MuACOsm – A New Mutation-Based Ant Colony Optimization Algorithm for Learning Finite-State Machines

Daniil Chivilikhin and Vladimir Ulyantsev
National Research University of IT, Mechanics and Optics
St. Petersburg, Russia

Evolutionary and Combinatorial Optimization Track @ GECCO 2013
July 8, 2013
Motivation: Reliable software

- Systems with high cost of failure
 - Energy industry
 - Aircraft industry
 - Space industry
 - …
- We want to have **reliable software**
 - Testing is not enough
 - Verification is needed
Introduction (1)

- Automated software engineering
- Model-driven development
- Automata-based programming
Introduction (2)

Finite-state machine

Software specification Model Code

ACO for Learning FSMs
Finite-State Machine

- S – set of states
- $s_0 \in S$ – initial state
- Σ – set of input events
- Δ – set of output actions
- $\delta: S \times \Sigma \rightarrow S$ – transition function
- $\lambda: S \times \Sigma \rightarrow \Delta$ – actions function

Example:
- two states
- events = \{A, T\}
- actions = \{z_1, z_2, z_3, z_4\}
Automata-based programming

Design programs with complex behavior as automated-controlled objects

Automated-controlled object

Finite-state machine

Actions

Events

Controlled object

Events

Output actions

e_1

z_1

z_2

e_2

z_2

z_3

z_4

ACO for Learning FSMs
Automata-based programming: advantages

• Model before programming code, not vice versa

• Possibility of program verification using Model Checking

• You can check temporal properties (LTL)
Issues

• Hard to build an FSM with desired structure and behavior
• Several problems of learning FSMs were proven to be NP-hard
• One of the solutions – metaheuristics
Learning finite-state machines with metaheuristics

- N_{states} – number of states
- Σ – input events
- Δ – output actions
- $X = (N_{\text{states}}, \Sigma, \Delta)$ – search space
Approaches to learning FSMs

• Greedy heuristics
 – problem-specific

• Reduction to SAT and CSP problems
 – fast
 – problem-specific

• Evolutionary algorithms (general)
 – slow
Proposed approach

• Based on Ant Colony Optimization (ACO)
• Non-standard problem reduction
• Modified ACO algorithm
Solution representation

Transition table

<table>
<thead>
<tr>
<th>State</th>
<th>δ</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>T</td>
</tr>
</tbody>
</table>

Output table

<table>
<thead>
<tr>
<th>State</th>
<th>λ</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>z</td>
<td>z₁</td>
</tr>
<tr>
<td>2</td>
<td>z</td>
<td>z₂</td>
</tr>
</tbody>
</table>

ACO for Learning FSMs
“Canonical” way to apply ACO

• Reduce problem to finding a minimum cost path in some complete graph
• Vertices – FSM transitions: \(<i \in S, j \in S, e \in \Sigma, a \in \Delta>\)
• Each ant adds transitions to its FSM

\[1 \rightarrow 1 \ [T/z_1] \quad 1 \rightarrow 2 \ [A/z_2]\]
“Canonical” ACO: example

- 2 states
- 2 events
- 1 action
“Canonical” ACO: issues

- Number of vertices in the construction graph grows as \((N_{\text{states}})^2 \times |\Sigma| \times |\Delta| \)
- No meaningful way to define heuristic information
- Later we show that “canonical” ACO is ineffective for FSM learning
Proposed algorithm: MuACO$_{sm}$

- Mutation-Based ACO for learning FSMs
- Uses a non-standard problem reduction
- Modified ACO
Problem reduction: MuACOsm vs. “canonical”

• “Canonical” ACO
 – Nodes are solution components
 – Full solutions are built by ants
• Proposed MuACOsm algorithm
 – Nodes are full solutions (FSMs)
 – Ants travel between full solutions
FSM Mutations

Change transition action

Change transition end state

ACO for Learning FSMs
MuACOsm problem reduction

- Construction graph
 - nodes are FSMs
 - edges are mutations of FSMs
- Example
Real search space graph
Part of real search space (1)
Part of real search space (2)
Heuristic information

\[\eta_{uv} = \max(\eta_{\text{min}}, f(v) - f(u)) \]

Finite-state machines
ACO algorithm

\[A_0 = \text{random FSM} \]

Improve \(A_0 \) with (1+1)–ES

Graph = \{ \(A_0 \) \}

while not stop() do

ConstructAntSolutions

UpdatePheromoneValues

DaemonActions
Constructing ant solutions

- Use a colony of ants
- An ant is placed on a graph node
- Each ant has a limited number of steps
- On each step the ant moves to the next node
Ant step: selecting the next node

Mutation

$P = P_{\text{new}}$

$P = 1 - P_{\text{new}}$

Probabilistic selection

$\tau = 1$

$\tau = 8$

$\tau = 9$

$\tau = 10$

Go to best mutated FSM

ACO for Learning FSMs
Pheromone update

• Ant path quality = max fitness value on a path
• Update τ_{uv}^{best} – largest pheromone value deployed on edge (u, v)
• Update pheromone values:

$$\tau_{uv} = (1 - \rho)\tau_{uv} + \tau_{uv}^{\text{best}}$$

• $\rho \in [0, 1]$ – pheromone evaporation rate
Differences from previous work

• Added heuristic information
• Changed start node selection for ants
• Coupling with (1+1)-ES
• More experiments (later)
• More comparisons with other authors
• Harder problem
“Simple” problem: Artificial Ant

- Toroidal field $N \times N$
- M pieces of food
- s_{max} time steps
- Fixed position of food and the ant
- Goal – build an FSM, such that the ant will eat all food in K steps

Field example: John Muir Trail
Artificial Ant: Fitness function

\[f = n_{\text{food}} + \frac{s_{\text{max}} - s_{\text{last}} - 1}{s_{\text{max}}} \]

- \(n_{\text{food}} \) – number of eaten food pieces
- \(s_{\text{max}} \) – max number of allotted steps
- \(s_{\text{last}} \) – number of used steps

ACO for Learning FSMs
“Simple” problem: Artificial Ant

• Two fields:
 – Santa Fe Trail
 – John Muir Trail

• Comparison:
 – “Canonical” ACO
 – Christensen et al. (2007)
 – Tsarev et al. (2007)
 – Chellapilla et al. (1999)
"Canonical" ACO

<table>
<thead>
<tr>
<th>State count</th>
<th>"Canonical" ACO</th>
<th>MuACOsm</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>18</td>
<td>87</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>91</td>
</tr>
</tbody>
</table>
Santa Fe Trail (Christensen et al., 600 steps)

Fitness evaluation count vs. Number of FSM states

- MuACOsm
- Christensen et al

ACO for Learning FSMs
John Muir Trail (Tsarev et al., 2007): 200 steps

- MuACOsm is 30 times faster for FSMs with 7 states
“Harder” problem: learning Extended Finite-State Machines (1)
“Harder” problem: learning Extended Finite-State Machines (2)

Input data:

- Number of states C and sets Σ and Δ
- Set of test examples T
- $T_i = \langle$input sequence I_j, output sequence $O_j\rangle$

NP-hard problem: build an EFSM with C states compliant with tests T
Learning EFSMs: Fitness function

- Pass inputs to EFSM, record outputs
- Compare generated outputs with references
- Fitness = string similarity measure (edit distance)

\[
f' = \frac{1}{|T|} \sum_{j=1}^{T} \left(1 - \frac{ED(O_j, A_j)}{\max(len(O_j), len(A_j))} \right)
\]

\[
f = 100 \cdot f' + \frac{1}{100} \cdot (100 - n_{\text{trans}})
\]
Experimental setup

1. Generate random EFSM with C states
2. Generate set of tests of total length $C \times 150$
3. Learn EFSM
4. Experiment for each C repeated 100 times
5. Run until perfect fitness
6. Record mean number of fitness evaluations
Conclusion

• Developed new ACO-based algorithm for learning FSMs and EFSMs
• MuACOsm greatly outperforms GA on considered problems
• Generated programs can be verified with Model Checking
Future work

- Better FSM representation to deal with isomorphism
- Use novelty search
- Employ verification in learning process
Acknowledgements

• We thank the ACM for the student travel grants
Thank you for your attention!

MuACOsm – A New Mutation-Based Ant Colony Optimization Algorithm for Learning Finite-State Machines

Daniil Chivililikhin
Vladimir Ulyantsev

chivdan@gmail.com

This presentation online: http://rain.ifmo.ru/~chivdan/papers/2013/gecco-2013-presentation.pdf