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Genetic Algorithm Optimization of Multidimensional
Grayscale Soft Morphological Filters With
Applications in Film Archive Restoration

Mahmoud S. Hamid, Neal R. Harvey, and Stephen Marshall

Abstract—Automatic restoration of old film archives has become
of increasing interest in the last few years with the rise of consumer
digital video applications and the need to supply more program-
ming material of an acceptable quality in a multimedia context.
A technique is described for the optimization of multidimensional
grayscale soft morphological filters for applications in automatic
film archive restoration, specific to the problem of film dirt re-
moval. The optimization is undertaken with respect to a criterion
based on mean absolute error and is performed using a genetic al-
gorithm. Experiments have shown that the filter found using this
technique has excellent performance in attenuating/removing film
dirt from image sequences and has little, if any, effect on the image
detail. The results of applying such a filter to a real image sequence
were analyzed and compared to those obtained by restoring the
same image sequence using a global filtering approach (LUM filter)
and a spatio-temporal local filtering approach (ML3Dex filter with
noise detection). From a film dirt removal point of view, the op-
timized soft morphological filter showed improved results com-
pared to the LUM filter and comparable results with respect to the
ML3Dex filter with noise detection. Also, the optimized filter ac-
curately restored all fast-moving objects present in the sequence,
without the need for motion compensation, whereas the other two
methods failed to do this. The proposed method proved to be a
simple, fast, and cheap approach for the automatic restoration of
old film archives.

Index Terms—Film restoration, filter optimization, genetic algo-
rithms, soft morphology.

I. INTRODUCTION

T HERE HAS BEEN growing interest in recent years in the
area of film archive restoration. This has, no doubt, come

about in part due to the emergence of digital television broad-
casting and the growth in video and DVD sales. In order to sat-
isfy demand, it is becoming increasingly attractive to market
available archive material. However, a great deal of film archive
material has suffered some form of corruption and therefore re-
quires restoration in order to be of a sufficient quality for resale
or broadcast. This paper describes a method whereby grayscale
soft morphological filters may be optimized with respect to a
specific objective image quality criterion, and its application
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in addressing a particular problem in film archive restoration,
known as film dirt.

Film dirt is a common problem in old film archives and will
be familiar to anyone who has been to the cinema or viewed old
film footage. Film dirt occurs when foreign particles get caught
in the film transport mechanism and damage the film, causing
loss of information. This damage manifests itself as “blotches”
of random size, shape and intensity. The blotches appear as
flashes of dark and bright patches called dirt and sparkle. Dirt
is created when dust adheres to the film as it passes through the
transport mechanism, while sparkle is caused by the abrasion of
the film emulsion. These blotches are nontime correlated (tem-
porally impulsive).

Later in their lifetime, films may suffer further damage due
to environmental hazards such as humidity and dust, chemical
instabilities, improper storage and handling practices, and even
poorly maintained projectors. Although the deterioration of film
sequences can be halted and movies can be preserved by the
production of master video copies, defects already present in
the film are inherited in the video and, in fact, most defects are
actually accentuated in the viewing of video in comparison to
film. Also, additional artifacts may be embedded in the video-
tape due to the film to video transfer operation.

Whatever the case, the complexity and associated cost of
manual processes involved in a conventional restoration chain
are often too prohibitive for a successful exploitation business
plan to emerge. Additionally, conventional restoration of film
archives relies on the use of dedicated equipment such as
special copying machines, which can only target a limited
range of artifacts due to the fact that the unit of manipulation
can only be the physical film strip. For all these reasons, it
became necessary to digitize movies and apply the restoration
techniques in this domain for them to be of acceptable quality
for resale or broadcast.

There is growing consensus that automatic restoration is a key
enabling technology toward the successful exploitation of film
and television archives for a number of reasons. By improving
baseline picture quality and reducing the perceptual impact of
archive-related artifacts, it can meet viewers’ aesthetic expecta-
tions and enrich the viewing experience. Moreover, the suppres-
sion of such artifacts has vital implications on the efficiency of
video-coding algorithms used in the television and multimedia
distribution chains, such as MPEG-2 and MPEG-4.

In contrast to classical image sequence restoration methods,
an automatic digital film restoration system, for example [1],
[2], should work under the following constraints:
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Old films must be scanned at high resolutions in order to pre-
serve the definition and the visual quality of the motion pic-
ture images. Consequently, the restoration algorithms must also
preserve the visual quality of the films. In addition, the restora-
tion process should be as fast as possible, have the minimum
number of control parameters, and the processing system has to
be cheap.

Most of the conventional image sequence restoration algo-
rithms involve median filtering [4]. Although the median filter
better preserves edges than linear filters, the median operation
tends to homogenize the details of the image and this results
in a blurring effect. In fact, the median applies the same fil-
tering operation regardless of the underlying statistics of either
the image or the noise. It is, therefore, highly unlikely that the
median would be the optimum processing function in any given
situation. It would almost always be possible to improve on its
performance.

To enable greater fidelity to be achieved in the image
sequence, Nieminen introduced the multilevel median filter
(MMF) [6]. This class of filters employs a hierarchy of median
operations that allows one to reject impulsive distortions in the
image with less smoothing than a simple median operation.
Extended versions of MMF filter have been proposed by Arce
[7] and Alp [8].

One of the most difficult aspects of film restoration involves
the way in which motion is handled. Estimation of motion from
image sequences is, in general, a difficult and time-consuming
task. It is also difficult to have an idea of the real sensitivity to
noise or to image alteration of a motion estimator. Let us em-
phasize that spatio-temporal restoration algorithms are more ef-
fective than two-dimensional (2-D) (purely spatial) processes
only if the motion estimator performs satisfactorily. However,
the behavior of a motion estimator cannot be guaranteed. There
is also the consideration that the sequences being dealt with are
degraded, so the motion estimator must be robust to noise. Fur-
thermore, three-dimensional (3-D) (spatio-temporal) restoration
methods are far more computationally expensive than 2-D tech-
niques.

The topological median filter [5] is a recently introduced type
of median filter for images. It implements some existing ideas
and some new ideas on fuzzy connectedness to improve the ex-
traction of edges in noise over a conventional median filter. Al-
though the results of applying this filter to images show a better
performance than the median filter in preserving edges, the filter
fails to perfectly restore small details in the images. This makes
the visual quality of the filtered images [5] unacceptable for
many multimedia applications.

The majority of existing methods, for example [3], [9], and
[10], involve a “detect and repair” strategy, in which artifacts
are detected and then filtering is applied only at those places
where artifacts have been detected. They also employ motion
compensation. As will be seen later, in the cases where mo-
tion is rotational or where it exceeds the Nyquist sampling rate
of the frames, it is difficult to make the motion compensation
sufficiently robust. In contrast, the method introduced in this
paper seeks to determine the optimal filter subject to certain con-
straints. Given some region of support, the operator that mini-
mizes the difference between a filtered version of a corrupted

image and an ideal image is determined. An eventual practical
tool based on this method would be virtually automatic, re-
quiring little human interaction and would have no manually set
parameters. In any case, it would have determined the optimum
filtering function achievable via soft morphological filtering, or
at least a function very close to it for the given training set. It
is therefore unlikely that human intervention could improve the
result further.

The method is based on a global filtering approach in which
a soft morphological filter is optimized using a genetic algo-
rithm (GA). The filter found is then used to restore a corrupted
film sequence. The proposed restoration method automatically
detects, and then corrects, artifacts in degraded motion pictures
with minimal human intervention, as it has no control parame-
ters.

GAs [11], [12] have proven to be a good tool for optimization
and search and have found applications in many areas of science
and engineering in recent years. The exhaustive processing re-
quired is the main drawback of using GAs in optimization prob-
lems whenever both the search space and the amount of data to
be processed are large. Recently, this has become less of an ob-
stacle after the emergence of parallel GAs [13]–[15] and the im-
plementation of GA design approaches on field-programmable
gate arrays (FPGA) [16]. A parallel implementation method for
reducing the processing time of the GA using an FPGA, specific
to the problem of film restoration, showed a massive reduction
in the optimization time. A publication on this work is in prepa-
ration by the authors.

The results of applying the proposed method to a real cor-
rupted film sequence was analyzed and compared to those ob-
tained by applying two other filtering approaches to the same
film sequence. The first approach is a global filtering approach
in which the LUM filter [17], [18] was used. The second ap-
proach is a spatio-temporal local filtering method in which the
ML3Dex filter, proposed by Kokaram [20], was used after the
detection of the noise using the ROD detector [19].

The remainder of the paper is organized as follows. Section II
provides an introduction to the class of soft morphological
filters. Section III explains the idea behind restoring film
sequences using spatio-temporal soft morphological filters.
Section IV describes how GAs can be used in the search
for optimal grayscale soft morphological filter parameters.
Section V demonstrates the application of the optimization
method to the film dirt problem. Section VI shows the results
of applying the technique to some real restoration tasks and
compares the results with those obtained by applying two other
filtering methods to the same image sequence. Section VII
discusses the results presented in Section VI. A summary and
conclusion are presented in Section VIII.

II. SOFT MORPHOLOGICALFILTERS

Here, we provide an overview of grayscale soft morpholog-
ical filters. In the interest of brevity, we restrict ourselves to
grayscale (function processing) soft morphological filters and
have omitted the description and definition of flat (function-set-
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processing) and binary (set processing) soft morphological fil-
ters. For this, the interested reader is referred to [23]. The restric-
tion to grayscale (function processing) soft morphological filters
is justifiable as the classes of flat (function-set-processing) and
binary (set processing) soft morphological filters are subsets of
the class of grayscale soft morphological filters.

Soft morphological filters are a class of nonlinear filters
[22]–[24]. Their definition was originally related to the class
of (standard/structural) morphological filters (discrete flat
morphological filters), but they have since been extended to
the grayscale (function processing) case [21]. The idea behind
soft morphological filters is to relax the standard definitions of
morphological filters in such a way as to achieve robustness
whilst retaining most of the desirable properties of standard
morphological filters. Whereas standard morphological filters
are based on local maximum and minimum operations, in
soft morphological filters these operations are replaced by
more general weighted order statistics. The key idea of soft
morphological operations is that the structuring element is
divided into two parts: thehard centerwhich behaves like
the standard structuring element and thesoft boundary, where
maximum and minimum are replaced by other order statistics.
This makes the filters behave less rigidly in noisy conditions
and makes them more tolerant to small variations in the shapes
of the objects in the filtered image. Before proceeding to the
definitions of the soft morphological operations, some other
concepts need to be defined.

The structuring system [, , ] consists of three parame-
ters: functions and , having support and respectively

and a natural number,, satisfying ,
where is the cardinality of . Function is called the struc-
turing function, is its (hard) center ( is the support of its
hard center), its soft boundary ( , the support of its soft
boundary), and is the order index of its center which is also
referred to as the repetition parameter.

Grayscale soft dilation of a signalby the structuring system
[ , , ] is denoted by, and is defined as

largest value of the multiset

(1)

where and and the symbol is used to denote
duplication; for instance

(2)

Grayscale soft erosion of a signalby the structuring system
[ , , ] is denoted by and is defined as

the smallest value of the multiset

(3)

where and .
As an extreme case, grayscale soft morphological operations

by the structuring system [, , ] reduce to the equivalent
grayscale standard morphological operations by the function
if , or, alternatively if . If , grayscale
soft morphological operations by the structuring system [, ,

] reduce to the equivalent grayscale standard morphological
operations by the structuring function.

Grayscale soft opening of by [ , , ] is denoted by
and is defined as

(4)

Grayscale soft closing of by [ , , ] is denoted by and
is defined as

(5)

Note that, the symmetric set of is the set

(6)

Grayscale soft open-closing and soft close-opening are combi-
nations of the soft closing and soft opening operations shown
above.

Kuosmanen [25] showed that, unlike standard closing and
opening, soft closing and soft opening by the structuring system
[ , , ], where is symmetric, can remove arbitrary shaped pos-
itive and negative impulses, if

(7)

where is the cardinality of the impulsive noise.
The cardinality of the noise is related to its density and corre-

sponds to the number of pixels in the set. These noisy pixels
are within the region of support of the SMF.

III. W HY EXTEND TO THE SPATIO-TEMPORAL DOMAIN?

Basically, a video sequence is a much richer source of vi-
sual information than a still image; this is primarily due to the
presence of motion. Because the recording of each image of a
motion picture sequence generally occurs more rapidly than the
change of information in the scene, the consecutive images in
the sequence may contain similar or redundant information.

On the other hand, image sequences that contain fast mo-
tion, which exceeds the Nyquist sampling limit defined by the
frame rate, have always been a problem in the restoration of film
archives. This is because objects having this type of motion are
very similar, in their temporal characteristics, to film dirt. So,
it may not be possible to predict this type of motion from adja-
cent frames. For example, if an object only appears briefly in a
single frame and not in adjacent frames, no prediction would be
possible. Therefore, any suitable restoration algorithm should
be able to distinguish between film dirt and these fast-moving
objects; however, this adds more complexity to the algorithm.

Although the restoration of degraded image sequences can be
performed with the repeated execution of the same 2-D process
on the separate images in the sequence [28], [29], such an ap-
proach implicitly assumes that the individual images, or frames,
are temporally independent and thus has a tendency to introduce
temporal artifacts in the restored image sequence.

By extending the filtering process from purely spatial to
spatio-temporal, it is anticipated that the resulting filters will
make use of the temporal characteristics and in this way out-
perform their purely spatial counterparts. However, by careful
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coding of the filter parameters for GA optimization, the search
space for spatio-temporal (3-D) filters will also include the
filters of lesser dimensions, i.e., 2-D (purely spatial) and 1-D
(purely temporal), and so the GA will be free to choose the
optimal filter amongst them.

IV. OPTIMIZATION OF SMF USING GA

Several methods have been described for the optimization of
softmorphological filters.Huttunenet al.[26] andKuosmanenet
al. [27] described methods for the optimal choice of the (2-D) flat
(function-set-processing)softmorphologicalstructuringsystem.
These methods do not, however, optimize the choice of soft mor-
phological operations. Harvey [29] described a method for the
optimizationof (2-D/spatial) grayscalesoftmorphological filters
that seeks tooptimizenot only the structuringsystem, butalso the
choiceof thesoftmorphologicaloperations. In thispaperweseek
to illustrate the extension of these techniques to the optimization
of grayscale soft morphological filters in the spatio-temporal do-
main and to illustrate their performance in the restoration of real
corrupted image sequences.

GAs are a family of computational models based on the me-
chanics of evolution and genetics, which may be used in the
solution of search and optimization problems. The field of GAs
was founded by John Holland [30]. Holland elaborated on two
persistent themes of his research: the ability of simple data rep-
resentations to encode complicated structures and the power of
simple transformations to improve such structures. He showed
that, with the right control structure, these simple data repre-
sentations (strings) could attain rapid improvements under cer-
tain transformations, so that a population of the strings could be
made to evolve in a manner similar to that of naturally occur-
ring populations. In their simplest form, three basic operators,
reproduction, crossover, and mutation, act on a population of
candidate solutions (chromosomes) in the search space.

• Reproduction:a process whereby individual chromo-
somes are selected according to their fitness values.

• Crossover:a recombination operator that combines seg-
ments from two parent chromosomes to produce offspring.
These segments are called genes. The values of the genes
are so-called alleles. As in the natural system, the offspring
contain genes from the two parent chromosomes. A prob-
ability term is set to determine the crossover rate.

• Mutation: an operator that introduces variations into the
chromosome. A probability term is set to determine
the mutation rate. Practically, crossover is used for the ex-
ploitation of the chromosomes with good genetic material
while mutation is performed to create a random diversity
in the population, or in other words for the exploration of
the entire search space.

A. Soft Morphological Filter Parameters

In searching for the optimal soft morphological filter the fol-
lowing parameters have to be considered:

• sizeandshapeof the structuring system’s hard center;
• sizeandshapeof the structuring system’s soft boundary;
• repetitionparameter;
• choiceof the soft morphological operations.

TABLE I
EXAMPLE OF CODE FORCODING POSITIONSWITHIN AND OUTSIDE THE

OVERALL STRUCTURING FUNCTION’S SUPPORT

These parameters are incorporated into a GA optimization
strategy. The parameters are encoded and mapped to a “chro-
mosome,” as described below.

1) Overall Structuring Function:Limits as to the dimen-
sions of the overall structuring functions are set (i.e., the spa-
tial, temporal, and grayscale dimensions) and the optimization
process is allowed to search for any size and shape of the overall
structuring function within this 4-D hypercube “envelope.” If
the overall spatio-temporal dimensions of the structuring func-
tion are fixed, it may be that, for a particular structuring func-
tion, not all positions within this region are in the actual support.
In order to take this into account in the GA optimization process,
it is necessary for positions outside the structuring function’s
support but within the overall search envelope (“don’t care” po-
sitions) to be distinguishable. A suitable code, therefore, would
be one, which includes a unique representation for those “null”
positions. An example of such an encoding scheme is shown
in Table I. In this example, “” refers to a position outside the
structuring function’s support.

a) Hard Center: A binary string, having a length equiva-
lent to the cardinality of the structuring function’s overall sup-
port “envelope,” is used to flag those positions within the struc-
turing function’s support which are in the hard center. Positions
in this string with value one are positions within the structuring
function that are included in the hard center. After forming each
new individual, the hard center flags are checked against the
structuring function portion of the chromosome. If any of the
positions within the structuring function portion of the chro-
mosome are coded as being outside its region of support, i.e.,
“null” positions, then a check is made to ensure that the corre-
sponding position within the hard center flag string has a zero
and is changed as necessary.

b) Soft Boundary:Chromosome positions within the
overall structuring function’s support not coded as null posi-
tions and not having a one in the corresponding hard center
flag portion of the chromosome are considered to be in the soft
boundary of the structuring function.

2) Repetition Parameter:From the definition of soft mor-
phological operations, it is known that for a structuring func-
tion, having a support , the repetition parameterhas to lie
somewhere in the range . So, in order to code
the repetition parameter, we can have a binary string, the length
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Fig. 1. Chromosome coding.

of which is equal to the overall size of the structuring function
(i.e., the pre-set outer limits of the structuring function’s sup-
port). This binary string is then used to flag whether a position
within the structuring function’s support contributes to the rep-
etition parameter; a one signifies that it does. To ensure con-
sistency, a check has to be made, after forming each new indi-
vidual, to confirm that those positions flagged as contributing to
the repetition parameter are also positions coded as being within
the structuring function’s support. If any positions in the repeti-
tion parameter binary string are flagged with a one, but the cor-
responding positions in the structuring function’s support are
coded as being outside the structuring function’s support, these
flags have to be altered to ensure that they are set to zero. In
this way the binary string can only code values lying within the
allowable range.

3) Choice of the Sequence of Soft Morphological Oper-
ations: When considering soft morphological operations in
the context of the design of soft morphological filters, one
has to consider the search space within which the GA will
operate. Here, we seek to limit our search to the set of funda-
mental (primary), secondary, and tertiary soft morphological
operations, i.e., the set which includes {soft erosion, soft
dilation, soft opening, soft closing, soft open-closing, and
soft close-opening}. Each member of this set can be defined
as some combination of the fundamental soft morphological
operations. Therefore, for a coding scheme to be able to encode
this set of soft morphological operations, two basic decisions
have to be made.

• The set of individual soft morphological operators from
which to choose.

• The maximum number of soft morphological operations
in the sequence.

So, to be able to code the primary, secondary, and tertiary soft
morphological operations, the set of soft morphological opera-
tors necessary is {soft erosion, soft dilation} and the sequence
length required is four, i.e., the longest sequence of operations
will be for the tertiary operations of soft open-closing and soft
close-opening, which can be defined in terms of the fundamental
(primary)operationsasasequenceof fourseparateprimaryoper-
ations. In order that the GA be able to perform optimization over
the entire search space, it is necessary to include the do-nothing,
or identity operation, to the set of soft morphological operations.
This is due to the fact that the length of the sequence of soft mor-
phological operations is fixed in the GA, but it is desirable to in-
clude in the search space all the subsets of soft morphological op-
erations from the simple soft erosion and soft dilation through the
soft open-closing and soft close-opening filters.

B. Combining the Coded Structuring Function’s Hard Center
and Soft Boundary, Repetition Parameter, and Sequence of
Soft Morphological Operations

To form the complete chromosome, the separate strings
containing the coded structuring function, hard center and

soft boundary, repetition parameter, and sequence of soft
morphological operations are simply concatenated. This process
of using the structuring function genes, as control genes,
for controlling the genes of the filter hard center and soft
boundary is referred to as the so-called hierarchical GA [12].
The chromosomal representation of the SMF is illustrated
in Fig. 1.

The size of the search space is, therefore, fixed. The overall
dimensions of the structuring functions—the maximum size
of its support (and hence the support of the hard center and
soft boundary and the range of possible repetition parameters),
the maximum gray-level values, and the maximum length of
soft morphological operations, together with the choice of
soft morphological operations, are all set beforehand. Thus,
the GA searches for any 3-D grayscale soft morphological
filter which is a combination of four operations from the set
{soft erode, soft dilate, do-nothing}, which will use a struc-
turing function (hard center and soft boundary) and repetition
parameter, chosen from all the possible variations within the
overall region of support and maximum grey-level value. This
search space encompasses (3-D) spatio-temporal, 2-D (purely
spatial), and 1-D (purely temporal) soft morphological filters.
In addition, the class of soft morphological filters encompasses
several other classes of nonlinear filters including standard
morphological filters and rank-order filters.

V. APPLYING THE GA OPTIMIZATION METHOD TO THEFILM

DIRT PROBLEM

In order to make use of a GA in the optimization of filter
parameters, there has to be some method of attributing a fit-
ness value to an individual chromosome representing a partic-
ular set of grayscale soft morphological filter parameters. A fit-
ness function has to be determined which provides some objec-
tive measure of the individual’s performance in its environment.
This fitness function is crucial to the successful implementation
of the GA optimization technique. One then has to determine
what is meant, in this application, by performance and environ-
ment. Defining the environment is a relatively simple matter. It
is the image sequence to be filtered. Defining what is meant by
performance, however, is a more complicated task. The general
idea in the field of image restoration is that of improving the
subjective quality of the images when viewed.

Unfortunately, due to the nature of the human visual system
and its interaction with the human brain, there does not exist a
simple function which maps subjective image quality to some
objective quality criterion. This aspect itself forms a large area
of research.

Criteria do exist, however, which provide some objective
measure of image quality. The majority of these criteria are
based on a comparison with an ideal (uncorrupted) version
of the image under consideration which contains some mod-
ification of signal-to-noise ratio. The most obvious criteria
are the mean absolute error (MAE) and mean squared error
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(MSE) [31], [32]. The statistical investigations of 26 different
image quality measures [34] using ANOVA analysis [33] have
revealed that MAE and MSE remain the best measures for
additive noise.

A. GA Optimization of Soft Morphological Filters Using
Training Set

Generally, in the case of film restoration, it is not possible to
perform a comparison with an ideal image sequence; as such a
thing does not exist. After all, if a noncorrupted version of the
film exists, why bother trying to restore a corrupted version?
One method of addressing this problem is as follows:

In most image sequences, it is generally possible to find areas
of the image, which are uncorrupted. Then it is possible to arti-
ficially corrupt these ideal image regions with particles of film
dirt extracted from other similar, but corrupted, regions of the
image sequence. In this way, it will be feasible to produce the
necessary training set, which allows the evaluation of a fitness
value based on some measure of the MAE and/or MSE. Fig. 2
shows an example of a series of uncorrupted regions extracted
from an image sequence and the same sequence after having
been artificially corrupted with film dirt.

B. Fitness Function

Having a training set, i.e., an ideal and corrupted version of
the same image sequence, enables the fitness value of an indi-
vidual (i.e. a particular set of filter parameters) to be based on
a comparison between the filtered image sequence having been
filtered with the filter having the parameters represented by the
individual and the ideal image sequence. The fitness of an indi-
vidual is therefore determined as follows:

Let be the maximum possible for an image
( would be 255 for 8-bit grayscale images). Letbe
the number of images in the training sequence and be the

for the image in the filtered sequence, with respect to
the image in the ideal sequence. Let be the overall
fitness of the individual

(8)

(9)

In other words, the “interim” fitness for an image in the se-
quence is a measure of how it is close to the ideal. The fitness
value for an individual is then the average of all these interim
fitness values over the whole image sequence, expressed as a
percentage. A filter capable of restoring an image sequence per-
fectly would then have a fitness value of 100.

C. Genetic Operators

Uniform crossover and bit mutation [35], [36] showed
promising results when used for the optimization of a soft
morphological filter using the GA for the restoration of old
film sequences [29].

The actual “genetic algorithm” used in this paper is the Hier-
archical GA [12] with the following parameters.

(a) (b)

Fig. 2. (a) Six frames of uncorrupted regions extracted from image sequence.
(b) The same frames after being corrupted with film dirt.

• Selection:Stochastic universal sampling was used.
• Crossover:Uniform crossover was applied with a proba-

bility of 0.75.
• Mutation: The mutation operator involved randomly

choosing one of the possible values of an allele for a par-
ticular locus on the chromosome. Mutation was applied
with a probability of 0.03.

• Population Size:The population size was set at 30.

Practically, these parameter settings were found to be suitable
for the SMF optimization with the given chromosome encoding
and structure. They enabled the GA to make good use of the sur-
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Fig. 3. Maximum fitness in each generation.

viving chromosomes and a wide exploration of the search space.
Also, the best fitness was obtained after a reasonable number
of steps. This is shown in Fig. 3. It was found experimentally
that there is no need to use different values of these parameters
when restoring different film sequences, provided that a suffi-
ciently representative sample of film dirt was included in the
original training data. This makes our proposed method simple
and applicable to other similar film sequences without any fur-
ther changes of control parameters.

VI. A PPLICATION TOREAL IMAGE SEQUENCES

A GA, as described above, was run using the training set
shown in Fig. 2. It was set the task of optimizing a soft mor-
phological filter of a symmetrical structuring function with an
overall size set at (i.e., spatial dimensions of 7 7
and a temporal dimension of 3). Images extracted from the real
noisy sequence are shown in Fig. 4.

LUM [17], [18] is one of the spatio-temporal multistage
order statistic filters which showed a good performance in
restoring image sequences with the efficient preservation of
image features and sequence motion [17]. So, the results of the
best obtained SMF were compared to those of the LUM(27,9)
applied to the same image sequence. These are shown in
Fig. 5. The error images between the ideal and filtered training
sequences using the best obtained SMF and LUM(27,9) are
shown in Fig. 6.

Fig. 3 shows the maximum fitness at each generation during
the GA’s run. The maximum obtained fitness after 500 gen-
erations was 99.52 while the fitness value for the LUM(27,9)
was 98.56. The best soft morphological filter found is shown in
Fig. 7. This filter was then applied to the entire image sequence.
The results of applying the optimized SMF to a real noisy image
sequence are shown in Fig. 8.

Also, the proposed method was compared to the so-called
spatio-temporal local filtering approach. This method depends
on the detection of the noise using the ROD detector [19] then
filtering the sequence with the ML3Dex filter [20]. It filters the
detected noisy pixels and leaves the remaining image pixels un-
touched. To be able to compare the proposed method with the
spatio-temporal local filtering approach, the optimized filter was
applied to the image sequence after noise detection such that,

Fig. 4. Images extracted from the real noisy sequence.

Fig. 5. Images extracted from the real noisy sequence after filtering with the
LUM(27,9) filter.

the noisy pixels were filtered using the optimized SMF with
the optimum rank, and the remaining image pixels were filtered
with the same filter but with a rank equal to the boundary car-
dinality. The fitness value of the ML3Dex filter with noise de-
tection was found to be 99.54. The optimized SMF with noise
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(a) (b)

Fig. 6. (a) Error images between the clean sequence and the filtered sequence
with the SMF. (b) Error images between the clean sequence and the filtered
sequence with the LUM(27,9) (these images have been negated such that the
darker pixels indicate the errors).

detection showed a high fitness value of 99.88. The results of
applying the ML3Dex filter and the optimized SMF, after noise
detection, to a real image sequence are shown in Figs. 9 and 10,
respectively.

VII. D ISCUSSION

It can be seen that the best SMF found has some characteris-
tics expected of a suitable filter. For instance, the hard center has
a support of one pixel, which lies at the origin of the structuring

Fig. 7. Best filter found using GA.

function (i.e., the pixel under consideration). So, the output of
the filter is weighted toward the input pixel value. Also, the filter
sequence found is soft-dilation soft-erosion. This might be ex-
pected for the removal of dark artifacts within the image.How-
ever, due to the nature of soft morphological filters, the relation-
ship between filter parameters and their effects are not quite as
intuitive as for standard morphological filters.

As illustrated in the Introduction, impulsive distortions dam-
aging old films are mainly caused by film dirt. This film dirt
manifests as dark and bright patches of different shape and size.
Individual pixels in a blotch are a kind of impulsive noise dis-
tortion. The initial soft morphological filter used was of spatial
dimension 7 7, which means that dirt of dimension less than
7 7 will be filtered out. So, the maximum cardinality of C,

, will be 49. Also, the filter found has boundary cardinality
, center cardinality , and rank . Sub-

stituting these values in (9) was shown to satisfy the inequality.
Hence, the filter found could filter out the dark as well as the
bright blotches. This is clear in Fig. 8.

In general, the results depicted in Fig. 8 show that the filter
found has excellent performance in attenuating/removing film
dirt from image sequences and has little, if any, effect on the
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Fig. 8. Images extracted from the real noisy sequence after filtering with the
optimized SMF.

Fig. 9. Images extracted from the real noisy sequence after filtering with the
ML3Dex filter with noise detection.

image detail. Also, the fast-moving objects were accurately re-
stored even though no motion compensation was applied.

Fig. 10. Images extracted from the real noisy sequence after filtering with the
optimized SMF with noise detection.

Fig. 11. Histogram of the error images between the clean and the filtered
sequence using the best obtained SMF averaged over the training sequence.

Fig. 12. Histogram of the error images between the clean and the filtered
sequence using the LUM(27,9) averaged over the training sequence.

Figs. 11 and 12 show the histograms, averaged over the
training sequence, of the error images between the clean and
the filtered sequences using the best obtained SMF and LUM
(27,9), respectively. It is clear that LUM filter results in more
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Fig. 13. Three consecutive frames extracted from the real noisy sequence: (a)
the real noisy frames, (b) the result of LUM(27,9) filtering; (c) the result of
ML3Dex filtering with noise detection; and (d) the result of optimized SMF
filtering.

errors than the best obtained SMF. The results depicted in
Fig. 5 show good removal of the noise but the LUM filter was
not capable of restoring the fast-moving objects in the image
sequence. This is clear in Fig. 13.

Compared to ML3Dex with noise detection, SMF with noise
detection showed no difference in the subjective quality of the
restored images. Also, it could perfectly restore all fast-moving
objects while the ML3Dex failed to do this. A challenging se-
quence is shown in Fig. 13. In addition to their rotational mo-
tion, which is very difficult for any motion-estimation technique
to compensate for, the propellers appear in one frame but are not
present in either the preceding or the succeeding frame. In this
case, no known motion-estimation technique can estimate this
type of motion as it exceeds the Nyquist sampling limit set by
the frame rate. An obvious advantage of the SMF with noise de-
tection is its robustness to false noise detection, such that false
noise pixels are filtered by the SMF with the optimum rank.

In spite of the SMF being optimized for a small, artificially
created training set, the filter still performs well when applied
to the entire image sequence.1 The automatic restoration of
film sequences using the proposed method possessed the fol-
lowing advantages: no user determined parameters, good noise
removal with minimum distortion of the image objects, and per-
fect restoration of all fast-moving objects without motion com-
pensation.

VIII. C ONCLUSIONS

In this paper, a technique is developed for the optimization
of multidimensional grayscale soft morphological filters using
the GA. The method optimizes filters with respect to a criterion
based on mean absolute error. This criterion necessitates the cre-
ation of an artificial training set. However, it has been shown that
this is not an overly burdensome task. The filter is extended to
the spatio-temporal domain to make use of the temporal char-
acteristics of the video sequence and coded such that the GA is
free to search for the optimum filter among the purely spatial,
purely temporal and spatio-temporal filters. The optimized SMF

1In order to give the reader a better impression of the restoration in-
cluding motion, the full set of the clean and noisy training sequences,
as well as the noisy and filtered real sequences, is available at: [Online]
http://www.spd.eee.strath.ac.uk/~mahmoud/film_restoration.html

showed excellent performance in attenuating/removing film dirt
from image sequences and has little, if any, effect on the image
detail. Although the proposed optimization method does not
contain motion compensation, which adds more complexity to
the algorithm, the fast-moving objects were restored perfectly.
The proposed method is compared to two other methods for
film restoration. In the first method, a so-called global filtering
approach, a LUM filter was used. The second method is de-
pendent on the detection of the noise pixels and then applying
the ML3Dex filter to only the detected noisy pixels leaving the
other pixels untouched. The results obtained by applying the
optimized SMF to a real image sequence, showed improved
performance compared to the LUM filter for the removal of
the film dirt and outperformed the LUM filter in restoring the
fast-moving objects in the image sequence. To be able to com-
pare the proposed method with the ML3Dex filter with noise de-
tection, the SMF was applied to the image sequence after noise
detection as explained in Section VI. While SMF with noise de-
tection showed no difference in the visual quality when com-
pared to ML3Dex with noise detection, it showed better perfor-
mance in restoring the fast-moving objects, which the ML3Dex
filter failed to restore.

Because of the advantages of the proposed method, demon-
strated in Section VII, and the achieved perceptual quality of
the restored film sequence, the proposed method proved to be
a simple, fast, and cheap approach for the automatic restoration
of old film archives.
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