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Abstract

Acinetobacter baumannii is a nosocomial pathogen that has emerged as a global threat because of high levels of resistance 
to many antibiotics, particularly those considered to be last-resort antibiotics, such as carbapenems. Although alterations in 
the efflux pump and outer membrane proteins can cause carbapenem resistance, the main mechanism is the acquisition of 
carbapenem-hydrolyzing oxacillinase-encoding genes. Of these, oxa23 is by far the most widespread in most countries, while 
oxa24 and oxa58 appear to be dominant in specific regions. Historically, much of the global spread of carbapenem resist-
ance has been due to the dissemination of two major clones, known as global clones 1 and 2, although new lineages are now 
common in some parts of the world. The analysis of all publicly available genome sequences performed here indicates that 
ST2, ST1, ST79 and ST25 account for over 71 % of all genomes sequenced to date, with ST2 by far the most dominant type and 
oxa23 the most widespread carbapenem resistance determinant globally, regardless of clonal type. Whilst this highlights the 
global spread of ST1 and ST2, and the dominance of oxa23 in both clones, it could also be a result of preferential selection of 
carbapenem-resistant strains, which mainly belong to the two major clones. Furthermore, ~70 % of the sequenced strains have 
been isolated from five countries, namely the USA, PR China, Australia, Thailand and Pakistan, with only a limited number from 
other countries. These genomes are a vital resource, but it is currently difficult to draw an accurate global picture of this impor-
tant superbug, highlighting the need for more comprehensive genome sequence data and genomic analysis.

Data Summary
1. Three thousand five hundred and seventy-five A. 
baumannii genomes were retrieved from the GenBank non-
redundant and Whole Genome Shotgun (WGS) databases 
and analysed here. The full strain list and the ftp addresses 
used to retrieve the genomes are publicly available at https://
www.​ncbi.​nlm.​nih.​gov/​genome/?​term=​Acinetobacter+​
baumannii.

2. Variants of the beta-lactam resistance genes used for 
analyses were retrieved from the NCBI Antimicrobial 
Resistance Reference Gene database, which is publicly avail-
able at https://www.​ncbi.​nlm.​nih.​gov/​pathogens/​isolates#/​
refgene/.

Introduction
Antibiotic resistance has increased to dangerously high levels 
in bacterial strains recovered in all parts of the world, threat-
ening our ability to treat common infectious diseases [1]. 
Acinetobacter baumannii is one such organism and a member 
of the ESKAPE group of six bacterial pathogens (Enterococcus 
faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acine-
tobacter baumannii, Pseudomonas aeruginosa and Enterobacter 
species) that are major causes of antibiotic-resistant infections 
[2]. A. baumannii is a Gram-negative opportunistic nosocomial 
pathogen that is most notably responsible for pneumonia, along 
with infections of burns and other wounds [3–5]. It can survive 
harsh environmental pressures, such as desiccation and pH 
extremes, making management of these infections particularly 
challenging in the intensive care and burns units of hospitals [6].

http://mgen.microbiologyresearch.org/content/journal/mgen/
https://www.ncbi.nlm.nih.gov/genome/?term=Acinetobacter+baumannii
https://www.ncbi.nlm.nih.gov/genome/?term=Acinetobacter+baumannii
https://www.ncbi.nlm.nih.gov/genome/?term=Acinetobacter+baumannii
https://www.ncbi.nlm.nih.gov/pathogens/isolates#/refgene/
https://www.ncbi.nlm.nih.gov/pathogens/isolates#/refgene/
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A. baumannii has been recognized as a threat since the 1970s 
[4, 7] due to the rapid development of resistance to a wide 
range of antibiotics, including last-resort treatments such 
as carbapenems [8–11]. Often, there are very limited or no 
remaining options to treat A. baumannii infections [3, 12]. In 
2017, this prompted the World Health Organization (WHO) 
to recognize carbapenem-resistant A. baumannii (CRAB) as 
the critical, number 1 priority among a published list of 12 
antibiotic-resistant bacteria that pose the greatest threat to 
modern medicine, underlining the clinical significance and 
global burden of infections caused by CRAB [13].

Here, we discuss the emergence, molecular mechanisms 
and global spread of CRAB. To develop a snapshot of the 
geographical distribution of genomes sequenced so far 
and their carbapenem resistance gene (CRG) repertoire, 
we explore over 3500 A. baumannii genomes deposited in 
the GenBank non-redundant and Whole Genome Shotgun 
(WGS) databases. We also examine the genomic context of 
CRGs in all 128 complete genomes to further understand the 
role of mobile genetic elements in the spread of CRGs in A. 
baumannii.

Global spread of carbapenem-
resistant Acinetobacter baumannii
Carbapenem antibiotics such as meropenem and imipenem 
belong to the ß-lactam family and remain active against most 
ß-lactamase-producing organisms, including those with 
extended spectrum ß-lactamase enzymes [14]. Carbapenems 
are considered to be a front-line treatment for infections 
caused by multiply resistant bacteria [15], but carbapenem 
resistance is increasingly common in A. baumannii, imposing 
huge financial and healthcare burdens [8, 16–18].

The number of studies in PubMed reporting CRAB increased 
from a single report [19] in 2000 to over 266 in 2018, high-
lighting its global dissemination [20, 21]. This has been 
largely due to inter- and intra-hospital transfer of resistant 
strains over the last two decades [21–23]. One classic example 
involving both intra-hospital and international transfer was 
the dramatic increase in A. baumannii infections in soldiers 
injured in war zones in Iraq and Afghanistan between 
2006–2008 [24–28]. These infections often were resistant to 
multiple antibiotics and one study showed that 37 % of isolates 
recovered from injured deployed military personnel were also 
resistant to carbapenems [29]. A subsequent study found 
that isolates recovered from injured soldiers were genetically 
related to those recovered on field hospital surfaces rather 
than pre-injury colonization or introduction at the time of 
injury [28]. It has been suggested that the return of soldiers 
from combat zones was an important factor that contributed 
to the epidemiology of A. baumannii infections in the USA 
[21].

Outbreaks caused by CRAB have been reported from civilian 
hospitals in the USA, Canada, South America, Europe, 
Africa, the Middle East, Southeast Asia, Australia and 
many more countries [11, 18, 23, 30–72]. Generally, these 

CRAB outbreaks have been caused by the spread of a few 
specific clones that were already resistant to a wide range 
of antibiotics [22, 41, 73]. Although it was initially thought 
that these clones were limited to Europe [43, 74], they have 
now been reported in different countries of all inhabited 
continents [16, 18, 75–86], raising widespread clinical 
concerns [9, 16, 56, 59, 78, 79, 83–90]. The two major clones 
responsible for most of these outbreaks are now commonly 
referred to as global clone 1 (GC1) and global clone 2 (GC2), 
but have also been referred to as international clones 1 and 2 
[8, 16, 75, 78, 90, 91].

As of early April 2019, there were 3609 A. baumannii 
genomes available in the GenBank non-redundant and 
WGS databases (https://www.​ncbi.​nlm.​nih.​gov/​genome/?​
term=​Acinetobacter+​baumannii). Here, these genomes were 
downloaded, and MLST types were determined in silico using 
MLST v2.16.1 (https://​github.​com/​tseemann/​mlst) followed 
by screening for antibiotic resistance genes using Abricate 
v0.8.10 (https://​github.​com/​tseemann/​abricate). These data 
were combined with the metadata available for each genome 
using R v3.5.2. Thirty-four duplicate, or passaged, isolates 
were removed from the analysis. Of the 3575 remaining 
genomes analysed here, 2364 (66 %) were members of GC1 
(173 genomes) and GC2 (2191 genomes). These clones are 
defined here as ST1, representing GC1s according to the 
Institut Pasteur MLST scheme [92], and ST2, representing 
GC2s, along with their single-locus variants (ST1, SLV1, 
ST2 and SLV2 in Fig.  1a). However, ST2 itself is by far 
the dominant type, with 2105 genomes (59 %) among the 
available complete and draft genomes (Fig. 1a). This is also 
consistent with a large number of previous publications that 
continue to report outbreaks due to these two global clones, 
with GC2s accounting for the bulk of CRAB outbreaks 

Impact Statement

Carbapenem antibiotics were once considered to be a last 
resort, but the rapid worldwide dissemination of multiply 
antibiotic-resistant (MAR) bacteria has made them the 
first, or only, treatment option left for many infections. 
However, organisms that are also resistant to carbap-
enems are now becoming commonplace. Diverse popu-
lations of carbapenem-resistant Acinetobacter baumannii 
(CRAB) have been observed worldwide, mainly driven by 
the spread of two MAR clonal lineages. Next-generation 
sequencing technologies have provided an unprec-
edented level of information to study the evolution and 
epidemiology of carbapenem resistance in this priority 
pathogen. Here, we delve into this rich resource to not 
only enhance what is known about the mechanisms and 
epidemiology of carbapenem resistance in A. baumannii, 
but also understand what is missing. Understanding 
the factors that lead CRAB to spread so successfully 
throughout the world is crucial to curtail its spread and 
prevent it from becoming universally untreatable.

https://www.ncbi.nlm.nih.gov/genome/?term=Acinetobacter+baumannii
https://www.ncbi.nlm.nih.gov/genome/?term=Acinetobacter+baumannii
https://github.com/tseemann/mlst
https://github.com/tseemann/abricate
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Fig. 1. Distribution of carbapenem resistance genes and trend of A. baumannii genomes released. (a) Distribution of carbapenem 
resistance genes in the 15 most prevalent sequence types (STs; according to the Institut Pasteur MLST scheme). Numbers coloured 
turquoise indicate carbapenem resistance genes and black numbers show STs. SLV1 and SLV2 indicate single-locus variants of ST1 
and ST2, respectively. All STs are based on the Institut Pasteur MLST scheme. (b) Geographical distribution of CRGs in A. baumannii 
genomes publicly available in the GenBank non-redundant and WGS databases (only countries with ≥1 CRG-containing genome are 
shown). Countries are shown on the y-axis and the numbers on x-axis indicate the number of CRGs. (c) Acinetobacter genomes released 
between 2008 and early April 2019. Black indicates total genome releases, red shows genomes with a carbapenem resistance gene and 
dark purple indicates genomes carrying the oxa23 gene. These figures were drawn using the ggplot2 package in R v3.5.2.
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[41, 43, 56, 77, 80, 81, 84, 85, 87, 93–96]. The global distribu-
tion of CRAB has been heavily influenced by the spread of 
GC2 isolates, with 1678 GC2 isolates also carrying at least 1 
CRG. Only 109 of the 3575 genomes were GC1 isolates that 
harboured at least 1 CRG. Two other lineages contributed 
almost as much as GC1, with 91 and 53 belonging to ST79 
and ST25, respectively.

Molecular mechanisms of 
carbapenem resistance in A. baumannii
Many carbapenem resistance mechanisms have been described 
in A. baumannii, including alterations or loss of outer 
membrane proteins such as CarO [97, 98] and modifications 
of the AdeABC resistance nodulation division (RND) efflux 
pump [99, 100]. Although efflux modifications contribute to 
carbapenem resistance in A. baumannii, on their own they are 
are not sufficient to cause clinically relevant resistance [100]. 
Carbapenem resistance in A. baumannii is largely due to the 
horizontal acquisition of genes that encode carbapenem-
hydrolyzing enzymes belonging to either Ambler class D 
(oxacillinases) or class B (metallo-ß-lactamases) [101–103].

Oxacillinases
Oxacillinase enzymes (OXAs) are a heterogeneous family 
[104] and, to date, several groups of carbapenem-hydrolyzing 
oxacillinases have been described in A. baumannii, most 
notably OXA-23, OXA-24, OXA-58, OXA-143, OXA-235 
and an intrinsic OXA [105, 106], designated OXA-Ab 
for simplicity [89]. Genes encoding these acquired 
carbapenem-hydrolyzing enzymes are the main cause of 
carbapenem resistance in A. baumannii [107]. Generally, 
oxacillinases only hydrolyze carbapenems weakly and are 
often poorly expressed, hence they cannot cause clinically 
relevant levels of resistance on their own [108]. However, 
their expression is often enhanced by the insertion of an 
upstream IS, which enhances expression by providing a 
strong promoter, causing high resistance levels [109–111]. 
Reports of the prevalence of these genes vary by geographical 
distribution, but oxa23 is the most frequently described 
[34, 35, 47, 49, 50, 55, 58, 63, 66, 67, 75, 77, 106, 112, 113].

The intrinsic oxaAb
The oxaAb gene (also known as blaOXA51-like) occurs naturally in 
A. baumannii and is used as a marker for speciation [114]. So 
far, over 180 oxaAb variants (https://www.​lahey.​org/​studies/) 
have been identified in A. baumannii strains [115–117]. The 
most common variants are oxa69 and oxa66, which are associ-
ated with members of GC1 and GC2, respectively [78, 89, 90]. 
It has been suggested that strains with an ISAba1 upstream 
of oxaAb can be carbapenem-resistant [109], but more than 
just overexpression of oxaAb is needed for significant levels 
of carbapenem resistance [118]. However, further work is 
required to understand the contribution of oxaAb overexpres-
sion in different genetic backgrounds and whether specific 
amino acid alterations in OXA-Ab also play a significant role.

Acquired oxacillinases
The oxa23 gene was first characterized in an A. baumannii 
strain recovered in Scotland in 1985, shortly after the intro-
duction of carbapenems as therapeutic agents [119, 120]. 
Later, it was shown to have originated from the chromosome 
of Acinetobacter radioresistens, where it was mobilized into A. 
baumannii by ISAba1 [121]. To date, more than 25 variants 
of oxa23 have been identified (https://www.​ncbi.​nlm.​nih.​gov/​
pathogens/​isolates#/​refgene/​BETA-​LACTAM).

The oxa58 gene was first identified on a plasmid from a 
multiply antibiotic-resistant A. baumannii recovered in 
France in 2003 [122], and to date six further variants have 
been found. The oxa58 gene has been associated with hospital 
outbreaks in Europe, the USA, South America, Australia and 
Africa [37, 39, 104, 105, 107, 123].

The oxa24 gene was originally identified in the chromosome 
of a CRAB isolate recovered in Spain [105]. However, now 
CRAB strains carrying the oxa24 gene, and its variants, often 
on small plasmids, have been recovered in hospital outbreaks 
worldwide [19, 53, 65, 105, 124–128]. This oxacillinase group 
consists of eight close relatives and amongst them OXA-25, 
OXA-26, OXA-40/OXA-24 (a sequencing error initially 
misclassified these as different) and OXA-72 are the most 
prevalent variants [129].

Other class D carbapenemases, such as those belonging to the 
OXA-143 and OXA-235 families, have also been associated 
with CRAB outbreaks in several countries [130], although 
they are reported less frequently and are generally considered 
to be minor causes for carbapenem resistance in A. baumannii.

Other carbapenemases
Other CRGs, such as those encoding metallo-ß-lactamases 
(MBL), blaVIM, blaIMP and blaNDM, or class A carbapen-
emases, blaKPC and blaGES-11, are also seen in A. baumannii 
[45]. However, unlike Enterobacteriaceae [131], they are 
not common in A. baumannii [45]. The blaNDM gene is often 
located in a mobile 10 kb ISAba125-bounded composite 
transposon called Tn125 [132], which is commonly seen on 
conjugative plasmids [133, 134].

Genome sequencing; opportunities 
and challenges
In recent years, whole-genome sequencing (WGS) technolo-
gies and advances in bioinformatic tools have revolutionized 
the study of bacterial pathogens, enabling gene screening 
and phylogenomic studies of outbreak strains with unprec-
edented resolution [135–137]. The first A. baumannii genome 
was sequenced in 2006, ATCC 17978 [138], followed by an 
epidemic GC1 strain in France, a non-clonal strain from 
human body lice [139] and a carbapenem-resistant GC2 strain 
recovered in Italy [140]. A few additional strains, including 
three CRAB GC1 strains (AB0057, AB056 and AB059) recov-
ered from military patients at Walter Reed Army Medical 
Center, were also sequenced in the USA between 2008–2010 
[9, 16]. However, as short-read sequencing technologies 

https://www.lahey.org/studies/
https://www.ncbi.nlm.nih.gov/pathogens/isolates#/refgene/BETA-LACTAM
https://www.ncbi.nlm.nih.gov/pathogens/isolates#/refgene/BETA-LACTAM
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Fig. 2. Geographical distribution of A. baumannii genomes released. Countries are colour coded according to the number of genomes 
available as of April 2019. Countries with no genome available are coloured grey. Pie charts indicate the distribution of STs in each 
country. Sequence types (STs) were determined according to the Institut Pasteur MLST scheme.

became more affordable and accessible, the number of 
genomes sequenced exponentially increased from 2014 
onwards, and by early April 2019, over 3500 A. baumannii 
genomes were available (Fig. 1c).

Amongst the 3575 non-redundant genome sequences 
studied here, 2345 (66 %) contained at least one CRG 
and of these, 1918 genomes (82 %) carry at least 1 copy of 
oxa23 (Fig.  1b), consistent with worldwide reports that 
oxa23 is overwhelmingly predominant in A. baumannii 
[34, 47, 49, 50, 55, 58, 63, 66, 77]. However, these sequences 
have a skewed geographical distribution, with 69 % 
(2481/3575) of all sequenced strains isolated from only five 
countries, namely the USA, PR China, Thailand, Australia and 
now Pakistan (Fig. 2). Notably, a total of 57 % (838/1466), 89 % 
(387/436), 84 % (224/266), 70 % (159/226) and 93 % (81/87) 
of genomes sequenced from the USA, PR China, Thailand, 
Australia and Pakistan, respectively, carry a CRG of one kind 
(Fig. 1b). However, it is unclear to what extent these CRG 
proportions reflect true population trends in these countries 
or whether they are a result of preferential selection of CRAB 
isolates for large-scale WGS projects, highlighting the need 
to sequence all A. baumannii that cause infection, regardless 
of their resistance phenotype. Hence, it is difficult to draw 
a clear picture of the true global A. baumannii population, 

including CRAB, unless more representative strains from 
Europe, the Middle East, Russia and Africa are sequenced 
and made publicly available.

Furthermore, whilst GC1 and GC2 are the most common 
clones in many countries, this may not always be true. 
For instance, GC1 and GC2 strains do not seem to be the 
dominant types in South American countries (n=10/70), 
Tunisia (n=1/13), Tanzania (n=5/14), Poland (n=0/10) and 
Japan (n=7/26) (Fig. 2), although more genomes are needed 
to confirm this. Although GC2 appears to be the dominant 
type in some countries, for example Spain, the genomes show 
that oxa24 and oxa58 are the dominant CRGs rather than 
oxa23 (Fig. 2). However, given the relative paucity of genome 
data from these countries, caution needs to be exercised when 
drawing such conclusions.

Studying the genetic environment of antibiotic resistance 
genes, including CRGs, often provides valuable information 
on the origin, emergence, evolution and spread of resistance 
throughout bacterial populations [141]. Most of the currently 
available A. baumannii genomes have been sequenced using 
short-read technologies such as Illumina HiSeq or MiSeq. 
Although the data produced by these methods are sufficient to 
identify antibiotic resistance genes or draw phylogenetic trees, 
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Fig. 3. Structure of transposons carrying the oxa23 gene. (a) Genes and open reading frames are shown using arrows. Filled boxes 
are insertion sequences (ISs) with ISAba1 coloured green, ISAba33 coloured dark orange and ISAba2 coloured dark purple. Arrows 
inside the boxes indicate the direction of transposition gene expression. The oxa23 gene is shown in dark blue and open reading frames 
encoding hypothetical proteins are shown in white. (b) Vertical bars marked as IR indicate inverted repeats of AbaR4. (c) DRs indicates 
direct repeats. Arrows located in the central segments of Tn2006, Tn2008 and Tn6549, coloured grey, yellow and pink, respectively, 
indicate open reading frames that encode unrelated hypothetical proteins.

they lack the power to resolve complex resistance regions, 
which are often made up of numerous repeated elements 
[8, 142]. These regions tend to compromise assembly and can 
only be resolved manually via PCR and Sanger sequencing or 
by using long-read sequencing technologies such as Oxford 
Nanopore Technology (ONT) or Pacific Biosciences (PacBio) 
[143, 144]. Indeed, only 128 (4 %) genomes have been fully 
assembled and the majority of these were sequenced with 
PacBio (data not shown).

Genomic contexts and the role of 
mobile genetic elements in the spread 
of carbapenem resistance genes
The oxa23 gene has moved into chromosomes and plas-
mids, on multiple occasions, via the transposons Tn2006, 
Tn2007, Tn2008, Tn2008B, Tn2009 and AbaR4 (Fig.  3a) 
[8, 9, 18, 112, 113, 145–148]. The oxa23-containing Tn2006 
is the most commonly found transposon, and hence the most 
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important in CRAB [110, 112]. It is a 4.8 kb class I transposon 
that consists of a central 2445 bp segment bounded by two 
inversely oriented copies of ISAba1 and generates a 9 bp target 
site duplication (TSD) upon insertion [110], characteristic of 
ISAba1 transposition [111]. Tn2006 can move independently 
and is found in many different chromosomal and plasmid 
contexts in distantly related A. baumannii strains [113]. In 
members of a distinct clade within GC1 lineage 1, Tn2006 
has been found in a specific chromosomal location [8, 9, 18]. 
Tn2006 within AbaR4 is also located in the chromosomal 
comM gene in a member of another GC1 lineage, lineage 2 
[70], where the A. baumannii Resistance Island (AbaR) is 
often present [149]. In GC2 isolates, oxa23 is often found in 
Tn2006 alone or in derivatives of AbaR4 as components of 
A. baumannii Genomic Resistance Island (AbGRI), which 
resides in the same location in comM as AbaR does in GC1s 
[11, 112]. Tn2008, Tn2008B and Tn2009 (Fig. 3 and Table S1, 
available in the online version of this article) are also seen in 
several chromosomal positions and are not associated with 
genomic islands [112].

Plasmids also play a crucial role in the spread of multiple carbap-
enem resistance genes in A. baumannii [45, 112, 130, 150]. For 
instance, large conjugative plasmids (80–130 kbp) encoding 
the RepAci6 replication initiation protein [71] are implicated 
in the spread of oxa23 in GC1 and GC2, as well as strains that 
do not belong to these clones [71, 91, 151]. To date, several 
oxa23 transposons have been found in different locations of 
related RepAci6 plasmids [71, 91, 146] . Moreover, oxa23 
in Tn2006 was recently found in a RepAci1 plasmid where 
it was shown to be mobilized by a RepAci6 plasmid [152], 
further emphasizing the role of plasmids encoding RepAci6 
in spreading and now in the mobilization of carbapenem 
resistance between disparate strains.

Currently, there are 128 completed A. baumannii 
genomes in GenBank, of which 91 carry at least one 
CRG. Examining these 91 genomes shows that 9 of the 
11 oxa23-containing GC1s (Table S1) carry oxa23, either 
in Tn2006 in the chromosome or, in one case, Tn2006 in 
AbaR4 in comM [70]. In several strains, AbaR4 is found 
in a RepAci6 plasmid (Table S1). Members of GC2 often 
carry Tn2006 in the chromosome as part of AbGRI vari-
ants, with several strains carrying two oxa23 copies in this 
island (Table S1). Four strains, two from the Republic of 
Korea and two from Pakistan (Table S1), carried Tn2008B 
(Fig. 3a) in different chromosomal positions flanked by 
different TSDs. This suggests that Tn2008B is still quite 
active, as it was chromosomally incorporated on multiple 
occasions. Other GC2s carry either Tn2006 or Tn2008 in 
variants of RepAci6 plasmids (Table S1). Tn2009 appears 
most commonly in GC2 isolates from PR China (n=17) 
and the Republic of Korea (n=19), some with multiple 
chromosomal copies in tandem (Table S1). In non-GC1 
or GC2 strains, chromosomal Tn2006 appears most often. 
Interestingly, 39 complete genomes harbour more than 1 
copy of oxa23. Most often, there are multiple copies in the 
chromosome, although some also have oxa23 on a plasmid. 
This raises the question of whether these isolates, or those 

that harbour multiple families of CRG, have a selective 
advantage compared to those with fewer copies of oxa23, 
and warrants further investigation.

New oxa23-containing structures are still being identified, 
such as an ISAba1- and ISAba33-flanked transposon (Fig. 3c) 
described in 2016 [153]. Indeed, during the course of this 
work we found oxa23 in yet another novel structure with the 
features of a composite transposon, in the chromosome of a 
Canadian strain (BA30 in Fig. 3c). This 3902 bp transposon 
contains oxa23 flanked by directly oriented copies of ISAba1. 
Two copies of this transposon were found at different chro-
mosomal locations (bases 3303155–3307056 and 4295797–
4299698 in CP009257), with each copy flanked by novel 9 bp 
TSDs, providing evidence that it moves independently. Hence, 
we named this transposon Tn6549 (Fig. 3c). Tn6549 appears 
to be a derivative of Tn2008, rather than Tn2008B, as there 
is 27 bp between the start of the oxa23 gene and the ISAba1 
sequence, which is indicative of Tn2008 [112]. The central 
segment of Tn6549 contains oxa23 and an open reading frame 
of unknown function (orf in Fig. 3c). A sequence identical 
to this open reading frame was found in the chromosome 
of Acinetobacter sp. strain ACNIH1 (GenBank accession no. 
CP026420) and fragments of this open reading frame are 
in several Acinetobacter lwoffii and Acinetobacter haemo-
lyticus plasmids (e.g. GenBank accession nos CP038010 and 
CP032112).

The oxa58 gene is often embedded in the ISAba3::ISAba2-
oxa58-ISAba3 structure, and carried on non-conjugative plas-
mids encoding both RepAci1 and RepAci10 [107, 140, 154]. 
This entire structure is now known to be surrounded by short 
inversely oriented inverted repeats similar to chromosomal 
dif sites, now referred to as pdif, targeted by XerC–XerD site-
specific recombinases [154–156]. This dif module containing 
oxa58 is found in different plasmid backgrounds, indicating 
that it is a discrete mobile element that is responsible for 
the movement of oxa58, rather than the ISs that surround it 
[154–156]. Analysis of the completed genomes also indicated 
that oxa58 is mainly associated with dif modules often carried 
by similar small plasmids encoding RepAci1 and RepAci10 
(Table S1).

The oxa24 gene is commonly seen in 8–12 kb plasmids that 
encode RepAci1 or RepAci2, as part of discrete dif modules 
flanked by pdif sites [155, 157–159]. This was also the case in 
all complete genomes with oxa24, (Table S1), adding further 
evidence that small plasmids, particularly those encoding 
RepAci1 and RepAci2, are a major force behind the global 
spread of oxa58 and oxa24.

The oxa253 gene, a variant of oxa143, may also occur in 
pdif modules, as it has been found near a single pdif site 
in a context similar to oxa24 in a RepAci2 plasmid [160]. 
The oxa235 gene, and its variants oxa236 and oxa237, are 
often found in single-nucleotide variants of a 5.2 kb ISAba1-
bounded composite transposon called Tn6252, which has 
been found in chromosomes and plasmids [161–163].



8

Hamidian and Nigro, Microbial Genomics 2019;5

Conclusions
Antibiotic resistance is on the rise and we are already running 
out of antibiotics to treat CRAB, which are unfortunately 
most commonly resistant to a wide range of additional anti-
biotics. Members of GC1 and GC2 are responsible for the 
bulk of globally disseminated multi-resistant A. baumannii, 
including CRAB. Although the current publicly available 
genomes provide an invaluable snapshot of the evolution 
and spread of CRAB throughout much of the world, the 
paucity of publicly available genome sequence data from 
regions such as Europe, the Middle East, Russia, Africa and 
South America has made it difficult to draw an accurate 
global picture of the spread of A. baumannii clones, CRGs 
and their phylogeny. Notably, whilst oxa23 is predominant 
globally, this is not always the case, particularly in coun-
tries such as Spain, Germany or Tunisia (Fig. 1b), further 
emphasizing the need for more sequencing coverage to 
understand why these different CRGs dominate in different 
regions. Sequencing strains from diverse regions is vital in 
understanding the evolutionary trajectory of the two major 
global clones, as well as other emerging clones, such as ST79 
or ST25.

Expanding the use of long-read sequencing will facilitate 
a better understanding of the mobile elements responsible 
for moving CRGs and their broader contexts, while also 
enabling the characterization of further novel transposons 
and conjugative and mobilizable plasmids. It is now clear 
that alternative methods of horizontal gene transfer, such as 
dif modules and homologous recombination, play a larger 
role in the dissemination of CRGs than previously thought. 
Completing genome and plasmid assemblies will provide 
further knowledge regarding how widespread and impor-
tant these mechanisms truly are. Indeed, this understanding 
will be vital in curtailing the future spread of CRGs in A. 
baumannii, as the issues of CRG spread via successful strains 
or clones and the spread of CRGs to susceptible strains via 
HGT are distinct problems that require different solutions. 
This will be crucial to identify molecular and epidemiological 
diagnostic markers to help identify resistant clones and track 
their spread. A more geographically uniform distribution of 
genome sequence data is also needed to further monitor 
plasmid movement and identify the true proportion of A. 
baumannii harbouring conjugative plasmids carrying blaNDM 
and other CRGs that are common in other species. With the 
lack of new antibiotics to treat CRAB, and the uncertainty 
about whether new drugs would even be effective, infection 
control policy and practice built upon the framework of these 
phylogenetic and epidemiological analyses are vital in stop-
ping the spread of CRAB. Without such interventions, we will 
enter an era where common infections and minor injuries 
caused by CRAB can once again kill.
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