. This classification 
does not include all existing target materials and employs a 
broad-brush approach. The use of spectrometry for urban area 
remote sensing would be especially helpful to distinguish 
between built-up materials. This approach would be helpful to 
differentiate between specific roof and road/sidewalk types. 
Studying this context, the separation of concrete roof tiles and 
asphalt paths would be an important step towards classifying 
building complexes in a more appropriate way.  
Another point is the inclusion of shaded areas within the land 
cover description. For this task, a black body mask was created 
to separate shaded from non-shaded areas in the non-vegetated 
surroundings, since the main interest is the detection of high-
rise and other tall buildings. Assuming that these kinds of 
buildings are closely connected with core shadows regardless of 
the time of the day, this feature was used to characterize the 
UST “high-rise buildings in mixed neighbourhoods”. The 
relation between building heights and shadows should be 
analysed in greater detail. 
In this project, the features amount and distribution of different 
land cover classes were discovered to be best-suited to 
characterize the entire range of UST in the test sites. Besides the 
two applied structural compositions, other measuring scales 
were also used. Banzhaf & Höfer (2008) also studied the 
connectivity between impervious surfaces, green spaces and 
other open spaces to aggregate them on a neighborhood scale. 
Besides the accuracy of the classified land cover objects or the 
analysis of the structural composition of these objects, it is 
useful to consider features such as building height. Wurm et al. 
(2009) grouped homogeneous urban areas, using building 
features like size, shape and height in addition to density and 
proportion of land cover classes. One way to extract building 
elevation information is to include LIDAR data. Several authors 
have used height information to improve the classification of 
urban landscapes (Zhou & Troy, 2007; Chen et al., 2008). 
The idea of the UST is based on the assumption that these units 
present areas of homogeneous urban morphology. Many 
statistical blocks include more than one single type. This 
problem was not approached in this study, but requires further 
analysis in order to derive more appropriate results. After 
investigating the proportion of different usages within statistical 

blocks, functional information should be integrated into the 
classification hierarchy. This kind of information refers to 
public buildings and service centers, shopping centers, 
recreational areas, hospitals, churches, cemeteries, prisons or 
airports. Since these areas can hardly be separated from other 
buildings or functional areas, they can be identified by using 
additional information. Banzhaf & Höfer (2008) revert to 
ATKIS (Official Topographical Cartographical Information 
System) data to classify such functional units. 
Besides validating the results with ground truth information 
concerning the structural composition of built-up/environmental 
factors, it is necessary to compare the AUST with socio-spatial 
data. As mentioned before, the UST can be seen as land-use 
entities regarding its environmental exposure as well as the 
usage by different socio-economic groups. The original UST 
which were used as the basis of this study, originated from 
expert knowledge concerning the coherence between the built 
and social environment. To analyse the relation between the 
AUST and socio-spatial pattern, it is very important to compare 
the resulting structural types with socio-economic data on a 
statistical block level. Krellenberg et al. (2011) successfully 
compared UST with educational groups in Santiago de Chile. 
The results showed a connection between structural 
compositions of the statistical blocks and the educational 
background of the residents. Nevertheless, the entire concept of 
analysing the socio-spatial distribution within the MAS at this 
very broad scale (4 clusters) should be seen critically. The 
impact of gated communities on the urban structure has been 
investigated by several scientists (Borsdorf et al., 2006; Bähr & 
Meyer-Kriesten, 2007). Regarding these changes in the urban 
structure, it would be more appropriate to analyse the side-by-
side existence of socially higher classes and lower classes in 
municipalities predominantly inhabited by lower strata using the 
distribution and number of Urban Structure Types. 
 

3. CONCLUSION 

To describe the entire city area of Santiago, four test sites were 
selected, representing the four socio-spatial clusters of the 
MAS. Most of the predefined UST of the city could be located 
within the test sites. Ground reference information was selected 
during the fieldwork campaign. To assess the potential of VHR 
satellite data to detect different kinds of UST, two Quickbird 
scenes (2006/2007) were used in this project. To derive 
structural categories regarding land use, it is necessary to 
classify spectrally distinct land cover types. The spatial pattern 
of these land cover objects were the key to the UST. Since 
urban areas are characterized by structural complexity and 
fragmentation of highly heterogeneous urban land cover, these 
spatial patterns were represented in an abstract manner, for 
which object-oriented algorithms were employed. 
The land cover classification was based on user-defined fuzzy 
class descriptions, including spectral features and thematic 
information. The selection of these classes was based on the 
results of fieldwork in Santiago de Chile. The most important 
indicators to distinguish between different urban structures 
were, besides the number of green areas, the existence of pools 
and the distribution of roof materials such as ceramic roof tiles 
or sheet metal roofs. The results of the land cover classification 
showed good results with an accuracy of 81%. The main 
problem at this stage of the work was the separability of barren 
land and built-up materials. The three distinguished target 
materials, a) ceramic roof tiles, b) sheet metal roofs, c) gray 
concrete and asphalt demonstrated spectral overlaps.  
The predefined UST were distinguished by looking at the 
amount and distribution of land cover classes on a statistical 
block level. For this, the relative areas of certain classes and the 



 

an aggregation index were applied. Additionally, textural 
characteristics of single UST were observed. All present UST 
within the four test sites were successfully classified using these 
features. Nevertheless, several blocks with mixed or no usage 
appeared in these areas, leading to classification problems. 
To transfer the resulting land use categories onto a different 
scale, an aggregation method was applied. More generalized 
UST were created to enable the classification of an entire 
municipality or socio-spatial cluster. These Aggregated Urban 
Structure Types (AUST) were characterized by the same 
features used to classify the UST. The results of the AUST 
classification were satisfactory, with an overall accuracy of 
82%. In this project, the AUST were only applied to the four 
municipalities surrounding the test sites. After looking at the 
number of certain AUST, as well as their distribution within the 
municipalities, the dominant land use structure was labelled. 
Mapping urban land use structure is a key factor in the 
framework of analysing the structure in dynamic urban 
agglomerations such as carried out in Risk Habitat Megacity. 
Further analysis is needed in this field to describe the 
connection of socio-economic data with structural types on a 
statistical block level.  
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