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Abstract: Source camera identification has long been a hot topic in the field of image forensics. Besides
conventional feature engineering algorithms developed based on studying the traces left upon
shooting, several deep-learning-based methods have also emerged recently. However, identification
performance is susceptible to image content and is far from satisfactory for small image patches
in real demanding applications. In this paper, an efficient patch-level source camera identification
method is proposed based on a convolutional neural network. First, in order to obtain improved
robustness with reduced training cost, representative patches are selected according to multiple
criteria for enhanced diversity in training data. Second, a fine-grained multiscale deep residual
prediction module is proposed to reduce the impact of scene content. Finally, a modified VGG
network is proposed for source camera identification at brand, model, and instance levels. A more
critical patch-level evaluation protocol is also proposed for fair performance comparison. Abundant
experimental results show that the proposed method achieves better results as compared with the
state-of-the-art algorithms.

Keywords: imaging sensors; source camera identification; convolutional neural network; deep

learning; image forensics

1. Introduction

Image content has become an important component of social media, driven by low-
cost and ubiquitous image acquisition and network technology. In parallel, there are
many image processing tools, providing powerful manipulations of the image. Images
can be easily edited to cover up information for illegal purposes, and it can be difficult to
distinguish edits with the naked eye. Therefore, tools for image forensics are in urgent
need to verify the provenance and authenticity of images [1-3].

Source camera identification (SCI) is one of the topics that has received continuous
attention in the image forensic community. The purpose of SCI is to determine the particular
source camera used to shoot the digital image under investigation. Depending on the
specific identification task, there is source camera identification at the instance level [4,5]
(to determine the specific camera device), the model level [6-8] (to determine the camera
model), and the brand level [9,10] (to determine the camera brand). By analyzing traces
left by internal operations of the camera, SCI can be achieved independently of (such
as the EXIF tag or JPEG header [11]), which is easily removed. Meanwhile, in contrast
to watermarking techniques, which need to artificially add information to the original
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image, SCI has a wider range of applications, being a passive method. Source camera
identification can assist in determining the owners of illegal and controversial materials, as
well as helping to resolve the issue of image copyright, to a certain extent [7]. Patch-level
SCI techniques can also be used to detect image forgery.

There have been many successful conventional methods for source camera identifi-
cation. The rationale for robust instance-level SCI is that captured images are affected by
certain imaging characteristics unique to the device, such as lens aberrations [11], sensor
pattern noise (SPN) [12-14], white balance [15], and JPEG compression [16] parameters, etc.
In the case of camera model identification, different built-in image processing algorithms
and parameter settings, (such as color filter array (CFA) interpolation artifacts [17], JPEG
quantization [18], demosaicing traces [19], DCT coefficients [20], etc.) adopted by different
camera models may leave unobservable clues on captured images. Meanwhile, differences
between camera manufacturers will leave weak traces in resulting images, which provides
the foundation for brand-level source camera identification. To sum up, traces left by
different camera instances, models, and brands are stable and irreversible. As features
arising from the source camera are relatively weak in comparison to the perceptual image
content, denoising operations are often utilized as the first step to extract residual images,
guided by prior knowledge of relevant features, to achieve source camera identification.
However, identification performance is greatly influenced by the imperfection of different
denoising algorithms as accurate residual images are hard to estimate.

Driven by the rapid development of deep learning technology, a large number of
deep methods have been proposed. Bondi et al. pioneered the first attempt [7] of camera
model identification with convolutional neural networks (CNN). Many successful deep
network structures in computer vision communication have been directly applied in the
camera identification field—for instance, the CNN [8,11,21], ResNet [9], InceptionNet [22],
DenseNet [23,24], and MobileNet [25]. In some cases, deep networks are utilized for fea-
ture extraction only, whereas camera identification is performed by other classifiers [21,25].
Moreover, there have also been networks designed specifically for source camera iden-
tification, such as the richer convolutional feature network-based representation [26],
RemNet [27], and Siamese network-based works [28,29]. Other than the above works
on the fixed data set, Sameer et al. studied the problem of blind identification of social
networks images [30], whereas the open-set problem is discussed in [31,32] with shallow
networks. Furthermore, the fast advent of sensor technology and proprietary in-camera
processing algorithms equipped with modern smart sensors have imposed increasing
challenges to the community [33,34]. There have been some recent studies on SCI methods
that are robust to adversarial attacks [35,36]. Although promising results have been re-
ported with the increase of accumulated data, network complexity and training costs have
increased dramatically. These are obstacles to performance generalization and efficient
implementation in real applications.

It is worth noting that preprocessing is of vital importance, where weak camera-related
information is enhanced to be less influenced by image contents [8]. Popular choices
of preprocessing modules are high-pass filter [8], normal convolutional layer [9], and
constrained convolutional layer [28,31,37,38]. Considering that strong edges are mostly
related to image content, the concept of selective preprocessing is proposed in [39] by
Gaussian smoothing of strong edge patches. Meanwhile, data augmentation is another
effective preprocessing method that usually leads to improved robustness [23,24]. With
empirical mode decomposition (EMD) augmented data, the DenseNet method [24] won the
first prize in camera model identification competition of IEEE Signal Processing Cup 2018.
Combining nonlinear median filtered residuals, augmented convolutional feature maps
proposed in [38] reported robustness against resampling and recompression. There are
fully end-to-end methods that report better preprocessing performance. Remnant blocks
are designed in [27], whereas an automatic residual extraction module is presented in our
previous work [40].
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Among all strategies for robust camera identification, patch selection deserves special
attention for its simplicity and effectiveness. Only representative patches are selected for
training; thus, computation complexity and possibility of overfitting are greatly reduced
as compared to methods that utilize all patches for training [9]. It was revealed by ex-
perimental results in [10] that, without patch selection or preprocessing, the CNN-based
approach is not as efficient as the SPN-based technique. The patch selection criterion
based on local mean and variance proposed in [7] is followed by many works [22,24,27,32],
whereas a similar strategy is proposed in [9] to train three parallel residual networks for
different types of patches. Some others select central patches [11,29,31,38] or randomly
select patches [10,23,28].

Since source camera identification methods have not been under development for a
long time, a fair evaluation standard has not yet been formed. First, the scale, characteristics,
regularity of image capturing process, rationality of training, and validation and testing
sets division of experimental data sets are inconsistent. It is an essential prerequisite for the
success of all data-driven-based learning methods. Second, performance evaluations are
carried out either on whole image level [10] or by majority voting of several representative
patches [7,22,27,32], or else on the individual patch level [11]. They are in increasingly
difficult order, which makes direct identification-rate-based comparison unfair. Third,
different methods are trained and tested on varying patch sizes (from 36 x 36, 64 x 64,
227 x 227,256 x 256 to 512 x 512). Generally speaking, the smaller the image patch, the
less camera information is involved, and the more difficult to achieve robust identification.

In this work, a patch level compact deep network for efficient source camera iden-
tification is proposed. Our explicit goal is to improve the effectiveness of source camera
identification at all instances, models, and brand levels with controlled computing power.
To this end, we follow a data-driven approach and exploit the patch selection and residual
prediction design. Figure 1 illustrates the framework of the proposed method. In the
training stage, only a small number of representative patches are selected as training data,
where improved efficiency is obtained. This also improves the robustness and generaliza-
tion ability of the deep network such that only intrinsic source camera-related features
are learned. Furthermore, a specialized residual prediction module is designed to reduce
the impact of image content on source camera identification. Finally, a modified VGG [41]
network is utilized for subsequent feature extraction and classification. In the testing
stage, all patches in testing images are identified according to the proposed performance
evaluation protocol. The main contributions of this article are as follows:

*  We propose a patch selection strategy based on local textural and semantic criteria,
which are implemented by patchwise mean and variance scoring and K-means cluster-
ing, respectively. Training cost can be greatly reduced with enhanced diversity of the
training data, thus, in turn, forcing the network to learn more intrinsic camera-related
features for robust identification.

*  Aresidual prediction module that automatically estimates residual image based on
Res2Net [42] is proposed to reduce the impact of image contents. More granular
multiscale richer features could be learned in a fully end-to-end manner, bypassing
the drawbacks of traditional denoising methods due to imperfect filtering.

¢ Based on careful examination of the images in the Dresden database [43], we sug-
gest a patch-level evaluation protocol for camera instance, model, and brand level
experimental design method for fair comparison.

The organization of the paper is as follows. In Section 2, we review the related works of
source camera identification. Details of the proposed source camera identification algorithm
are discussed in Sections 3 and 4, in which the evaluation protocol and experimental results
are presented. Section 5 concludes the work.
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Figure 1. Framework of the proposed source camera identification method.

2. Summary of Source Camera Identification Methods
2.1. Conventional vs. Deep Learning Methods
2.1.1. Conventional Methods

Conventional methods rely on handcrafted features for source camera identification.
Among all sensor-pattern-noise (SPN)-based methods, photoresponse nonuniformity noise
(PRNU) [4] is the most accepted feature. Noise residual (R) is an important concept in
PRNU estimation. It is obtained by subtracting a denoised version F(I) from the original
image I:

R=1-F(I), 1)

where F(-) denotes certain filtering applied to I, either in form of a low-pass filter or an
image denoising algorithm. In this way, image content is suppressed, and PRNU is then
estimated accordingly. Identification is usually based on the statistical hypothesis test
of normalized correlation coefficients. Further efforts are mainly focused on reducing
the impact of image content [13], PRNU enhancement [44-46], and adoption of dual tree
complex wavelet [47], with performance improvement reported.

There have been numerous model level features, including co-occurrence
matrices [6,48-50], local binary patterns (LBP) [51-53], demosaicing features [19,48], gener-
alized noise model [54], moments of 1D and 2D characteristic functions [55], heteroscedastic
noise model [56] etc. In [57], it was proved that the SPN method is equally applicable to
identification of camera models and camera brands. Moreover, combination of multiple
features [49,51,58] is also a popular solution. Identification results are finally obtained
by a machine learning classifier, where support vector machine (SVM) is the most pop-
ular choice. Methods proposed by [51,55,58] can also be applied to brand-level source
camera identification.

A major appeal of all these conventional methods is their simplicity and interpretability
as they are derived based on explicit or implicit models. However, they suffer from some
drawbacks. First of all, accuracy is greatly influenced by varying image contents due to
imperfect denoising algorithms. In addition, in-camera processing is certainly nonwhite.
Consequently, performance degradation due to assumption deviation is unavoidable.

2.1.2. Deep Learning Methods

Unlike the conventional feature engineering works guided by prior knowledge, deep
learning methods follow a data-driven approach. Successful networks in computer vision
society, such as AlexNet [8], ResNet [10,30], and DenseNet [23,24], are first applied to
the field of source camera identification. With structure adjustment [8-10] or pretrained
parameters [23-25], they perform well at the model and brand levels. Convolutional-neural-
network-based shallow structures [7,31,39,59] are also prevalent in early years, where
additional classifiers are sometimes cascaded after for better performance [7,21,32,38]. The
importance of preprocessing layers is justified in [31,38,40], echoing the noise residual
concept in SPN-based conventional methods. The recently proposed RemNet [27] method
also exploits this property where a special remnant block is designed to dynamically
suppress image content.
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There are some efforts utilizing parallel networks [9,22,24] or multiple combined
networks [24,28] for better performance. Three branches of ResNet are adopted for feature
learning at different spatial scales in [9], whereas Inception-ResNet and Xception Network
are adopted in parallel for feature extraction in [22]. DenseNet-201 and Squeeze-and-
Excitation block are combined in [24], while the similarity network is combined with a
specifically designed network for image comparison in [28]. Performance gain is usually
obtained by fusion of richer features. Furthermore, there have been some recent attempts
to design deeper and more complicated network structures [11,27,29], where performance
improvement is reported at the expense of high training cost.

In summary, deep learning solutions are emerging as strong candidates for SCI. Con-
sidering the special characteristics of camera identification application, how to exploit prior
knowledge obtained from conventional methods is a fruitful direction in deep networks
design. We will discuss our effort in patch selection and residual prediction module design
in Section 3.

2.2. Patch Selection Schemes

As discussed previously, patch selection is a simple yet effective method in source
camera identification. The scheme proposed by Bondi et al. [7] based on edge and textual
evaluation of local patches is widely accepted [22,24,27,32]. The input image I is first
divided into m nonoverlapping 64 x 64 x 3 patches Z = {I;, I, - - - , s}, where boundary
parts less than 64 x 64 are ignored. Guided by prior knowledge from conventional
methods that patches with more textures, edges and the mean value close to half of the
image dynamic are more distinctive in camera identification, and a score f is defined as:

iz L B -+ (-0 (-], ie@2 o m)
c€[R,G,B]

where ji.; and o,; are the mean and standard deviation of the R, G, and B color channels
(normalized into the range of [0, 1]) of the ith patch, whereas «, B, and <y are constants set to
be 0.7, 4, and In(0.01) according to [7]. All patches are then ordered according to f, where
the top T patches are selected for training.

A similar scheme is proposed by Yang et al. [9] in which, based on local mean and
standard deviation, all patches are categorized into three subsets according to the difficulty
of classification:

Saturated u € [0,5] U[250,255],0 € [0,25]
Smooth € [0,5] U [250,255], 0 € [25,50]]
1 € [5,250], 0 € [0,50]

Others others

®)

where threshold values are determined empirically. The first difference between the edge
and textural scheme [7] is that all patches are utilized for training. Three parallel ResNets
are further employed to deal with these three subsets, respectively. This divide and conquer
strategy brings prominent performance improvement. However, training cost is increased
dramatically.

There have been other patch selection schemes. For instance, center patches are
selected in [11,31,38] or conducted randomly [10,23,28]. However, all of these patch se-
lection schemes are based on a single criterion. Thus, data diversity, crucial to success of
data-driven methods, is hard to guarantee.

2.3. Preprocessing Methods

A notable characteristic of camera identification is that distinctive features are weak
as compared with scene content. Both conventional and deep learning methods heavily
suffer from this drawback. To solve this problem, various preprocessing methods have
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been proposed, including plain convolutional layer [9], LBP [52], 2D empirical mode de-
composition (EMD) [24], Laplace edge detection filter and Gaussian filter [39], augmented
convolution feature maps [38], and noise pattern [59], etc.

The most popular category of methods are based on the noise residual concept in
PRNU estimation. Imposing a fixed high-pass filter [6,8] or some image denoising algo-
rithm [4,60] can reduce the influence of image scene in some extent. However, it is difficult
to get rid of artifacts introduced by imperfect filtering, which is a main disadvantage of
conventional methods.

Residual prediction is also an important module in deep-learning-based methods.
In [10], sequential multiscale high-pass filters are adopted for residual image prediction:

I=1-F(I)+F(()

=N+ F(I)— R(F(I)) + E(F(I))

= N1+ N2+ B(F(1) - B(R(F (1)) + B(R(FR(1)))

= N1+ Nz + N3 + F3(F2(Fi (1))
by successively subtracting the output results of these three Gaussian filters. This method
also suffers from the risk of image characteristics change as three sequential high-pass
filtering operations are applied.

The constrained convolutional layer [37] initially proposed for manipulation detection

is well applied in source camera identification [28,31,38]. By restricting a high-pass filter of
the convolutional kernel w by:

4)

wM(0,0) = -1,

k 5
Y wmm) =1, ®
mmn#£=0

fully end-to-end manner residual prediction is achieved, where wlil) (m,n) denotes the kth
filter coefficients in the first layer at corresponding position (m, n). However, only three
constrained kernels are learned and applied to the green channel of input color images,
which is insufficient for robust identification.

3. The Proposed Source Camera Identification Method

As illustrated by the framework of the proposed system in Figure 1, all training and
test images are first divided into nonoverlapping patches, which are set to be 64 x 64 in
this work. In the training phase, representative patches obtained by patch selection module
serve as training data to supervise the learning of subsequent residual prediction and
classification. Once the parameters are trained, all patches in test images are identified for
final performance evaluation.

In the following subsections, we will discuss how to use patch selection for enhanced
data diversity and describe the design of noise residual prediction and classification module.
Details of the evaluation protocol are also provided.

3.1. Multiple Creteria Based Patch Selection

The importance of patch selection has been justified by many works [7,9], while
improved efficiency and robustness are obtained as compared to training with all image
patches [9]. However, most patch selection methods are performed according to single
criterion, which may cause inconsistency between training and testing data. For instance,
if only patches with sharp edge are selected for training, there is high risk that subsequent
CNN would be enforced to learn interpolation features near edges rather than source-
camera-related information. As a consequence, networks trained on these selected patches
may not work well in testing phase where all patches are identified.

To this end, a patch selection method based on multiple criteria for enhanced diversity
of selected patches is proposed. Our explicit goal is to select a small number of patches that
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is representative of the underlying distribution of all training and testing patches. Prior
knowledge obtained from conventional methods is utilized to guide criterion design.

First, the edge and textual criterion [7] is adopted based on local mean and variance
evaluation, given the fact that more interpolation-related information is contained in such
patches. For each training image, the top T patches with highest scores by (1) are selected.
In this way, high-quality edge and textual patches are included in training patches.

Second, considering the low signal-to-noise ratio (SNR) of source-camera-related
information with respect to image intensity, the semantic content is adopted as the second
criterion for patch selection. In order to achieve better perceptual quality, camera man-
ufacturers adopt different built-in processing algorithms for varying image contents. It
has been revealed that the fingerprints left by the same camera are not identical to each
other for different contents [9] on multiple shoots of images. Consequently, it would be
helpful if more patches with similar contents are selected for training. The conventional
unsupervised K-means algorithm [61] is adopted to perform the semantic clustering, due
to its simplicity and effectiveness. This contributes another K patches into the training set.

Furthermore, several techniques are utilized for effectiveness and implementation
efficiency. First, instead of directly clustering all nonoverlapping patch candidates into
K clusters, a technique in which all patches are clustered into k clusters, where the first
n patches closest to the cluster centroids are selected (K = k X n), is utilized for better
discrimination performance. In this way, the n patches in each cluster are similar with each
other, which will benefit the discrimination of instance level identification. Second, directly
clustering in the original pixel space (4096 x 3) could be computationally prohibitive. The
proposed solution is to use the patchwise mean and standard deviation as a feature vector
¢ = (p,0), that later clustering is performed in this two-dimensional feature space. The
proposed patch selection algorithm (Algorithm 1) is summarized as:

Algorithm 1 Multiple-Criteria-based Patch Selection

Input:
Image patchset, Z = {I1, I, - - - , I;u }
Number of textual patches, T
Number of cluster centers, k
Number of patches per cluster, n
Number of iterations, N
/ / Edge-and-Texture-based patch selection
fori=1,2,...,mdo
Calculate f; according to (2)

end for
Sort f; in descending order f,(1), fr(2),*** / fre(m)
Select the first T patches as edge and textual representatives: & =

ey Iy o Iy )
// Semantic-content-based patch selection
fori=1,2,...,mdo
Hi = § Lee[R,G,B] Hei
i = 5 Lee[r G5 ei
end for
Form feature space Z = {{1,{2, ..., {m}) from patch set {; = (u;, 07)
Perform K-Means clustering in feature space Z to obtain the k Cluster centroids:
c1,C2, - ,C until N iterations is exceeded
For each of the k centroids, select n nearest patches as semantic representatives:
S = {1611/1612/ SRS CPASEEE ey Iy, - ’Ickn}

Output:
Training patchset P = EUS
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Figure 2. Illustration of multiple criteria-based patch selection. (a) Selected edge and textual patches (in red square) and

There is the possibility that some patches may be simultaneously selected by multiple
criteria. A feasible solution under such circumstances is to preferentially retain patches by
the semantic content criterion, so that the next ranked c patches according to the edge and
textual score {I;(141), Ly(T42),* / Ln(14¢) }) are merged into P, where ¢ = |€ N S| is the
number of commonly selected patches.

A comparative example of the multiple-criteria-based patch selection is shown in
Figure 2, where (T,k,n,K) = (64,16,4,64). Figure 2a visualizes the spatial position
of selected training patches. It can be observed that edge-and-textual-based patches
(highlighted in red squares) are mainly concentrated along the edge areas of the church and
other buildings. Obviously, they are not typical enough to well represent the underlying
input image. Network trained only on these patches cannot learn sufficient features to
identify all patches during the testing phase. However, being representatives to report the
majority of the whole scene, content-based selected patches (highlighted in green squares)
cover varying contents covering the main scene of the image such as sky, ground, and the
interior of the building. They serve as a good complement to the diversity of the training
data, so that richer features could be learned from. Selected patches are shown in Figure 2b
for further visual inspection, where the 16 columns corresponding to the centroids that we
set for content-based patch selection. We see that the 4 selected patches are similar with
each other, which will add to the diversity of selected patches for network training.

Edge and textual based representative patches

AN Fe A EC RSN
" Il MO
Wil ol B L ot /%) o 80 SN
B = s TN Tl WY

Semantic content based representative patches

H El] MEEN 'SEN
N SNl "EEET (ARENHE
' FEHT TENENF 1EN
E SE] MEEN /&AERm

(b)

semantic representatives (in green square); (b) visualization of selected patches.

To summarize, the two textual and semantic content criteria adopted are orthogonal
to each other, just as the color and shape attributes when identifying an apple. As a result,
one can expect performance improvement in SCI, as diversity of selected training patches
is well enhanced.

3.2. Residual Prediction Module

The identification result is vulnerable to image content if selected patches are directly
fed into a CNN, despite the excellent feature learning capacity of CNNs. The importance
of the residual prediction module has been verified by several works. An intuitive way for
residual prediction would be ResNet [62] proposed by He et al., which has been successfully
applied in SCI [9,10]. However, it is used for identification rather than learning residuals.

Recently, a new multiscale backbone Res2Net [42] was proposed (shown in Figure 3a).
By imposing hierarchical residual-like connections between smaller groups, it demonstrates
consistent superiority in several tasks. Considering that local relationships are critical in
SCI applications, more granular level multiscale properties should be further exploited in
deep network design. Inspired by Res2Net, we propose a residual prediction module to



Sensors 2021, 21,4701

9 of 22

reduce the impact of image content, which is depicted in Figure 3b. Several modifications
have been made to explore richer features at a more granular level.

First, for each input training patch I, feature maps after 1 x 1 convolutional filters
are evenly split into s groups, where s denotes the added scale dimension in addition to
existing dimensions of depth, width, and cardinality (s = 4 as depicted in Figure 3). The
greater s is, the greater the number of granular level characteristics that can be learned by
the network. As our emphasis is to exploit granular level features, two 3 x 3 convolutional
layers are applied to each group, including the first group, which is directly passed to the
output in Res2Net [42].

gé Training patch | |

Lx | ox | x | x | [ x| x | x| x |

l Residual |

(2) (b)

Figure 3. Network structures of the (a) Res2net. Reprinted with permission from ref. [42] Copyright
2019 IEEE and (b) the proposed residual prediction module.

Second, subsequent group and output feature maps of the previous group are sent
to the next sets of two 3 x 3 convolutional filters. This process is repeated several times
until all feature map groups have been processed. By increasing one more 3 x 3 layer for
each group as compared with [42], more equivalent feature scales could be obtained as the
reception field sizes are enlarged whenever it passes a 3 x 3 filter. As the residual prediction
module locates at the beginning of the deep network, and as more local relationships are
exploited, better identification results can be expected.

Finally, feature maps from all groups are concatenated and fused together with another
group of 1 x 1 filters. Hereby, we specially fix the output dimension to 3 to match the
cardinality of input color channels. In this way, patch-to-patch residual learning can be
achieved. An interesting outcome is that if we consider the learned features as F(I), by
subtracting from the original patch I, we can obtain a residual image like R that has the
same physical meaning comparable to its initial definition in conventional method as in (1).
In other words, the deep residual prediction module could be considered as an adaptive
denoising filter F. This provides us the possibility to bridge the gap between conventional
and data-driven deep learning methods, which will facilitate better understanding and
solving of the SCI problem.

To illustrate the proposed residual prediction module, some example residual patches
are shown in Figure 4. It can be observed from the comparison results that the influence
of the varying image content has been reduced, whereas certain features are enhanced.
For the first patch with strong edges, the residual prediction output lies consistently along
the edges, whereas the fine-scale components are enhanced in the smooth region. This is
more obvious for the second smooth patch where color interpolation-related features are
supposed to be crucial for identification. With the proposed residual prediction module,
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granular level fine-scale local relationships are better exploited. Moreover, rich high-
frequency details are retained for random or structural texture patches shown in the last
two columns.

=i

)

Figure 4. Visulization of typical pathes by the residual prediction module. (a) Original patches;
(b) residual patches.

3.3. Modified VGG for Identification

After a fine-grained multiscale residual image has been obtained, a classification mod-
ule is followed to further extract camera-source-related features. A modified VGG network
is proposed in this work due to the simplicity and effectiveness of the backbone network.

The VGG network was initially proposed in [41] for classification and localization, and
has been well generalized to various tasks and data sets. By discarding large convolutional
kernels, the number of parameters has been greatly reduced as compared with early
network structures. Meanwhile, given the residual image as input, VGG is more suitable
for SCI applications as multiple consecutive 3 x 3 convolutional layers with pooling at
different stages allows for better exploration of spatial relationships at varying scales, when
compared with 1 x 1 kernels widely applied in deeper ResNet-based structures. Moreover,
it is easier to train as a relatively shallow network.

The proposed network shares similar structure with VGG, whereas specific parameters
are shown in Figure 5 (p and s represent padding and stride parameters). For model and
instance level SCI, more elaborate features should be learned. Although they share the
same network architecture, training of instance-level network is based on fine-tuning of
the pretrained model-level network. In contrast with this, common features lead to more
stable brand level identification. Consequently, only the first four stages are involved in
brand-level SCI.

Stagel
) o)
1) @D
- -
(= (

Stage2 Stage3 Stage4 Brand level

Identification

N1y
N1y

[ Convolutional layer
[ Pooling layer

Stage5 Model / Instance level
Identification

=
z

I Fully connected layer

[ Softmax layer

I Global Average Pooling layer

Figure 5. Framework of the proposed source camera identification method.
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Multiple consecutive 3 x 3 convolutional layers are divided into five stages, where
ReLU activation and max pooling are connected afterward. In order to reduce the number
of parameters, a global average pooling (GAP) layer is adopted in the proposed structure
to replace the two fully connected layers for feature fusion. Finally, the attribution to the
classification result is achieved by a fully connected layer (represented as ip-N in Figure 5)
and the softmax function, where the number of neurons N is identical to the number of
classes to be identified.

3.4. Performance Evaluation

Credibility of the experimental results has been greatly reduced as the experimental
design of different SCI works is not uniform. In order to fairly compare the performance
of SCI algorithms, a performance evaluation protocol is proposed with the following
guidelines. It is based on the Dresden database [43], which is the largest and most widely
accepted public image forensic database.

First of all, construction of the training, validation, and testing data sets is of vital
importance to performance comparison fairness.

e  For SCI task at one specific level, classes with only one instance at its lower level
should be removed. For example, the “FujiFilm” brand is eliminated from brand
level identification, as there is only one camera model “FujiFilm_FinePix]J50” in the
Dresden data set. The possible influence of misleading the network to learn model
level features could be avoided in this way. A similar principle applies to the model
level SCI that models with only one instance are excluded. Instance-level SCI is not
influenced such that all 74 camera instances are utilized.

® In order to reduce the effect of image content, scenes in the training set, validation
set, and test set should be exclusive to each other. SCI algorithms are greatly affected
by image content; images obtained from the same scene will affect the identifica-
tion result severely. This is implemented with the scene number identifier of the
Dresden database.

In the second place, a more critical patch-level evaluation method is proposed. Some
identification is performed on the whole image [10], whereas some are based on majority
voting of several patches [7,22,27,32]. In the proposed method, all 64 x 64 testing patches
should be evaluated independently. Identification accuracy is calculated as:

No. of correctly classified patches
Total No. of test patches

Accuracy = % 100%. 6)

It is more critical as a patch-level evaluation with no further strategy (such as voting)
allowed. In this way, more valuable identification results could be obtained. The dyadic
patch size of 64 x 64 is recommended, as it is more convenient to manipulate and adapt to
different application scenarios, such as image manipulation detection, forgery detection,
and so on.

4. Experiments
4.1. Experimental Step

Experiments were conducted to demonstrate the effectiveness of the proposed method.
As shown in Figure 1, selected representative patches were utilized in the training and vali-
dation phases, while all patches in the testing images were identified in the testing phase.

In our experimental methodology, first, individual parts of the proposed algorithm,
namely the patch selection scheme, residual prediction part, as well as the identification
network, are compared while keeping the other parts the same. Camera model level results
are reported at this stage, as it is the intermedium between brand- and instance-level
identification, and is mostly studied in SCI applications. Then, the proposed algorithm is
compared with state-of-the-art SCI methods on all brand, model, and instance levels with
failure analysis. Application in image tampering detection is also presented.
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For brand level identification, six camera brands were included, namely Agfa, Canon,
Nikon, Pentax, Samsung, and Sony, which yields a training set with 6438 images. There are
1110 and 378 images in the validation and test sets, respectively. For model level identifica-
tion, the similar models “Nikon_D70s” and “Nikon_D70” are merged into “Nikon_D70”
as suggested in [7,27]. Detailed information of the 18 selected camera models is shown
in Table 1, where the training set, validation set, and test set contains 7938, 1353, and
540 images. All camera instances in the Dresden database are adopted in instance level
identification, with more than 10,000 images in the training set and 2193 and 2199 images
in the validation and test sets, respectively.

Experiments were conducted on a PC with Intel (R) Core (TM) i5-8500 CPU @ 3.00
GHz, equipped with a NVIDIA GTX 1080Ti GPU on Ubuntu 16.04 operating system under
the Caffe framework. The learning rate was initialized to 0.01 and the maximum number
of iterations was 100,000. We set the weight decay to 0.00075 and the momentum to 0.9.
The stochastic gradient descent (SGD) optimization algorithm was utilized, and the batch
size was 64.

Table 1. Details of camera models used in experiments.

No. Camera Model Resolution No. Images
0 Canon_Ixus70 3072 x 2304 363
1 Casio_EX-Z150 3264 x 2448 692
2 FujiFilm_FinePixJ50 3264 x 2448 385
3 Kodak_M1063 3664 x 2748 1698
4 Nikon_CoolPixS710 4352 x 3264 695
5 Nikon_D200 3872 x 2592 373
6 Nikon_D70 3008 x 2000 373
7 Olympus_mju-1050SW 3648 x 2736 782
8 Panasonic_DMC-FZ50 3648 x 2736 564
9 Pentax_OptioA40 4000 x 3000 405
10 Praktica_DCZ5.9 2560 x 1920 766
11 Ricoh_GX100 3648 x 2736 559
12 Rollei_RCP-7325XS 3072 x 2304 377
13 Samsung_L74wide 3072 x 2304 441
14 Samsung NV15 3648 x 2736 412
15 Sony_DSC-H50 3456 x 2592 253
16 Sony_DSC-T77 3648 x 2736 492
17 Sony_DSC-W170 3648 x 2736 201

4.2. Experiment 1: Determination of Patch Selection Paremeters

To determine the parameter settings in the proposed patch selection algorithm, we car-
ried out model-level experiments with the modified VGG identification network discussed
in Section 3.3.

First, to determine the number of representative patches, we varied the number
of selected patches for training from 32 to 256; the comparison results are shown in
Table 2. Generally speaking, identification accuracy increases when more patches are
involved in training, as more intrinsic features could be learned. However, the increase of
training computation burden rises greatly, in sharp comparison with the slower growth in
performance. In comprehension of the performance and computation cost, the number of
representative patches was set to 128 according to the results in Table 2. The number of
validation patches was also set to 128 per image due to consideration of computation cost.

Table 2. Comparison of model level identification accuracy with varying number of training patches
per image.

No. of Patches 32 64 128 256

Accuracy

(100%) 85.90 88.69 91.70 90.81
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Second, to determine the optimal parameter settings of the number of edge and textual
patches T, number of cluster centers k, and number of patches per cluster in semantic con-
tent criterion 7, we tried different combinations with the constraints that T + k x n = 128.
This resulted in 1,016,064 and 173,184 patches in the training and validation sets for model-
level identification, respectively. Identification accuracies are shown in Table 3. The setting
of (T,k,n) = (128,0,0) corresponds to the edge and textural scheme in [7] and serves as a
baseline for comparison. From the comparison results, we can safely conclude that combin-
ing semantic content criterion indeed brings performance improvement due to enhanced
diversity in training data. Among the varying combinations, we chose (T, k, n) = (64,16,4)
as the final parameter setting, as it leads to the best performance.

Table 3. Comparison of model level identification accuracy with varying parameter settings.

T 128 32 32 32 64 64 64
k 0 16 32 9% 16 32 64
n 0 6 3 1 4 2 1
Accuracy g, 10 86.15 86.22 86.76 87.37 86.39 86.65
(100%)

Furthermore, to better understand the effectiveness of the proposed multiple criteria-
based patch selection scheme, we compare with the patch selection scheme in [7] while
keeping all other settings the same. Misclassified patches are depicted in Figure 6. The four
images shown are captured by cameras from “Canon_Ixus70” (Model 0), “Panasonic_DMC-
FZ50” (Model 8), “Ricoh_GX100” (Model 11), and “Samsung_NV15” (Model 14), respec-
tively, where camera models are indexed by model number given in Table 1. Misclassified
patches are highlighted with red (green in last image to distinguish from the large red
background area) squares, where the number in the center indicates the incorrect camera
model to which it has been assigned.

IR |

I

Figure 6. Visualization of misclassified patches with (a) patch selection scheme in [7] and (b) the proposed patch selec-

tion scheme.

From the comparison, we see that the number of misclassified patches are greatly
reduced with the proposed patch selection scheme. As revealed by Equation (2), the patch
selection scheme in [7] put too much emphasis on edge and texture regions that patches in
smooth regions are merely involved in training. This is the reason for the bad performance
in the smooth regions of the red, white background and black back of the chairs in the two
indoor images. In fact, there are rich source camera features in smooth regions, which are
common in image content. Most patches in these areas are successfully identified (shown
in Figure 6b). Similar improvement can also be observed in the tower, branches, and sky
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regions in the two outdoor images, benefiting from the enhanced data diversity with the
proposed patch selection scheme.

4.3. Experiment 2: Comparison of Preprocessing Methods

To show the effectiveness of the proposed residual prediction module, we compared
commonly used preprocessing methods on model level. For comparison fairness, all
results were reported based on training the proposed modified VGG network with the
multiple-criteria-based patch selection scheme. The results are summarized in Table 4.

Table 4. Comparison of model level identification accuracy of different preprocessing methods.

Method Accuracy (%)
None 87.37
Fixed high-pass filter [8] 88.79
Mean filter 89.84
Constrained convolutional layer [38] 90.21
Proposed 92.62

There are cases in which no residual prediction is involved where selected patches are
directly forwarded to the identification network [7,11,23]. The accuracy rate is only 87.37%,
indicating the importance of residual prediction in forensic applications. Meanwhile, it
is common to utilize a traditional filter [38,52,59] to smooth the image and residual is
obtained by Equation (1). The 3 x 3 mean filter is a simple yet effective choice, which is
implemented with the “cv2.blur” function of the OpenCV library [63] in our simulation. An
interesting observation is that it slightly outperforms the fixed high-pass filter method [8].

The constrained convolutional layer method [38] could be trained in conjunction
with the identification network; thus, it is more efficient as a fully end-to-end feature
method. We set the kernel size to be 5 x 5 as in their original proposal [38]; however, we
applied it to all RGB channels instead of only green channel for the sake of comparison
fairness. It stands for the state-of-the-art preprocessing method with identification accuracy
of 90.21%. However, as clearly shown in Table 4 that it is improved by 2.41% with the
proposed residual prediction model, this is a strong evidence of how multiscale features
boost identification performance.

4.4. Experiment 3: Comparison of Identificaiton Network Structures

In order to verify the effectiveness of the proposed modified VGG network, we com-
pared the identification accuracy while fixing the patch selection and residual prediction
module. Model-level experiment results are shown in Table 5.

Table 5. Comparison of model-level identification accuracy of different identification networks.

Method Accuracy (%)
Bondi Network [7] 90.38
Residual network (5 x 5) [9] 90.93
Content adaptive fusion residual networks [9] 91.90
Hierarchical Multitask Learning [10] 92.18
Modified VGG network (Proposed) 92.62

We also present the training history of the proposed method in Figure 7, where the
loss and identification accuracy are plotted with respect to the number of iterations. It can
be clearly seen that the proposed modified VGG network converges quickly (at around
20-30 epochs), where the loss stabilized at about 0.1. Moreover, there is no significant
gap between the training and validation accuracy, indicating no overfitting tendency of
the network.
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Figure 7. Convergence curves of the proposed modified VGG network. (a) Loss vs. iterations and
(b) accuracy vs. iterations.

4.5. Experiment 4: Comparison with State-of-the-Art-Methods

After we have discussed the effectiveness of the three fundamental blocks of the
proposed method separately, we now evaluate its performance with other state-of-the-art
methods at brand, model, and instance levels.

There have been many successful camera identification methods, most of which
are based on convolutional neural networks. One may notice that, except in [9] where
all patches are used for training, the number of training patches is usually smaller as
compared to the proposed method. To compensate this shortage of training patches, the
proposed multiple-criteria-based patch selection is adopted to replace those in [7,8,21,27]
and [38]. Experiments are strictly conducted according to the data sets and evaluation
protocol as discussed in Section 3.4 and 4.1. Identification accuracy results as well as
training time are summarized in Table 6, obtained either by source code provided by
authors [7], reimplementation of the network structure in their original papers [8,9,21,27],
or with minor modification caused by patch size inconsistence [38].

Table 6. SCI accuracy comparison with state-of-the-art methods at three levels.

Method Brand (%) Model (%) Instance (%) Training Time

Bondi [7] 81.20 78.86 33.83 0.67 h
Tuama [8] 89.19 83.90 31.36 0.68h
Huang [21] 93.26 82.14 31.01 0.52h
Bayar [38] 93.21 87.31 35.53 3.23h

Yang [9] 97.74 88.73 40.26 46 h

Rafi [27] 96.96 91.79 35.31 8.58 h
Proposed 98.14 92.62 41.54 3.95h

The pioneering work [7] serves as a benchmark for our discussion. Note that the model-
level accuracy of 78.86% is much lower as compared with that reported in the original paper
(93%). This is due to different evaluation settings, suggesting that the proposed evaluation
protocol is more critical. Meanwhile, it can be clearly observed that with the increasing
difficulty in distinguishing different brands, models, and instances, identification accuracy
drops sharply from 81.2% and 78.86% (brand-level accuracy and model-level accuracy,
respectively) to 33.83% (instance-level accuracy). It is not surprising since shared common
features also show a decreasing trend for these three tasks. Furthermore, the downsample
operation in pooling layer is responsible for the poor performance in the instance level,
which is commonly reported in CNN-based methods.

By comparison, identification accuracy improvement in the work of Tuama et al. [8] is
obvious; a fixed 5 x 5 high-pass filter was imposed onto the input image to obtain residual-
like images. Meanwhile, with similar CNN structures, training cost is also comparative
with [7]. Initially designed for a smaller patch size of 36 x 36, the network in [21] is
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relatively simple, resulting in the shortest training time. However, it is only slightly inferior
to [8] at the model and instance levels, with a surprising good brand-level identification rate
(93.26%). This might be caused by the simple network structure in which only large-scale
common features are better revealed.

In [38], the preprocessing is accomplished by the proposed augmented convolutional
feature maps (ACFM), consisting of a nonlinear median filter residual and a constrained
convolutional layer applied to the green channel in parallel. The network is originally
designed for 256 x 256 patches with deeper network structure. In our reimplementation,
minor modifications are applied to adapt to the 64 x 64 patch size setting: stride of conv2
layer is reduced from 2 to 1, while padding parameters are increased by 1 for conv2, conv3,
and conv4 layers. One can observe obvious performance improvement at all brand, model,
and instance levels, while training times is increased almost five times as compared to
Bondi’s work [7].

Yang et al. employed another strategy [9] that no patch selection is involved. Accord-
ing to image contents, all patches are divided into three subsets: saturation, smoothness,
and others, while three fusion residual networks are trained correspondingly to handle
them. Network complexity is further increased by three parallel branches within each
fusion residual network, leading to a training time of 46 hours that stands out at the top of
all methods in comparison. Guided by the divide and conquer principle, it is not surprising
that prominent performance improvement is obtained due to these efforts.

A dedicated designed remnant block was recently proposed in [27] for forensic feature-
enriched residual learning at the camera model level. The original patch input is connected
to all three cascaded remnant blocks by skip connections to avoid possible information loss.
As shown in Table 6, high model level accuracy of 91.79% is reported at 365,000 iterations in
our simulation, while better results can be expected through some structure adjustments for
brand and instance levels. Note that the output feature map of each remnant block remains
the same as the patch input (64 x 64), which may explain the relative long training time.

However, we can clearly see that the proposed method performs consistently best
among all methods at all levels. Meanwhile, the computation complexity is limited, which
is comparable to Bayar’s work [38]. The proposed multiple-criteria-based patch selection
scheme plays an important role, as only 128 representative patches are selected as compared
to more than 2000 image patches for each image. Meanwhile, the multiscale information is
explored by granular level features with the proposed residual prediction model, which
is more economic and flexible as compared with the content-based fusion network in [9].
With the modified VGG network, it is safe to draw the conclusion that the proposed method
is more preferable in practical SCI applications.

4.6. Experiment5: Confusion Matrix Analysis

To gain further understanding of the identification performance on specific categories,
we present confusion matrix analysis of the proposed method at three levels in detail. It
can be clearly seen in the brand-level confusion matrix in Figure 8a that almost all six
brands can reach to nearly 100% identification. However, some of the images taken by the
Agfa and Pentax brand cameras are erroneously identified as images taken by the Nikon
brand camera, indicating the built-in image processing algorithms by Nikon cameras share
certain common features with these two brands.

From the classification confusion matrix visualization of the 18 camera models in
Figure 8b, one can see that the classification accuracy of most camera models is higher than
97%. However, accuracy of the three Sony categories is significantly lower, as they greatly
interfere with each other, which seriously affects the overall accuracy. This phenomenon
has been reported in many papers [7,24]. One possible reason is that the hardware and
software configurations of these camera models are similar during the production process,
which makes their model features difficult to distinguish. Meanwhile, an insufficient
number of training images may exacerbate this phenomenon. It is revealed in Table 1 that
there are least images from models of Sony_DSC-H50 and Sony_DSC-W170, corresponding
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to the worst two identification rates. The number of images of Sony_DSC-T77 is moderate,
while its result is slightly better than those of the other two models.

Agfa
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Nikon 070

Canon
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omcz50
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Figure 8. Confusion matrix of (a) brand level and (b) model level identification.

The classification confusion matrix of the instance level identification is shown in
Figure 9. As discussed before, instance-level identification is more difficult, especially for a
74-category classification problem. There is an obvious block effect shown in Figure 9; inter-
ference between camera instances of the same model is severe (see the Nikon_CoolPixS710,
Ricoh_GX100, and Sony cases highlighted in red squares, for example), echoing the low
identification accuracy of instance-level SCI (41.54%, as shown in Table 6). The topic of
how to design deep structures that can efficiently exploit instance level features is a fruitful
direction for future SCI studies.

Figure 9. Confusion matrix of instance level identification.
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4.7. Image Tampering Detection

Image tampering detection is a hot topic in the image forensic field; many algorithms
have been proposed as potential solutions. As a composited image usually contains
contents from different camera sources, SCI methods can be easily applied in the image
tampering detection task. The smaller the patch size that SCI algorithms can stably work
with, the better the tamper detection performance one can expect.

An illustrative example is presented in Figure 10, where image parts of traffic signs
from Kodak_M1063 are carefully spliced into two Canon_Ixus70 images. All 64 x 64
nonoverlapping patches in the tampered images (Figure 10b) are identified according to
the trained model-level network with the proposed method. Taking the majority voting
results of all patches as the model ID of the whole image, misclassified patches are marked
with red squares, considered as the tamper detection results shown in Figure 10c.

It can be clearly observed that most of the tampered contents can be correctly identified.
Note that the discontinuities and false positives shown in Figure 10c can be easily removed
by imposing spatial connectivity and consistency assumptions with the detection results.
This is because with the fast development of cameras, image content smaller than 64 x 64
is meaningless. Isolated individual detected patches could be eliminated, while separated
regions should be merged together. Logical and morphological operations can also be
involved in subsequent image tampering detection algorithms, which is one of the future
directions to be studied.

Figure 10. Image tampering detection. (a) Original images. (b) Tampered images. (c) Detection results.

4.8. Failure Cases Analysis

By comparison results conducted on the proposed evaluation protocol, we see that the
proposed method outperforms several state-of-the-art SCI algorithms. However, it should
be noted that there are still some limitations that it may fail in some situations. Analysis
of failure cases helps to reveal more on shortcomings of the algorithm and problems to
be solved.

Hereby, we discuss these limitations by some failure cases at the model level identifi-
cation shown in Figure 11. Although most patches are correctly identified, some patches
in dark regions of Figure 11a and a considerable number of saturated sky patches in
Figure 11b are misclassified. It was reported in [4] that the instance level camera fin-
gerprint photoresponse nonuniformity noise (PRNU) term is not present in saturated
regions. Similarly, little evidence of model level feature is observed in such regions. Mean-
while, identification of a certain number of patches in smooth regions failed, as shown in
Figure 11c. This is probably due to the fact that smooth regions are easier to process as
compared to edge and texture regions. Consequently, processing algorithms employed
by different camera models are not as discriminative in such regions. To address these
problems, special strategies for dark, saturated, and smooth regions should be considered.
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Moreover, as can be clearly seen in Figure 11d, misclassification among the three Sony
categories is quite severe. Although it is commonly reported in many literatures [7,9,24],
underlying reasons needs to be further revealed.

- « 2

(a) Dark regions (b) Saturated regions (c) Smooth regions (d) Sony_DSC-H50

Figure 11. Failure examples of the proposed method at model level identification.

5. Conclusions

In this paper, we developed an efficient source camera identification approach, con-
sisting of three fundamental blocks of multiple-criteria-based patch selection, fine-grained
multiscale residual prediction, and modified VGG identification. It performs well under
the proposed patch level evaluation protocol at the brand, model, and instance levels, in
terms of both identification accuracy and computation efficiency. Applications in image
tampering detection and failure cases analysis are also presented. The experimental results
reveal that identification of dark and saturated regions and instance-level identification are
important problems to be studied in the future.
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