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Abstract: Early diagnosis and prompt initiation of appropriate antimicrobial therapy are crucial steps
in the management of patients with invasive fungal infections. However, the diagnosis of invasive
mycoses remains a major challenge in clinical practice, because presenting symptoms may be subtle
and non-invasive diagnostic assays often lack sensitivity and specificity. Diagnosis is often expressed
on a scale of probability (proven, probable and possible) based on a constellation of imaging findings,
microbiological tools and histopathology, as there is no stand-alone assay for diagnosis. Recent data
suggest that the carbohydrate biomarker (1→3)-β-D-glucan may be useful in both the diagnosis and
therapeutic monitoring of invasive fungal infections due to some yeasts, molds, and dimorphic fungi.
In this paper, we review recent advances in the use of (1→3)-β-D-glucan to monitor clinical response
to antifungal therapy and explore how this assay may be used in the future.
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1. Introduction

The Fungitell assay (Associates of Cape Cod, Inc., East Falmouth, MA, USA) is a commercial test
that detects (1→3)-β-D-glucan (BDG), which is an important component of the fungal cell wall [1,2].
The BDG assay can be used to diagnose some invasive fungal infections (IFIs) in humans and
employs the same principle as serum endotoxin assays, measuring activation of Factor G through
horseshoe crab substrates [3]. The output of the serum assay is based on spectrophotometer readings,
in which optical density is converted to BDG concentrations, and the results are interpreted as
negative (range < 60 pg/mL), indeterminate (60 pg/mL to 79 pg/mL), or positive (>80 pg/mL) [4].
Precise cut-offs to optimize performance of the assay to diagnose IFIs have not been defined and may
be different based on the host and pathogen.

The BDG assay can be positive in patients with a variety of IFIs, including candidiasis,
cryptococcosis, aspergillosis, and Pneumocystis jirovecii (formerly P. carinii) pneumonia but it is typically
negative in patients with mucormycosis or fusariosis [5–8]. The role of serum BDG testing to diagnose
IFIs has been well documented, but emerging data suggest that the assay may also have important
clinical implications in other samples, including bronchoalveolar lavage (BAL) fluid and cerebrospinal
(CSF) fluid [9–11]. In this paper, we review the role of BDG testing in serum, BAL, and CSF samples
to detect IFIs and monitor clinical response to antifungal therapy and conclude with an exploration
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of future directions for the assay and ways in which it might be more effectively implemented into
clinical practice.

2. (1→3)-β-D-Glucan (BDG) in Serum

Most clinical experience with BDG testing to monitor response to antifungal therapy involves
serum. This includes testing for yeast and yeast-like fungi such as Candida spp. and Pneumocystis
jirovecii as well as molds such as Aspergillus spp. Despite the substantial heterogeneity among different
studies, the BDG assay has good accuracy for distinguishing patients with proven or probable IFIs
from patients without invasive fungal infection and in some cases can be used to monitor response
to treatment [12–16]. In this section, we review seminal studies and recent advances in serum BDG
testing to monitor response to antifungal therapy.

2.1. Candidiasis

The incidence of invasive candidiasis (IC) has been increasing over the past thirty years and is
a common cause of nosocomial bloodstream infections [17,18]. The gold standard for the diagnosis
of candidemia is a positive blood culture, but this method is plagued by poor sensitivity, and the
serum BDG assay can be a useful adjunct, especially in patients with intraabdominal candidiasis [19].
Results from a single center, observational study suggest that falling BDG levels correlate with clinical
outcome in patients with IC, but this work was limited by small sample size and the observational
nature of the investigation [20].

The role of BDG testing to monitor response to therapy in patients with IC was also evaluated
by Jaijakul and colleagues, who plotted serial BDG levels collected over time from 203 patients with
proven IC during treatment with the echinocandin anidulafungin [21]. Using this charting method,
the authors correlated a negative slope in BDG levels from patients with a favorable treatment outcome
(PPV of 90%) and a positive slope following treatment failure (NPV of 90%). These findings suggest
that for patients with IC, trending of BDG values can be a useful prognostic marker for response to
antifungal treatment.

These findings should be met with a note of caution, however, because the study had limited
data on potential confounding factors such as catheter removal, previous antifungal use, treatment
with albumin or immunoglobulin, renal insufficiency, sponges or gauze exposure, or hemodialysis,
all of which may affect BDG levels [13,22]. The study was not designed or powered to evaluate the
usefulness of BDG level as a survival predictor and the presence or absence of serum BDG should not
be used to guide cessation of therapy. It is crucial for clinicians to know that the BDG assays should
always be interpreted in the context of clinical, radiographic, and microbiological findings [23].

2.2. Pneumocystis jirovecii Pneumonia

Pneumocystis jirovecii pneumonia (PJP) classically develops in immunocompromised hosts with
acquired immunodeficiency syndrome (AIDS), prolonged corticosteroid exposure, or other disorders
of T-cell function [24–27]. Patients typically present with dyspnea, non-productive cough, and fever
in the setting of diffuse ground glass opacities on chest radiograph [27,28]. The preferred diagnostic
specimens for detection of P. jirovecii are BAL fluid or biopsy, but obtaining this material may not be
possible in some patients [29,30]. The utility of the serum BDG assay to diagnose PJP was illustrated in
a retrospective case-control study of 295 patients with suspected infection [31]. The BDG assay had
a sensitivity of 92 percent and a specificity of 86 percent for detecting PJP, suggesting that it might also
have some role in the therapeutic monitoring.

A retrospective study investigated whether consecutive serum BDG measurements could be used
to assess treatment response in patients with PJP [32]. Analysis of sera from 18 patients during PJP
therapy reveals that decreasing BDG-levels strongly correlated with a response to antifungal therapy.
However, increasing BDG-levels were associated with treatment failure or fatal outcome in less than
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half (44%) of patients, indicating that serum BDG testing might be used to confirm treatment success
but seem to be of limited value for the identification of treatment failure.

2.3. Aspergillosis

Invasive aspergillosis (IA) most frequently occurs in the lungs or sinuses of immunocompromised
hosts after inhalation of conidia [33–35]. Typical risk factors include severe and prolonged neutropenia,
high-dose corticosteroid therapy, human immunodeficiency virus (HIV) infection, solid organ
transplant, hematopoietic stem cell transplant, and chronic granulomatous disease [36–39]. IA can
also occur patients with less severe immune impairment in the intensive care unit setting, particularly
those with underlying chronic obstructive pulmonary disease COPD [40,41].

Aspergillus spp. are ubiquitous in nature and are frequently inhaled into the human airways [42].
Thus, isolation of the organism from the airways does not necessarily indicate disease [43].
The diagnosis of IA can be challenging in clinical practice and is based upon both isolation of the
organism (or biomarkers of the organism such as BDG) and the probability that it is the cause of
disease [13,44]. The latter is a function of the host's immune status as well as presenting symptoms,
which can be subtle and non-specific [45]. Demonstration of hyphal elements invading tissues
(from biopsy of any affected site, such as the lung or skin) represents a proven diagnosis [46,47].

In some cases, however, tissue sampling is infeasible due to host factors such as thrombocytopenia,
which may preclude biopsy. In this setting, detection of circulating surrogate biomarkers of IA such as
BDG or galacatomannan (GM) may be useful not only for diagnosing disease but also for assessing the
effectiveness of therapy [48]. This has been demonstrated for GM antigenemia, since declining levels
of GM have been found in patients responding to antifungal treatment while rising GM antigenemia
has been associated with treatment failure [49,50]. The role of serum BDG testing in the therapeutic
monitoring of patients with IA was first established by Pazos and colleagues in a retrospective
evaluation of 40 high risk, neutropenic adult patients [51].

In this study, five proven IA cases, three probable IA cases, and three possible IA were identified.
All five patients with proven IA (100%), two (66%) of three patients with probable IA, and one
(33%) of three patients with possible IA tested positive for serum BDG. In patients with proven IA,
BDG levels showed a constant rise before clinical and microbiological evidence of IA existed and
then decreased and ultimately became negative if the patient responded to antifungal treatment.
Patients not responding to antifungal therapy did not show a decrease in the levels of BDG, suggesting
that BDG antigenemia may be useful in predicting therapeutic outcomes in patients with IA.

Other groups have also shown that trending BDG antigenemia is a useful noninvasive method for
monitoring response to antifungal therapy in patients with IA [52,53]. Results presented in this study
showed, for the first time, that monitoring BDG antigenemia is useful in predicting the therapeutic
outcome of patients with IA. Decreasing levels of BDG were observed in patients who recovered
from IA, while patients not responding to antifungal treatment showed a continuous rise in serum
BDG levels.

3. BDG in Bronchoalveolar Lavage (BAL)

There is limited data on the application of the BDG assay using BAL fluids [13,54,55].
One prospective, non-interventional multicenter study evaluated the utility of BDG in BAL fluids for
early diagnosis of invasive fungal infections in solid organ transplant recipients found that the assay
had a low positive predictive value (PPV) for BAL samples [56]. However, other work suggests serial
BAL sampling may have an important role in diagnosis and response to antifungal therapy, which will
be reviewed below.

3.1. Candida Pneumonia

Pneumonia due to Candida spp. is exceedingly rare [57]. The bronchoalveolar lavage (BAL)
is a widely accepted diagnostic tool to confirm the diagnosis of pneumonia and to identify the
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nature of the associated pathogen, but its role in the diagnosis of Candida pneumonia is uncertain [58].
Similarly the role of BAL BDG sampling to diagnose and monitor this condition has not been elucidated.
Recently, a prospective, observational study enrolled immunocompromised, critically ill, and ventilated
patients with suspected fungal pneumonia in mixed intensive care units and obtained measurements
of BDG BAL levels in these patients [59].

Thirty-one patients completed the study and were categorized into non-Candida
pneumonia/non-candidemia (n = 18), suspected Candida pneumonia (n = 9), and non-Candida
pneumonia/candidemia groups (n = 4). Levels of BDG in BAL were highest in suspected Candida
pneumonia, while the serum BDG levels were highest in non-Candida pneumonia/candidemia. For the
detection of suspected Candida pneumonia, the predictive performance (sensitivity/specificity/D-glucan
cutoff (pg/mL) of BDG in BAL fluid was 89%/86%/130, suggesting this assay could serve as
an adjunctive modality to detect suspected Candida pneumonia. Further work is needed to evaluate its
potential role in monitoring response to antifungal therapy.

3.2. Invasive Pulmonary Aspergillosis

The BDG assay is widely appreciated to be a reliable adjunctive diagnostic modality in the
diagnosis of invasive pulmonary aspergillosis (IPA) but its role in monitoring response to antifungal
therapy remains an area of active inquiry [60–63]. Petraitiene and colleagues have used a neutropenic
rabbit model and a nonneutropenic cyclosporine-methylprednisolone immunosuppressed rabbit
model of experimental IPA to evaluate the burden of BDG in BAL fluid [64]. Neutropenia in rabbits
was established with intravenous administration of cytarabine (Ara-C) beginning one day before
Aspergillus inoculation. Antifungal therapy with intravenous liposomal amphotericin B (LAMB)
at 5 mg/kg/day was initiated 24 h after inoculation and continued throughout the course of the
experiments for 12 days.

Levels of BDG in BAL fluid were substantially higher in rabbits with cytarabine-induced
neutropenia than in nonneutropenic animals with cyclosporine-methylprednisolone induced
immunosuppression. However, there were no significant differences among the mean BDG levels
in BAL fluid. There was a lack of effect of treatment with LAMB on BDG BAL levels, which argues
against a role in therapeutic monitoring. This could be due to lack of pulmonary clearance of viable
and nonviable cell wall elements and underscores that further work is necessary to elucidate the
potential role, if any, that serial BDG BAL measurements could have in monitoring response to therapy
in IPA [65].

4. BDG in Cerebrospinal Fluid (CSF)

The BDG assay have been approved by the United State Food and Drug Administration (FDA)
for serological diagnosis of invasive fungal disease, but BDG testing is not approved for cerebrospinal
fluid (CSF), and the appropriate cutoff value remains controversial [9,66–68]. Recent data suggest that
the BDG assay may be useful for the early identification of some invasive mycoses and for monitoring
antifungal therapy efficacy [69]. Below, we review recent advances in the application of the BDG
CSF assay.

4.1. Hematogenous Candida Meningoencephalitis

Hematogenous Candida meningoencephalitis (HCME) is a potentially-devastating infection
in pediatric patients that can cause seizures, cortical blindness, intraventricular hemorrhage
and neurocognitive impairment [70–72]. As with other fungal infections of the central nervous
system, diagnosis can be difficult and recurrence after completion of antifungal therapy is not
uncommon [73,74]. A laboratory animal model of HCME has demonstrated excellent sensitivity
of BDG in CSF, suggesting that this assay could be used to monitor therapeutic response in human
patients [70].
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A multicenter retrospective study was conducted that included chart reviews of pediatric subjects,
aged birth to 18 years, who had neurologic symptoms, who had a working diagnosis of HCME (or CNS
aspergillosis), and whose CSF was evaluated for the detection of BDG [75]. Seven patients were
identified with Candida spp. and all had BDG detectable in their CSF. Among patients who completed
antifungal therapy, all had elevated CSF BDG levels decreased to less than 31 pg/mL, suggesting the
assay could play an important role in monitoring response to therapy. However, the study size was
small and CSF sampling was limited in some patients due to prematurity. Nonetheless, this work
lays the foundation for prospective multicenter studies to evaluate the role of BDG sampling in
pediatric HCME.

4.2. Cryptococcal Meningitis

The role of BDG testing in cryptococcal meningitis has been controversial. BDG is expressed in
the cell walls of many medically important fungi, but it was once believed that Crytococcus neoformans
was not one of them [76]. However, in a study of HIV-infected Ugandan and South African adults with
suspected meningitis, high concentrations of BDG were detected in CSF of patients with cryptococcal
meningitis [8]. This was the first study to systematically assess CSF BDG levels in a cohort of patients
with cryptococcal meningitis, and showed 89% sensitivity and 85% specificity from 117 diagnostic CSF
specimens. In this group, detectable levels of BDG in CSF were found to correlate with quantitative
fungal cultures and high CSF BDG levels (>500 pg/mL) were associated with a three times higher risk
of 10-week mortality.

Although CSF BDG levels do not have adequate sensitivity or specificity to make this assay
the preferred cryptococcal diagnostic test, positive results should warrant further diagnostic testing,
especially in high-risk, immunocompromised patients [77]. Levels of BDG in CSF were found to
rapidly decline with the start of antifungal therapy, falling by approximately 50% after 4 days. This is
in contrast to cryptococcal antigen titers, which may continue to persist long after the completion
of antifungal therapy, suggesting that CSF BDG could one day be used as a prognostic indicator for
mortality and as a way to monitor response to treatment [78].

4.3. Aspergillus Ventriculitis

Aspergillus ventriculitis is a rare but potentially devastating form of invasive aspergillosis
of the central nervous system that usually presents with parenchymal brain lesions (abscesses,
hemorrhagic/ischemic lesions) in the setting of altered mental status and/or focal neurologic
deficitis [79–81]. Little is known about the clinical management of this disease, including the potential
role of serial monitoring of CSF BDG to monitor response to antifungal therapy.

A recent case report evaluated the utility of the CSF BDG assay in a 16-year-old boy who was
diagnosed with germinoma of the pituitary and pineal gland and subsequently developed Aspergillus
ventriculitis [82]. In this patient, levels of CSF BDG were elevated in the initial detection of Aspergillus
ventriculitis above normal CSF levels of <31 pg/mL by >50-fold. CSF was sampled once every two
to six weeks, and new onset of recurrent headache, altered mental status, or seizures was associated
with a rise of CSF BDG levels in several instances. During the two-year period, CSF BDG decreased
from a maximum level of 1575 to <31 pg/mL and CSF white blood cell count decreased from a peak
of 1233 cells/µL to 0 cells/µL, in association with resolution of fever and headache. Interestingly,
serum BDG levels were within normal limits and thus could not be used as surrogates for measurement
of CNS BDG levels.

The treatment course was concluded after two consecutive negative BDG levels in CSF over
a 4-week period. This normalization coincided with ultimate resolution of most lesions on MRI
scan and the patient has now been in remission of his pineal/pituitary germinoma and Aspergillus
ventriculitis for more than five years, indicating that CSF BDG monitoring can play an important role
in the management of this condition.
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4.4. Exserohilum Rostratum Meningitis

The 2012 nationwide outbreak of Exserohilum rostratum meningitis in the United States that was
linked to contaminated epidural injections of methylprednisolone acetate brought renewed attention
to the challenges of diagnosing and treating dematiaceous mold infections of the central nervous
system [83,84]. E. rostratum is an opportunistic mold that until 2012 was a rare cause of disease in
humans. In September of that year, health officials began to respond to a multistate outbreak of fungal
meningitis traceable to three lots of preservative-free methylprednisolone from one compounding
pharmacy in Massachusetts [85,86]. This outbreak resulted in hundreds of cases of CNS infection and
scores of deaths across the United States [85,87].

Isolation of the causative organism was considered the gold standard for diagnosis, but assays
for BDG in CSF were developed to potentially serve as adjunctive diagnostic tools [88]. In one
study, the sensitivity and specificity of BDG testing was evaluated by testing 41 CSF specimens from
confirmed cases of E. rostratum meningitis and 66 negative control specimens [89]. A cutoff value of
138 pg/mL provided 100% sensitivity and 98% specificity for the diagnosis of fungal meningitis in this
outbreak and most patients had experienced a decline in CSF BDG displayed clinical improvement.
Conversely, three patients with continually elevated CSF BDG had poor clinical outcomes (stroke,
relapse of meningitis, or development of new disease). The data suggest that serial assessment of
CSF BDG could be used monitor clinical response and may provide useful adjunctive data for the
management of outbreak-associated meningitis.

4.5. Coccidioidal Meningitis

Coccidioidal meningitis (CM) is a rare but deadly complication of coccidioidomycosis and has
a documented mortality if untreated of 90% in 1 year and 100% in 2 years [90–92]. The diagnosis of CM
is an ongoing challenge in clinical practice owing to its infrequency, non-specific presenting symptoms,
and/or a delay in the positivity of a CSF culture or antibody [93–95]. In this setting, CSF BDG has
emerged as a potential adjunctive diagnostic modality.

In one study, 37 CSF specimens were evaluated for BDG; 26 patients had confirmed CM and
11 patients had suspected microbial meningitis without a fungal diagnosis [66]. For patients with
CM, BDG levels in CSF specimens ranged from 18 to 3300 pg/mL while in controls it ranged from
<3.9 to 103 pg/mL. Diagnostic performance was determined using a 31-pg/mL cutoff; sensitivity was
96%, specificity was 82%, positive and negative predictive values were 93% and 90%, respectively.
These findings suggest that for patients with suspected CM, the CSF BDG assay may be more sensitive
than coccidioidal CSF antibody for diagnosis. This study lays the conceptual framework for further
research involving CSF BDG in patients with suspected or confirmed CM, including studies evaluating
the role of serial CSF BDG sampling to monitor response to antifungal therapy.

5. Conclusions and Future Directions

An emerging body of literature suggests that for patients with IFIs, the BDG assay may have
an important role in monitoring response to antifungal therapy. The cost per BDG assay can vary
(depending on contracts, the performing laboratory, and specimen type) but typically ranges between
$100 and $200 [22]. The economic burden of IFIs can be substantial, and serial BDG testing has
the potential to significantly decrease patient cost if it is used in the appropriate setting [96–98].
Repeatedly positive BDG results and/or increasing BDG levels may prompt sooner initiation of
antifungal therapy or may lead to a change in treatment. Conversely, decreasing BDG levels may lead
to appropriate cessation of antifungal therapy, which may prevent treatment-associated complications
as well as the emergence of fungal resistance.

Conceptual cost-savings must be borne out in clinical trials, however, and prospective studies
evaluating the economic impact of serial BDG monitoring are needed to demonstrate that this approach
is cost-effective in targeted, high-risk patients. We believe that in the coming years, the BDG testing
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will play an important role in therapeutic monitoring in selected patients with IFIs and high quality
data will be crucial to properly implement this important assay in clinical practice.
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