Exemplar-Based Color Constancy and Multiple Illumination

Hamid Reza Vaezi Joze and Mark S Drew

Presented by Shibudas Kattakkalil Subhashdas

School of Electronics Engineering, Kyungpook National University
Introduction

- Proposed Method
 - It consists of three stages
 - Surface modeling
 - Illumination Estimation
 - Color correction
Introduction

Related Work

- Static methods
 - White-Patch or Max-RGB method
 - Grey-World Hypothesis
 - Grey-Edge Hypothesis

- Learning based methods
 - Gamut Mapping algorithm
Introduction

- Max-RGB
 - Illuminant
 \[
 \left[R_E, G_E, B_E \right]' = \left[\max(R_{in}), \max(G_{in}), \max(B_{in}) \right]
 \]
 - Output RGB value
 \[
 \left[R_{out}', G_{out}', B_{out}' \right] = \left[\alpha R_{in}', G_{out}', \beta B_{in}' \right]
 \]
 \[
 \alpha = \frac{G_E}{R_E}, \quad \beta = \frac{G_E}{B_E}
 \]
Proposed Method

- Surface Modeling (Training Image)
 - Segmentation
 - Mean Shift segmentation
Proposed Method

- Surface Modeling (Training Image)
 - Texture and color features are used to define a model to each segmented surface.
 - MR8 filter is used for texture feature
 - Filter bank consists of 38 filters (6 orientations at 3 scales or 2 oriented/anisotropic filters, plus 2 isotropic).

The MR8 filter bank consists of 2 anisotropic filters (an edge and a bar filter, at 6 orientations and 3 scales), and 2 rotationally symmetric ones (a Gaussian and a Laplacian of Gaussian).
Proposed Method

- Surface Modeling (Training Image)
 - MR8 filter is used for texture feature
 - Records only the maximum filter response over each filter response from all orientation (8 filter response)

The MR8 filter bank consists of 2 anisotropic filters (an edge and a bar filter, at 6 orientations and 3 scales), and 2 rotationally symmetric ones (a Gaussian and a Laplacian of Gaussian).
Proposed Method

- Surface Modeling (Training Image)
 - Texture feature
 - Generate Texton dictionary
 - Represent each texture with a 8 dimensional data (Filter response)
 - Cluster texture in 1000 clusters (KNN)
Proposed Method

- Surface Modeling (Training Image)
 - Segmentation
 - Mean Shift segmentation
Proposed Method

- Surface Modeling (Training Image)
 - Texture feature
 - Texton histogram for all training image surface

- Apply MR8 Filter each pixel in Selected surface
- Compare filter response with each cluster

- Texton histogram (Normalized)
Proposed Method

- Surface Modeling (Training Image)
 - Color feature
 - Color constant diagonal transformation matrix generated by Max-RGB method for each surface model.
 - Color constant diagonal transformation matrix (M)

 \[
 M = \begin{bmatrix}
 \alpha & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & \beta \\
 \end{bmatrix}
 \]

 \[
 \beta = \frac{G_{\text{max}}}{B_{\text{max}}} \quad \alpha = \frac{G_{\text{max}}}{R_{\text{max}}}
 \]
Proposed Method

Surface Modeling (Training Image)

- Color feature
 - Normalized histogram of R, G and B for each surface model (10 bins for each channel)
Proposed Method

- Surface Modeling (Training Image)
 - For each surface model in training image represented with
 - Normalized texton histogram,
 - Normalized R, G and B histogram
 - Color constant diagonal transformation matrix (M)
 - Ground truth illumination color.
Proposed Method

- Surface Modeling (Test Image)
 - Apply MR8 Filter each pixel in Selected surface
 - Compare filter response with each cluster
Proposed Method

- Surface Modeling
 - Test image surface model is then compared all the training image surface by nearest neighbor classifier.
 - Select M nearest neighbor from training image. (M=10)
Proposed Method

Illuminant Estimation

- Matrix (D) which transform test surface to training surface
 \[
 D = M_{test}^{-1} D_H M_{train}
 \]

 - \(M_{test}\) and \(M_{train}\) are the Color constant diagonal transformation matrix of the test and train surface
 - \(D_H\) is the transformation of the test surface’s histograms to training surfaces' histogram
- Test surface illumination color \(e_{test}\)
 \[
 e_{test} = D e_{train} = M_{test}^{-1} D_H M_{train} e_{train}
 \]
Proposed Method

- **Illuminant Estimation**
 - Given test image has
 - N large enough surfaces
 - M nearest neighbor surfaces from training data or equally M illumination estimates.
 - Final estimate can be the median or mean of these estimates in \(r-g \) chromaticity space.
Proposed Method

- **Color Correction**
 - The Color correction using estimated back-projection.
 \[
 I_{ijk}^* = I_{ij} \times \frac{e_k^*}{D_{ijk}} \quad k = \{R,G,B\}
 \]
 - When uniform illumination assumption is made, the back propagation is constant
 \[
 I_{ijk}^* = I_{ij} \times e_k^* \quad k = \{R,G,B\}
 \]
Proposed Method

☐ Evaluation

- Angular error

\[err_{angle} = a \cos \frac{e \cdot e_{est}}{\|e\| \|e_{est}\|} \]

✓ \(e \) - chromaticity of actual illuminant
✓ \(e_{est} \) - chromaticity of estimated illuminant
Experiment Results

<table>
<thead>
<tr>
<th>Original</th>
<th>Exemplar-based</th>
<th>Grey-World</th>
<th>Grey-Edge</th>
<th>Gamut Mapping</th>
<th>Zeta</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Experiment Results

- **Comparison**
 - **Gray ball dataset**
 - | Method | Original ColorChecker | Reprocessed ColorChecker |
 |------------------------|-----------------------|--------------------------|
 | | Median | Mean | 75th | Median | Mean | 75th | Median | Mean | 75th |
 | Do nothing | 6.8° | 9.5° | 13.6° | 13.5° | 13.4° | 14.8° |
 | White-Patch | 6.0° | 8.1° | 10.8° | 5.7° | 7.4° | 11.7° |
 | Grey-World | 7.3° | 9.8° | 14.6° | 6.3° | 6.4° | 8.4° |
 | Grey-Edge | 5.2° | 7.0° | 9.5° | 4.5° | 5.3° | 7.0° |
 | Zeta-Image [22] | 5.0° | 6.9° | 9.0° | 2.8° | 4.1° | 5.6° |
 | Bayesian | 4.7° | 6.7° | 8.8° | 3.5° | 4.8° | 6.7° |
 | Gamut Mapping | 4.9° | 6.9° | 8.9° | 2.5° | 4.1° | 6.0° |
 | Gamut Mapping 1jet [24]| 4.9° | 6.9° | 9.0° | 2.5° | 4.1° | 6.0° |
 | Spatio-spectral Statistics ML [30]| - | - | - | 3.0° | 3.7° | 4.9° |
 | Bottom-up+Top-down [37]| 4.5° | 6.4° | 8.8° | 2.5° | 3.5° | 4.1° |
 | Natural Image Statistics| 4.5° | 6.1° | 8.2° | 3.1° | 4.2° | 5.8° |
 | Exemplar-Based | 3.7° | 5.2° | 7.0° | 2.3° | 3.1° | 3.9° |

- **Color checker dataset**
 - | Method | Original GrayBall | Linear GrayBall |
 | | Median | Mean | 75th | Median | Mean | 75th | Median | Mean | 75th |
 | Do nothing | 6.7° | 8.3° | 14.0° | 14.0° | 15.6° | 20.5° |
 | White-Patch | 5.3° | 6.8° | 10.4° | 10.5° | 12.7° | 19.5° |
 | Grey-World | 7.0° | 7.9° | 10.8° | 11.0° | 13.0° | 20.2° |
 | Grey-Edge | 4.7° | 5.9° | 8.6° | 8.8° | 10.6° | 15.0° |
 | Zeta-Image [22] | 4.6° | 5.9° | 8.6° | 9.0° | 10.8° | 15.0° |
 | Gamut Mapping | 5.8° | 7.1° | 10.2° | 8.9° | 11.8° | 18.0° |
 | Gamut Mapping 1jet [24]| 5.8° | 6.9° | 9.6° | 8.9° | 11.8° | 17.5° |
 | Spatio-spectral Statistics ML [30]| - | - | - | 8.9° | 10.3° | 13.9° |
 | Bottom-up+Top-down [37]| - | - | - | 7.7° | 9.7° | 13.3° |
 | Natural Image Statistics [32]| 3.9° | 5.2° | 7.4° | 7.7° | 9.9° | 13.8° |
 | Exemplar-Based | 3.3° | 4.4° | 6.1° | 6.5° | 8.0° | 10.8° |
Experiment Results

Comparison
- Multi-illuminant outdoor dataset

<table>
<thead>
<tr>
<th>No. of Illuminants</th>
<th>Method</th>
<th>Median Err.</th>
</tr>
</thead>
<tbody>
<tr>
<td>One</td>
<td>White-Patch</td>
<td>7.8°</td>
</tr>
<tr>
<td></td>
<td>Grey-World</td>
<td>8.9°</td>
</tr>
<tr>
<td></td>
<td>Grey-Edge (n=1)</td>
<td>6.4°</td>
</tr>
<tr>
<td></td>
<td>Grey-Edge (n=2)</td>
<td>5.0°</td>
</tr>
<tr>
<td>Two (from [47])</td>
<td>White-Patch</td>
<td>6.7°</td>
</tr>
<tr>
<td></td>
<td>Grey-World</td>
<td>6.4°</td>
</tr>
<tr>
<td></td>
<td>Grey-Edge (n=1)</td>
<td>5.6°</td>
</tr>
<tr>
<td></td>
<td>Grey-Edge (n=2)</td>
<td>5.1°</td>
</tr>
<tr>
<td>One Two Multi</td>
<td>Exemplar-Based</td>
<td>5.1°</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.8°</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.3°</td>
</tr>
</tbody>
</table>
Proposed Method

- Color Correction

 - For non-constant back projection, Mask map $m_j(x)$ is used

\[
m_j(x) = \frac{d'_j(x)}{\sum_{k=1}^{N} d'_j(x)} \quad d'_j(x) = \frac{\sum_x d_j(x)}{d_j(x)}
\]

$d_j(x)$ - Chromatic distance of the estimated illuminant of the patch located at spatial coordinate x in the image to the j^{th} illuminant.