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Optimal Transport & Entropic

Regularization



Statistical Optimal Transport

Estimation of the Squared Wasserstein Distance

Let µ and ν be probability densities on the unit ball in Rd . Given

µ̂n =
1

n

n∑
i=1

δxi and ν̂n =
1

n

n∑
i=1

δyi

empirical distributions of n independent samples, estimate

W 2
2 (µ, ν) := min

γ∈Π(µ,ν)

∫
‖y − x‖2

2 dγ(x , y),

where Π(µ, ν) is the set of transport plans*.

*Set of probability distributions on Rd × Rd with respective marginals µ and ν.

How does entropic regularization help for this task?

[Refs for other approaches]:

Forrow et al. (2019). Statistical optimal transport via factored couplings.

Hütter, Rigollet (2019). Minimax rates of estimation for smooth optimal transport maps.

Niles-Weed, Berthet (2019). Estimation of smooth densities in Wasserstein distance.

Niles-Weed, Rigollet (2019). Estimation of Wasserstein distances in the spiked transport model.
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Plug-in estimator

Theorem (CRLVP’20)

E
[
|W 2

2 (µ̂n, ν̂n)−W 2
2 (µ, ν)|

]
.


n−2/d if d > 4,

n−1/2 log(n) if d = 4,

n−1/2 if d < 4.

Proof idea. Bound |Ŵ 2
2 −W 2

2 | by the supremum of an empirical

process over convex 1-Lipschitz functions (Brenier). Then apply

Dudley’s chaining and Bronshtein’s bound on the covering number.

Corollary

• If W2(µ, ν) ≥ α > 0, same error bounds × 1
α for W2(µ̂n, ν̂n)

• Faster than the rate n−1/d (which is when µ = ν)
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Numerical illustration

Performance of the plug-in estimator Ŵ2,n = W2(µ̂n, ν̂n)

Elliptically contoured distributions

with compact support (d = 2)

Estimation error on W2 (d = 8)
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Entropy Regularized Optimal Transport

Let λ ≥ 0 and H(µ, ν) =
∫

log
( dµ
dν

)
dµ be the relative entropy.

Tλ(µ, ν) := min
γ∈Π(µ,ν)

∫
‖y − x‖2

2 dγ(x , y) + 2λH(γ, µ⊗ ν)

• a.k.a. the Schrödinger bridge

• favors diffuse solutions

• increases stability

• the higher λ, the easier to solve

Proposition (Dvurechensky et al., builds on Altschuler et al.,)

Sinkhorn’s algo. computesTλ(µ̂n, ν̂n) to ε-accuracy in time O(n2λ−1ε−1).

[Refs]:

Altschuler, Niles-Weed, Rigollet (2017). Near-linear time approximation algorithms for optimal transport [...].

Dvurechensky, Gasnikov, Kroshnin (2018). Computational optimal transport [...]
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Discrete optimal transport via Sinkhorn

Shortcuts:T̂λ,n = Tλ(µ̂n, ν̂n), Ŵ 2
2,n = W 2

2 (µ̂n, ν̂n), W 2
2 = W 2

2 (µ, ν).

Error decomposition (I)

E
[
|T̂λ,n −W 2

2 |
]
≤ E

[
|T̂λ,n − Ŵ 2

2,n|
]︸ ︷︷ ︸

Approximation error
.λ log(n)

+ E
[
|Ŵ 2

2,n −W 2
2 |
]︸ ︷︷ ︸

Estimation error
. n−2/d (if d > 4)

• With λ . n−2/d , we get Õ(n−2/d) accuracy (if d > 4)

• That’s how regularization is analyzed in prior work

Can we use larger values of λ?

[Refs]:

Niles-Weed (2018). An explicit analysis of the entropic penalty in linear programming.
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Naive unsuccessful attempt

Shortcuts: T̂λ,n = Tλ(µ̂n, ν̂n), Tλ = Tλ(µ, ν), W 2
2 = W 2

2 (µ, ν).

Error decomposition (II)

E
[
|T̂λ,n −W 2

2 |
]
≤ E

[
|T̂λ,n − Tλ|

]︸ ︷︷ ︸
Estimation error

. (1+λ−d/2)n−1/2

+ |Tλ −W 2
2 |︸ ︷︷ ︸

Approximation error
.λ (1+log(1/λ))

; With λ = n−1/(d+2), we get E
[
|T̂λ −W 2

2 |
]
. n−1/(d+2) log(n)

Drawback of Tλ: poor approximation error

NB: estimation error bound potentially not tight
[Refs]:

Genevay et al. (2019). Sample Complexity of Sinkhorn Divergences.

Mena, Niles-Weed (2019). Statistical bounds for entropic optimal transport [...]
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Improving the Approximation Error



Sinkhorn divergence

Sλ(µ, ν) := Tλ(µ, ν)− 1

2
Tλ(µ, µ)− 1

2
Tλ(ν, ν)

• It is positive definite: Sλ(µ, ν) ≥ 0 with equality iff µ = ν

• Interpolation properties: lim
λ→0

Sλ(µ, ν) = W 2
2 (µ, ν)

lim
λ→∞

Sλ(µ, ν) = ‖EX∼µ[X ]− EY∼ν [Y ]‖2
2

• As λ increases:
• Increasing statistical and computational efficiency

• Decreasing discriminative power

Can we quantify the trade-offs at play?

[Refs]:

Genevay, Peyré, Cuturi (2019). Learning generative models with Sinkhorn divergences.

Feydy, Séjourné, Vialard, Amari, Trouvé, Peyré (2019). Interpolating between Optimal Transport and MMD. 8/15



Dynamic entropy regularized optimal transport

Let H(µ) =
∫

log(µ(x))µ(x) dx and µ, ν with bounded densities.

Theorem (Yasue formulation of the Schrödinger problem)

Tλ(µ, ν) + dλ log(2πλ) + λ(H(µ) + H(ν)) =

min
ρ,v

∫ 1

0

∫
Rd

(
‖v(t, x)‖2

2︸ ︷︷ ︸
Kinetic energy

+
λ2

4
‖∇x log(ρ(t, x))‖2

2︸ ︷︷ ︸
Fisher information

)
ρ(t, x)dx dt

where (ρ, v) solves ∂tρ+∇ · (ρv) = 0, ρ(0, ·) = µ and ρ(1, ·) = ν.

Definition (Fisher info. of the W2-geodesic)

I (µ, ν) :=

∫ 1

0

∫
Rd

‖∇x log ρ(t, x)‖2
2ρ(t, x) dx dt

[Refs]:

Chen, Georgiou, Pavon (2019). On the relation between optimal transport [...].

Conforti, Tamanini (2019). A formula for the time derivative of the entropic cost. 9/15



Tight approximation bounds

Recall assumptions: µ, ν have bounded densities and supports.

Theorem (CRLVP’20)

|Sλ(µ, ν)−W 2
2 (µ, ν)| ≤ λ2

4
max{I (µ, ν), (I (µ) + I (ν))/2}.

If moreover the right-hand side is finite, it holds

Sλ(µ, ν)−W 2
2 (µ, ν) =

λ2

4

(
I (µ, ν)− (I (µ) + I (ν))/2

)
+ o(λ2).

Proof idea. (1) Immediate from Yasue formula. (2) Variational

analysis arguments to get the right derivative of λ2 7→ Sλ at 0.

• (in paper) bound I (µ, ν) given regularity of Brenier potential

• from λ log(1/λ) to λ2 for (almost) free!
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Richardson extrapolation

We can cancel the term in λ2 for (almost) free. Let

Rλ(µ, ν) := 2Sλ(µ, ν)− S√2λ(µ, ν).

Proposition

If µ, ν have bounded densities and I (µ, ν), I (µ), I (ν) <∞ then

|Rλ(µ, ν)−W 2
2 (µ, ν)| = o(λ2)

• Up to constants, Tλ, Sλ and Rλ have the same sample and

computational complexities but better approximation errors

• Open question: when is the remainder in O(λ4) ?

[Ref]:

Bach (2020). On the effectiveness of Richardson extrapolation in machine learning.

11/15



Gaussian case

Let µ = N (a,A), ν = N (b,B) where a, b ∈ Rd and A,B ∈ Sd++.

If a = b, W2 is the Bures distance:

W 2
2 (µ, ν) = d2

B(A,B) := trA + trB − 2 tr(A1/2BA1/2)1/2.

Exploiting the closed-form expression for Tλ(µ, ν), we prove:

Expansion Gaussian case

Sλ(µ, ν)−W 2
2 (µ, ν) = −λ

2

8
d2
B(A−1,B−1) +

λ4

384
d2
B(A−3,B−3) + O(λ5)

• Richardson extrapolation can boost approximation rates here

• Consistent with expansion in terms of I (µ, ν), as it must.

[Refs]:

Chen, Georgiou, Pavon (2015). Optimal steering of a linear stochastic system to a final probability distribution.

Janati, Muzellec, Peyré, Cuturi (2020). Entropic Optimal Transport between Gaussian Measures [...].
12/15



Statistical & Computational

Consequences



Sinkhorn Divergence Estimator

Shortcuts: Ŝλ,n = Sλ(µ̂n, ν̂n), Sλ = Sλ(µ, ν), W 2
2 = W 2

2 (µ, ν).

Error decomposition (II)

E
[
|Ŝλ,n −W 2

2 |
]
≤ E

[
|Ŝλ,n − Sλ|

]︸ ︷︷ ︸
Estimation error

. (1+λ−d/2)n−1/2

+ |Sλ −W 2
2 |︸ ︷︷ ︸

Approximation error
.λ2

; With λ = n−1/(d+4), we get E
[
|Ŝλ,n −W 2

2 |
]
. n−2/(d+4)

• We “almost” recover the rate of the plug-in estimator

• But with a much larger λ ! (n−1/(d+4) instead of n−2/d)

• Rate further improved w/ Richardson extrapolation Rλ(µ̂n, ν̂n)
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Numerical experiments (I): estimate W 2
2

µ, ν elliptically contoured, smooth densities, compact supports.

Absolute error on W 2
2 (d = 10, λ = 1).

• Ŝλ,n and R̂λ,n quickly reach a good estimation

• then reach a plateau (the approximation error takes-over)

• difficult to interpret because W 2
2 is a scalar...
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Numerical experiments (II): estimate dual potentials

Estimate ϕ, the Fréchet derivative of µ 7→W 2
2 (µ, ν) (d = 5).

We plot the L1(µ) estimation error.

(left) vs. n for λ = 1 (middle) vs. λ for n = 104 (right) vs. n for best λ.

Estimator T̂λ,n Ŝλ,n R̂λ,n

Time (s) 0.25 0.08 0.12

Table 1: Time to reach 0.03-accuracy via Sinkhorn’s algorithm 15/15



Conclusion

• Refined approximation error analysis

• Statistical & computational consequences

• Theory consistent with practical behavior

[Paper :]

- Chizat, Roussillon, Léger, Vialard, Peyré (2020). Faster Wasserstein

Distance Estimation with the Sinkhorn Divergence.
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