Diagnosis of osteoarthritis: Imaging

Hillary J. Braun a,c, Garry E. Gold a,b,c,*

a Department of Radiology, Stanford University, USA
b Department of Bioengineering, Stanford University, USA
c Department of Orthopaedic Surgery, Stanford University, USA

ABSTRACT

Osteoarthritis (OA) is a chronic, debilitating joint disease characterized by degenerative changes to the bones, cartilage, menisci, ligaments, and synovial tissue. Imaging modalities such as radiography, magnetic resonance imaging (MRI), optical coherence tomography (OCT), and ultrasound (US) permit visualization of these structures and can evaluate disease onset and progression. Radiography is primarily useful for the assessment of bony structures, while OCT is used for evaluation of articular cartilage and US for ligaments and the synovium. MRI permits visualization of all intraarticular structures and pathologies, though US or OCT may be preferential in some circumstances. As OA is a disease of the whole joint, a combination of imaging techniques may be necessary in order to gain the most comprehensive picture of the disease state. This article is part of a Special Issue entitled Osteoarthritis.

OA diagnosis: imaging

Characterized by degenerative changes in the bones, cartilage, menisci, ligaments, and synovial tissue, osteoarthritis (OA) has evolved to be considered a disease of the whole joint. Using imaging, OA has traditionally been diagnosed with radiographs that demonstrate joint space width (JSW) and osteophytes. Recently, additional modalities such as magnetic resonance imaging (MRI), ultrasound (US), and optical coherence tomography (OCT), have enhanced OA diagnosis and management through improvements in soft tissue depiction.

Early identification of OA is crucial to improving clinical decision-making and advancing the understanding of disease progression and treatment options. This article will review the various modalities available for OA imaging and assessment, focusing on their utility as tissue-specific diagnostic tools for OA of the knee.

Modality overview

Radiography

Despite the development of newer imaging techniques, the radiograph remains the most accessible tool in the evaluation of the OA joint. The knee joint is typically evaluated using the extended-knee radiograph, which is a bilateral anteroposterior image acquired while the patient is weight-bearing, with both knees in full extension.

More recently, flexed-knee radiographs with varying degrees of flexion and X-ray beam angles have been employed to improve intra-articular visualization. Radiographs are used to evaluate osteophyte formation and joint space narrowing (JSN); grading schemes such as the Kellgren-Lawrence grading scheme [1] and the Osteoarthritis Research Society International classification score establish guidelines for the diagnosis of OA progression [2].

MRI

MRI manipulates image contrast to highlight different tissue types. Common contrast methods include 2D or multi-slice T1-weighted, proton density (PD), and T2-weighted imaging [3]. Spin echo (SE) and Fast-spin echo (FSE) imaging techniques are useful in evaluating focal cartilage defects. Recent improvements in hardware, software, gradients, and radiofrequency (RF) coils have led to the use of fast or turbo-spin echo imaging, fat saturation and water excitation [3] to improve tissue contrast. Several semiquantitative, morphologic MRI scoring systems have been developed for evaluation of the knee joint in OA. Modified forms of the Outerbridge scale are routinely used for assessment of cartilage lesions, specifically with regard to defect depth. Whole-organ assessment, however, has proven increasingly useful, as it allows thorough evaluation of articular features. Furthermore, whole organ assessment has shown reliability, specificity, and sensitivity, and an ability to identify lesion progression [4–7]. The Whole-Organ Magnetic Resonance Imaging Score [7], the Knee Osteoarthritis Scoring System [6], and the Boston Leeds Osteoarthritis Knee Score [5] are the three published systems available for evaluation of the whole knee joint.
OCT

Optical coherence tomography (OCT) captures cross-sectional echographs of infrared light and acquires near-real time images of articular cartilage [8]. This method requires placement of the endoscope immediately on the cartilage, so is done at the time of arthroscopy. OCT is incorporated into arthroscopes and generates cross-sectional images of articular cartilage at resolutions comparable to low-power histology [9–11]. Consequently, OCT can provide quantitative information about the disease state of articular cartilage [12]. OCT has been shown to be sensitive to collagen structural changes resulting from acute trauma and degeneration [9,13,14] and OA-associated changes in cartilage birefringence [13].

US

Current US technology offers many advantages, including multiplanar image acquisition, the ability to image dynamic structures in real-time, lack of ionizing radiation [15], and utility in interventional procedures [16,17]. Furthermore, US is cost-effective and can be used without contrast enhancement (CE) to visualize various tissues involved in OA [18].

Tissue-specific imaging

Subchondral bone

Radiography

Bony changes in OA have traditionally been assessed using radiographs. In the early stages of disease onset, developments such as osteophytes, subchondral sclerosis, or subchondral cysts are well visualized with this modality. As OA progresses, radiography is used to assess JSW, which provides an indirect measure of the integrity of both hyaline and fibrocartilage. OA severity is often classified by subsequent JSN and the simultaneous appearance of subchondral bone abnormalities such as cysts or sclerosis [1,19,20].

Since the 1970s, the standard view for radiographic assessment of the tibiofemoral joint has been the extended-knee radiograph, which is a bilateral anteroposterior image acquired while the patient is weight-bearing, with both knees in full extension [21] (Fig. 1). More recently, alternative imaging protocols have proposed imaging of the flexed knee to address the shortcomings of the extended-knee radiograph, which is suboptimal for longitudinal joint assessment [22]. These protocols utilize different degrees of knee flexion, X-ray beam angles, and positioning strategies, but all create a contact point between the tibia and posterior aspect of the femoral condyle for improved visualization of the joint space [23–26].

The primary utility of radiography in the diagnosis of OA is for evaluation of JSW. JSW and subsequent JSN were originally assessed using manual techniques that required minimal additional equipment or processing software [27,28]. However, these methods were time consuming and subjective and have since been largely abandoned in favor of automated assessment, which provides quick and precise measurements of JSW. In addition to improving reproducibility of semi-quantitative scoring or manual measurements, automated assessment has also sparked additional characterizations of joint space, including minimum JSW, mean JSW, joint space area, and location-specific JSW [29]. Several studies have shown minimum JSW to be most reproducible and most sensitive to OA-related changes [30,31].

Currently, the Kellgren-Lawrence (KL) grading scheme is the most widely used and accepted standard for diagnosis of radiographic OA [1,32]. A KL grade of 0 indicates that no radiographic features of OA are present while a KL grade of 1 is defined as doubtful JSN and possible osteophytic lipping [1]. Radiographic OA receives a KL grade of 2, denoting the absence of definite osteophytes and possible JSN on anteroposterior weight-bearing radiograph [1] (Fig. 1). Further disease progression is graded as KL 3, characterized by multiple osteophytes, definite JSN, sclerosis, possible bony deformity and KL grade 4, which is defined by large osteophytes, marked JSN, severe sclerosis and definitely bony deformity [1]. The KL grading scheme has been criticized for characterizing the progression of OA as a linear process and combining osteophyte and JSN measurements [29]. More recently, the Osteoarthritis Research Society International atlas has developed OA classification scores that evaluate tibiofemoral JSN and osteophytes separately in each compartment [2,33].

Since the standard view for radiographic assessment of the tibiofemoral joint has been the extended-knee radiograph, which is a bilateral anteroposterior image acquired while the patient is weight-bearing, with both knees in full extension [21] (Fig. 1). More recently, alternative imaging protocols have proposed imaging of the flexed knee to address the shortcomings of the extended-knee radiograph, which is suboptimal for longitudinal joint assessment [22]. These protocols utilize different degrees of knee flexion, X-ray beam angles, and positioning strategies, but all create a contact point between the tibia and posterior aspect of the femoral condyle for improved visualization of the joint space [23–26].

MRI

Changes in subchondral bone composition are important to note in the progression of OA and well-visualized using MRI. In particular, bone marrow edema-like lesions (BMLs), subchondral cyst-like lesions, and subchondral bone attrition are notable features indicating disease progression.

BMLs are degenerative lesions consisting of edema, bone marrow necrosis, fibrosis, and trabecular abnormalities [35,36]. They are often detected in conjunction with neighboring cartilage damage.
and several recent studies have demonstrated a correlation between BMLs and progressive cartilage damage [39–41] (Fig. 2). They are best visualized on MRI using PD-weighted, intermediate-weighted, T2-weighted, or short tau inversion recovery and appear as hypointense regions on T1-weighted SE images [36,42–44].

The exact origin of subchondral cyst-like lesions remains to be elucidated, but it is currently thought that they result either from synovial fluid intrusion as a consequence of elevated intra-articular pressure [45,46] or from traumatic bone necrosis following impact of articular surfaces [47,48]. Recent studies have shown that subchondral cyst-like lesions appear in regions without full-thickness cartilage defects approximately 50% of the time [49] and are strongly associated with BMLs in the same subregion [49,50]; together these findings support the bony contusion theory. Subchondral cyst-like lesions appear as areas of well-defined fluid-like signal intensity on non-enhanced imaging sequences.

Subchondral bone attrition is frequently observed in patients with advanced OA but has also been viewed in patients with mild OA who do not exhibit JSN on standard radiographs [51]. It may be caused by altered mechanical loading resulting in subchondral remodeling and is associated with concomitant BMLs [52]. On MRI, subchondral bone attrition appears as depression or flattening of the subchondral surface. Changes in subchondral bone are seen on MRI long before changes are seen on radiographs.

Articular cartilage

Multiple imaging modalities are used to study articular cartilage, as its degeneration is often regarded as the structural hallmark of OA progression. Conventional radiography provides an indirect measure of articular cartilage through evaluation of JSW but is unable to detect early chondral damage. Arthroscopy combined with either x-ray or computed tomography (CT) is used to assess cartilage surface contour [53], but does not provide soft tissue information. Many recent studies including the Osteoarthritis Initiative (OAI) utilize MRI for cartilage examination, as it provides exquisite contrast and enables both morphologic and physiologic imaging techniques. Major techniques in morphological imaging of cartilage include SE and gradient-recalled echo (GRE) sequences, fast SE, and 3D SE and GRE. Physiological imaging techniques such as $T_2$ mapping, delayed gadolinium enhanced MR imaging of cartilage (dGEMRIC), $T_1$rho mapping, sodium MRI, and diffusion-weighted imaging (DWI) provide insight into the molecular composition of cartilage.

**MRI-morphology**

Morphological assessment of cartilage provides information about tissue size and structural integrity. Many techniques enable imaging of fissuring and focal or diffuse cartilage loss.

Three-dimension spoiled gradient recalled echo imaging with fat suppression (3D-SPGR) is the current standard for morphological imaging of cartilage [54,55]. In 3D-SPGR, contrast similar to T1-weighted sequences is obtained by spoiling the transverse steady state with semi-random RF phase alterations. SPGR acquires nearly isotropic voxels, producing excellent resolution images with high cartilage signal and low signal from adjacent joint fluid. Instead of using T1-weighted contrast, driven equilibrium Fourier transform (DEFT) imaging generates contrast by exploiting the $T_2/T_1$ ratio of tissues. DEFT returns magnetization to the $z$-axis with a 90-degree pulse that results in enhanced signal in tissues with long $T_1$ relaxation times. In cartilage imaging, DEFT heightens synovial fluid signal and
MRI exploit these macromolecule changes to provide a quantitative decrease in water content and matrix degradation. Newer methods of aging, also rely on the principle of fluctuating equilibrium MR (FEMR) which is particularly useful for morphological assessment of cartilage of the knee [60]. FEMR generates contrast based on the ratio of T1/T2 in tissues. In the case of the knee, FEMR produces bright synovial fluid signal while maintaining high signal in cartilage and high SNR. Another SSFP derivative, vastly undersampled Isotropic Projection (VIPR) imaging, combines bSSFP imaging with 3D radial k-space acquisition using isotropic spatial resolution and T2/T1 weighted contrast [61]. The advantages of VIPR are substantial; banding artifacts are reduced, high SNR is obtained, high contrast between tissues is achieved, and short acquisition times are possible [61]. Finally, 3D-FSE techniques obtain isotropic images with PD or T2-weighted contrast. 3D FSE (CUBE by GE Healthcare, VISTA by Philips, and SPACE by Siemens) utilizes a restore pulse and variable flip-angle RF pulses applied along an echo train to produce a pseudo steady state. 3D-FSE has been shown to demonstrate improved SNR and better SNR efficiency [62–64].

MRI-physiology

More recently, MR technology has evolved to provide quantitative information about the physiological content of articular cartilage. These developments have been useful in identifying early damage and breakdown. In OA, proteoglycan and collagen content are reduced [65]. This disrupts the collagen network and results in increased water content and matrix degradation. Newer methods of MRI exploit these macromolecule changes to provide a quantitative understanding of the breakdown process.

In cartilage, changes in transverse relaxation times (T2) are dependent upon the quantity of water and the integrity of the proteoglycan–collagen matrix. By measuring the spatial distribution of T2 relaxation times throughout articular cartilage, areas of increased or decreased water content (which generally correlate with cartilage damage) can be identified. Generally, a multi-echo spin–echo is used to shorten scan time and signal levels are fitted to one or more decaying exponentials, depending upon whether more than one T2 distribution is anticipated in the tissue [66]. T2 mapping software is currently commercially available, allowing for simple implementation on most imaging systems (Fig. 4).

T1rho mapping is sensitive to the macromolecule content of tissue and therefore very effective in visualizing early changes in OA [67,68]. In T1rho, magnetization is tipped into the transverse plane and “spinning” by a constant RF field. When proteoglycan depletion occurs in the earliest phases of OA, the physio-chemical interactions in the macromolecule environment are disrupted and T1rho allows measurement of the interaction between motion-restricted water molecules and their extracellular environment [69]. Elevated T1rho relaxation times have been measured in osteoarthritic knee cartilage when compared with normal cartilage [70–72] (Fig. 5).

Sodium MRI exploits the concept of negative fixed charged density within the extracellular matrix of cartilage. In healthy cartilage, high concentrations of positively charged 23Na are associated with the negatively charged glycosaminoglycan (GAG) side chains, which contain a plethora of negatively charged carboxyl and sulfate groups. When proteoglycan depletion occurs in cartilage damage, GAGs are damaged and sodium signals decline [73–75]. As such, 23Na imaging represents a potentially useful means of differentiating early stage degenerated cartilage and normal tissue [73] (Fig. 6).

Delayed Gadolinium-Enhanced MRI (dGEMRIC), like sodium imaging, also relies on the principle of fixed charge density. Ions in the extracellular fluid are distributed in relation to the concentration of negatively charged GAGs, which is a reflection of the quantity of proteoglycan content in cartilage. The negatively charged Gd(DTPA)2– molecules accumulate in high concentration in areas lacking in GAG and in low concentrations in GAG-rich regions. Subsequent imaging using 3D SPGR pulse sequences with variable flip angles [76], bSSFP, or T1 generates a Gd distribution. This T1 measurement is referred to as the dGEMRIC index; regions with low T1 signal correspond to a low dGEMRIC index, which indicates high Gd(DTPA)2– penetration and greater Gd degradation (Fig. 7).

Finally, diffusion weighted imaging (DWI) and diffusion tensor imaging (DTI) exploit the orientation of water molecules to offer unique insight into articular cartilage structure and organization. In DWI, multiple diffusion-sensitizing gradients are applied. Diffusion

![Fig. 4. T2 mapping of articular cartilage in the medial femur of a patient with osteoarthritis at two time points. Mapping software allows visualization of the spatial distribution; notice the increased T2 relaxation times in Fig. 4B. The T2 relaxation time is overlaid on the images using a color map, with the scale in milliseconds.](image-url)
weighting, expressed as the b-value, depends on the amplitude and timing of these gradients. In response to these gradients, water accrues a random amount of phase and does not refocus, resulting in signal loss in tissues where diffusion occurs [77]. In healthy cartilage, the apparent diffusion coefficient (ADC) is low and diffusion times are long because intact cartilage components restrict the motion of water. When the matrix is disrupted, however, water molecules move more freely, increasing the ADC of cartilage [78]. Following acquisition, an ADC map is generated. DTI is a more advanced form of DWI, capable of obtaining directionality and magnitude measurements of water diffusion. In DTI, diffusion anisotropy effects are obtained, characterized, and employed to provide information about tissue microstructure; this has been particularly useful in determining articular cartilage degeneration [79].

OCT

While conventional MRI is extremely useful in identifying full or partial-thickness changes of articular cartilage in OA, it does not reliably differentiate between healthy cartilage and diseased cartilage with an intact surface [80]. Arthroscopic evaluation is the current clinical standard for evaluating chondrosis, or pre-OA chondral lesions that do not involve bone and are not visible on radiographs [12], but this method of assessment is subjective. Optical coherence tomography (OCT) can provide quantitative information about the disease state of articular cartilage [12]. OCT is incorporated into arthroscopes and generates cross-sectional images of articular cartilage at resolutions comparable to low-power histology [9–11] (Fig. 8). OCT is sensitive to collagen structural changes resulting from acute trauma and degeneration [9,13,14] and OA-associated changes in cartilage birefringence [13]. In 2010, Chu et al. demonstrated that OCT evaluation of cartilage correlated with both arthroscopy and T2 MRI measurements, making OCT a powerful potential tool for diagnosis of early chondral changes [12]. However, as with any modality, OCT has limitations, including the invasive procedure required to directly access the articular surface and the heavy dependence on operator-use and image post-processing.

Menisci

Injury to the menisci is often viewed as a predisposing factor for OA. These fibrocartilaginous structures are positioned between the femur and tibia in the medial and lateral joint compartments and provide shock absorption and load transmission in both active and static loading [81–83]. Partial or total meniscectomies increase the strain on articular cartilage in the absence of meniscal shock absorbers, which causes dynamic deformation in knee joint areas. Loss of meniscus has been identified as a contributor to OA [84,85].

Despite low signal from the menisci, MRI is the best imaging modality. The sagittal plane is most frequently used to evaluate meniscal pathology but recent studies have shown that imaging in the coronal [86,87] or axial planes [88,89] may improve diagnosis of specific tear types. A variety of sequences can be used for diagnostic imaging, but it is important to keep echo times (TE) short in order to reduce scan time, improve signal-to-noise ratio (SNR), acquire more slices per scan, and decrease susceptibility and artifact [90]. Commonly used sequences include PD-weighted SE or FSE with or without fat saturation, T1-weighting, and gradient echoes [90]. The ideal sequence for diagnostic imaging of the meniscus should have a short TE and

---

**Fig. 5.** T1rho mapping is a physiologic MRI method that has been shown to be sensitive to proteoglycan (PG) changes in articular cartilage. In osteoarthritis, decreases in PG content correspond with increases in T1 rho relaxation times. This figure illustrates T1rho maps of (A) healthy control knee and (B) lateral side of ACL-injured knee at one year follow-up. Early degeneration of articular cartilage is seen by the increased relaxation time in B. Images courtesy of Li X et al. Radiology 2011;258:505–514.

**Fig. 6.** Sodium maps of articular cartilage in a healthy volunteer (A) and a patient with OA (B) overlaid onto proton images. The increased sodium signal in Fig. 5A correlates with higher glycosaminoglycan (GAG) concentration. As cartilage degenerates and GAG concentration decreases, sodium signal declines (5B).
optimize SNR; PD-weighted imaging achieves these aims [91]. The sensitivity and specificity of PD-weighted sequences are 88% to 90% and 87% to 90%, respectively [92–94]; when FSE is added to PD sequences, the sensitivity and specificity drop to 82% to 96% and 84% to 94%, respectively [93,95–97]. Addition of fat saturation to PD sequences is increasingly more common [90,96]; In 2005, Blackmon et al. reported 93% sensitivity and 97% specificity for diagnosing meniscal tears using a fat-saturated conventional SE PD-weighted sequence [98].

Recent advancements in MRI of the meniscus have improved structural visualization. Higher field strengths (1.5 and 3.0 T) improve SNR.
while maintaining comparable sensitivity and specificity [99–101]. Parallel imaging methods use multiple channels to extend the imaging field of view without increasing scan time by exploiting the spatially-varying sensitivity profiles of the phased array coil elements. These techniques have been shown to reduce scan time by nearly 50% [102] while retaining diagnostic specificity, sensitivity, and accuracy [103]. The use of ultrashort TE (uTE) imaging has also aided imaging of the menisci. uTE imaging sequences use TEs that are 20–50 times shorter than conventional T2 sequences [104–106]. The advantages here are two-fold: 1) high signal is acquired from tissues that typically produce little to no signal and 2) increased signal sensitivity allows detection of changes that indicate layers or defects of articular cartilage and identification of meniscal zones (Fig. 9).

**Ligaments**

Damage to ligaments such as the anterior cruciate ligament (ACL) can often predispose to early OA [107,108]. While not the most commonly implicated structures, disease-related degeneration and damage to the ligaments of the knee probably still occur in OA initiation and progression. These abnormalities have been documented in OA and detected with the use of ultrasound [109] and MRI. Imaging of the menisci phagocytes degraded cartilage and bone [112], and though the precise inflammatory mechanism of synovitis remains to be elucidated [111,113], it appears that synovitis may be a secondary phenomenon in OA. Available evidence-based literature reveals inconsistencies. A 2008 arthroscopic study by Rollin et al. found that proliferative and inflammatory changes occurred in the synovium of up to 50% of OA patients [114] but there is debate as to whether synovitis is well-correlated with pain in OA [115,116]. Other studies have demonstrated that synovitis in OA is likely to be associated with pain [116,117], disease progression [118] and severity [113,119].

Although radiography is used for OA diagnosis, it is not suitable for visualization of the synovium [120]. There is also limited applicability for computed tomography (CT) and nuclear medicine; ultrasound (US) and MRI are the primary modalities currently used for synovium assessment [121].

**US**

The Outcome Measures in Rheumatoid Arthritis Clinical Trials Ultrasoundography Taskforce defines US-detected synovial hypertrophy as “abnormal hypoechoic (relative to subdermal fat, but sometimes isoechoic or hypechoic) intra-articular tissue that is nondisplaceable and poorly compressible and which may exhibit Doppler” [122]. Though this definition explicitly refers to rheumatoid arthritis synovial pathology, it has been suggested that it may also be applied to OA because the difference in synovial inflammation between the two diseases is largely quantitative [123,124]. In the knee, the most commonly imaged sites of synovial hypertrophy are the suprapatellar pouch and the medial and lateral recesses [125]. Current US technology acquires images with wide fields of view using high resolution probes operating at frequencies of up to 20 MHz [124]. This has allowed the detection of synovial pathologies including hypertrophy, vascularity, and presence of synovial fluid [18,124] and the detection of synovitis in joints that appear otherwise clinically quiescent [124] (Fig. 10). Doppler techniques allow an indirect evaluation of inflammatory activity via the assessment of vascularity [126,127]. US-detected knee synovitis has been correlated with advanced radiographic OA [128] and markers of joint tissue metabolism [129]. Recently, CE-US has been proposed as a novel technique aimed at quantifying synovial vascularity [125]. CE-US showed higher sensitivity (95%) in imaging synovitis than CE-MRI (82%), power Doppler US (64%) or grayscale US (58%) [125].

**MRI**

MRI is also used for assessment of the synovium. Unlike US, MRI is able to visualize synovium located deep within joints such as the hip or the shoulder without being obscured by bony structures. The two primary methods for MR detection of synovitis in OA are the use of non-CE MRI and gadolinium (Gd)-based CE-MRI. Synovitis was first correlated with hypointense signal alterations in Hoffa’s fat pad on sagittal, non-CE T1 weighted SE images [130]. Since then, hyperintense signal changes in Hoffa’s fat pad on fat-suppressed PD or T2-weighted SE sequences have been suggested as surrogate markers.

![Fig. 9. Imaging of the meniscus using ultra-short echo time (uTE) MRI. Cartilaginous and fibrous components, particularly at the tissue periphery, are unmasked with the use of uTE. Images courtesy of Christine Chung, MD.](image-url)
for joint-wide synovitis \[131,132\] (Fig. 11). Non-CE MRI has been a common and effective tool for imaging of synovitis, but CE-MRI generally improves tissue visualization. Though the administration of intravenous gadolinium is suboptimal, CE-MRI more clearly differentiates inflamed synovium from joint effusion. In CE-MRI, synovium with inflammatory activity is enhanced while effusion remains hypointense; on non-CE MRI, both synovium and effusion are often depicted as signal hyperintensity. Recent studies have shown that signal changes in Hoffa's fat pad on non-CE MRI were less specific for peripatellar synovitis than CE sequences \[133\] and that microscopic synovitis is not correlated with non-CE MRI \[134\]. Additional investigations have shown that CE-MRI detected synovitis correlates with histology \[113,134\] and is more sensitive \[125\] and specific \[133\] than non-CE MRI. These studies further the belief that Gd-based CE-MRI improves imaging of the synovium. However, obvious drawbacks to intravenous gadolinium administration exist, including prolonged scan time, increased cost, possible allergic reactions, and a risk of nephrogenic systemic fibrosis. Finding a way to image synovial tissue with non-CE MRI while maintaining sensitivity and specificity may represent an area of interest for future research.

**Conclusion**

Because OA is a complex disease of the whole joint, it is important to assess all intraarticular structures to further understand disease pathogenesis and progression. Ideally, one imaging modality would enable sensitive and specific depiction of all components of the joint without utilizing intravenous contrast or ionizing radiation and with little dependence on machine operator. Currently, non-CE MRI permits visualization of multiple joint structures. However, in some tissues, additional supplemental imaging modalities may be necessary to enhance depiction, especially in the synovium and in the absence of full thickness articular cartilage defects. Currently, a combination of imaging techniques provides the most comprehensive assessment of the OA joint.

**Conflicts of interest**

Dr. Gold receives research support from GE Healthcare. He also serves as a consultant for Zimmer, Arthrocare, and Isto Inc.

**References**


Please cite this article as: Braun HJ, Gold GE, Diagnosis of osteoarthritis: Imaging, Bone (2011), doi:10.1016/j.bone.2011.11.019


