Clinicopathological concordance and discordance in three monozygotic twin pairs with familial Alzheimer’s disease

Kiri L Brickell1,2,4, James B Leverenz2,4, Ellen J Steinbart2,4, Malia Rumbaugh4, Gerard D Schellenberg2,4, David Nochlin3, Thomas H Lampe4, Ida E Holm5, Vivianna Van Deerlin6, Wuxing Yuan6, Thomas D Bird2,4,

Affiliations:
1 Neurological Foundation of New Zealand
2 Departments of Neurology and Psychiatry and Behavioral Sciences, University of Washington, Seattle,
3 JFK Medical Center, Edison, New Jersey,
4 GRECC, MIRECC, PADRECC, VA Puget Sound Health Care System, Seattle and Tacoma,
5 Department of Pathology, Aalborg Hospital, Aarhus University Hospital, Aalborg, Denmark
6 Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, University of Pennsylvania Health System, Philadelphia

Contact information: Thomas D Bird, MD, 182-GRECC, VA Puget Sound Health Care System, 1660 S Columbian Way, Seattle, WA 98108
Phone: 206-277-4522; Fax: 206-764-2569; email: tomnroz@u.washington.edu

Key words: Monozygotic Twins, Neuropathology, Alzheimer’s disease, Presenilin 1

Word count: abstract: 266
Word count: abstract + text: 2957
References: 30
Figures: 2
Tables: 2

Conflicts of Interest: None
Abstract:

Aim: Neuropathologic examination of both individuals in a monozyotic (MZ) twin pair with Alzheimer’s disease (AD) is rare especially in the molecular genetic era. We had the opportunity to assess the concordance and discordance of clinical presentation and neuropathology in 3 monozygotic twin pairs with Alzheimer’s disease (AD).

Methods: The MZ twins were identified and characterized by the University of Washington Alzheimer’s Disease Research Center (UW ADRC). We reviewed the available clinical and neuropathological records for all 6 cases looking specifically for concordance and discordance of clinical phenotype, neuritic amyloid plaques (NP), neurofibrillary tangles (NFT) and Lewy related pathology (LRP).

Results: Discordance in age of onset for developing AD in the MZ twins varied from 4-18 years. Clinical presentations also differed between twins. One twin presented with a Dementia with Lewy Body (DLB) clinical syndrome while the other presented with typical clinical AD. Neuropathology within the MZ twin pairs was concordant for NP and NFT regardless of duration of disease and was discordant for LRP. This difference was most marked in the late onset AD twin pair. One pair was found to have a mutation in presenilin-1 (PS1) (A79V) with remarkably late onset in a family member.

Conclusions: MZ twins with AD can vary considerably in age of onset, presentation and disease duration. The concordance of NP and NFT pathologic change and the discordance of LRP support the concept that, in AD, the former are primarily under genetic control whereas the latter (LRP) is more influenced by disease duration and environmental factors. The A79V mutation in PS1 can be associated with very late onset of dementia.
Introduction:

Alzheimer’s disease (AD) is the most common neurodegenerative disorder causing dementia in the elderly. AD has typically been divided into early onset (EOAD – onset < 60 years) and late onset (LOAD – onset ≥60 years). LOAD occurs in the majority (>95%) of patients with AD while EOAD accounts for a small proportion of the patients (<5%). Demarcation of familial LOAD / EOAD is not absolute as about 25% of families with familial LOAD will have members with EOAD, accounting for about 6% of all affected cases.

The cause of AD is unknown in the majority of cases. The most powerful risk factors for developing LOAD are age, a positive family history, and APOE genotype.

Specific Mendelian genetic factors have also been identified in patients who develop familial EOAD, namely mutations in presenilin 1 (PS1), presenilin 2 (PS2), and amyloid precursor protein (APP). PS1 mutations are the most frequent pathogenic mutation in EOAD.

Genetic variation influences a number of aspects of clinical phenotype in patients affected with AD, with modeling suggesting that environmental factors are also important in determining development of dementia. Monozygotic (MZ) twins provide a unique insight into the relationship between genetic programming and environmental factors impacting that programming. Twin studies suggest a polygenic multifactorial mode of inheritance and heritability for (LO)AD being somewhere between 58% and 79%. Concordance rates in monozygotic twins can be as high as 61%, with concordance rates increasing with increasing duration of follow-up. In a recent identical twin study, the environmental risk factors that predict the development of (LO)AD are a history of tooth loss before 35 years (presumably reflecting childhood deprivations) and low educational attainment.

Neuritic amyloid plaques (NP) and neurofibrillary tangles (NFT) are the neuropathological hallmarks of AD with NFT composed of the microtubule-associated protein tau. Alpha-synuclein (SNCA) is a major component of Lewy related Pathology (LRP, including inclusions and neuritic pathologic change) and is a presynaptic protein which may be involved in synaptic function. LRP is a pathologic hallmark of “idiopathic” Parkinson’s disease (PD), but can also be found in up to 60% of sporadic AD and about 5% of elderly, nonparkinsonian individuals.

There is little data in the literature about the concordance of neuropathology in MZ twins with AD. To our knowledge only 3 case reports that include neuropathology of both twins in a pair with AD have been published and these were before the advent of beta amyloid (Aβ), tau and SNCA immunohistochemistry and genetic testing. The age at onset of AD in 2 of these case reports (age of onset 34 and 50 years) raises the possibility that specific genetic mutations could have been responsible for the disease. Other reports of neuropathology in affected twins have included only one autopsy per twin pair or have not commented on neuropathology details. We are unaware of any case reports of autopsies in both twins of a MZ pair with a PS1 mutation.

We had the unique opportunity to identify 3 kindreds with affected MZ twin pairs, in which neuropathology was available in all 6 cases and one pair had a mutation in PS1.
This allowed us to review the clinical information, genetic status, and detailed neuropathology on all 6 subjects to assess the concordance and discordance for all of these variables.

Methods:

Three kindreds with male MZ twins were identified from pedigrees characterized by the University of Washington Alzheimer’s Disease Research Center (UW ADRC) using protocols approved by the Human Subjects Research Office (IRB). Concordance and discordance of clinical history and neuropathologic findings were assessed.

The diagnosis of AD was based on clinical examinations of affected individuals, whenever possible, as well as medical records and family history. Clinical criteria for AD were those suggested by McKhann and associates\(^\text{18}\). Age of onset was determined to be that age at which family members and records agreed that the individual first began showing signs of memory loss or behavioral changes\(^\text{19}\). As age of onset estimations are always somewhat arbitrary, age at death was also analyzed as an endpoint.

Neuropathology

Neuropathological evaluations were performed at the University of Washington Medical Center, Seattle, by neuropathologists from the ADRC. Neuropathologic examinations focused on the cingulate gyrus (CG); superior and middle frontal gyri; medial orbital cortex; superior, middle, and inferior temporal gyri; inferior parietal lobule; medial occipital cortex; hippocampus (HC); amygdala (AMYG); parahippocampal gyrus (PHG); hypothalamus; thalamus; midbrain; pons; medulla; and cerebellum. Standard tissue histologic staining consisted of hematoxylin-eosin (H&E), thioflavin-S, and modified Bielschowsky silver staining on 8-micron thick paraffin-embedded sections. Braak staging for neurofibrillary tangle pathology\(^\text{20}\) and the Consortium to Establish a Registry for Alzheimer's Disease (CERAD) staging for senile plaque pathology\(^\text{21}\) were based on evaluation of modified Bielschowsky stained sections.

Immunohistochemical staining was performed with a well-characterized monoclonal antibody to alpha-synulein (SNCA) (LB 509, Zymed, San Francisco, CA) in the frontal cortex (FC), CG, AMYG (including transentorhinal cortex), substantia nigra (SN), locus coeruleus (LC), and medulla (level of the dorsal motor nucleus of the Vagus), as previously described\(^\text{22}\). Immunostained sections were assessed by a blinded (to clinical history) investigator (JBL) for presence and severity of SNCA immuno-positive intra-neuronal, cytoplasmic inclusions, and neurites. In each region the SNCA pathologic severity was ranked as absent (0), mild (1), moderate (2), or severe (3). Each case was classified for overall SNCA pathology using a modification of published criteria for Lewy body pathology\(^\text{23}\).

Zygosity: Monozygosity was confirmed by PCR amplification of polymorphic loci using primers labeled with fluorescent probes. The 28 markers were used from the ABI Prism Linkage mapping set, Version 2.5, DH5\(^\text{http://home.appliedbiosystmes.com/}\).

PS1 Genotypiing: The PS1 gene was sequenced by DNA sequencing of exons 3 to 12 in genomic DNA using standard methods with a CEQ8000 (Beckman Coulter, Fullerton, CA)\(^\text{24}\).
APOE genotype: APOE genotype was obtained from blood samples. The genotyping was performed using the dot blot method and replicated using a restriction enzyme digest method\(^{25,26}\). Both methods yielded the same APOE genotype in all cases.

Results:

Twin set A

The A twins were born in Minnesota and grew up in North Dakota where they both worked on farms (Table 1). As adults they both moved to the same small city in an agricultural region of Central Washington State where they remained until death. For the majority of their adult lives they both worked in the same orchard. Neither smoked or drank alcohol. Both twins attended high school; A2 graduated but A1 did not.

The twins were discordant for age of onset of AD and duration of disease. A1 developed dementia at age 63 years (age of death 80, disease duration 17 years). A2 developed dementia at age 81 years (age of death 91, disease duration 10 years). Both twins were APOE ε3/ε4. The family history was significant for one brother (age at death 74 years), out of 5 siblings, being affected with mild forgetfulness.

Both A twins presented with progressive memory problems and the only symptomatic difference between them was the development of behavioral problems in A1 that required treatment with an antipsychotic medication. A1 also had a seizure disorder treated with phenytoin, and borderline diabetes, while A2 had a benign tremor. There was no documentation of parkinsonism in either twin.

On neuropathological examination (Table 2), the twins were concordant for AD pathologic change with frequent NP in the neocortex\(^{21}\) and Braak stage VI NFT pathologic change\(^{20}\) (Table 2). They were discordant for LRP with A1 having brainstem, limbic system, and mild neocortical involvement, and A2 being negative for any LRP (Figure 1, Table 2). A1 had the earlier age of disease onset, longer duration of disease and more problematic behavior. Neither twin had atheroma in the Circle of Willis, and amyloid angiopathy was moderate in A1 and absent in A2.

Twin set B

The B twins grew up in a farming community in Northeastern Washington State and as teenagers worked in orchards (Table 1). In midlife B1 moved to a small city in an agricultural region of Southeastern Washington, while B2 moved to a small town in an urban region of the Puget Sound Area of Washington State in his 60’s. B1 worked as a truck driver and B2 worked as a manual laborer and then as a security guard. Neither smoked or drank alcohol, and both graduated from high school.

Dementia developed in both MZ twins within 4 years of each other. B1 developed AD at age 59 years (age at death 70 years, duration of disease 11 years) and B2 at age 63 years (age at death 71 years, duration of disease 8 years). Both twins were APOE ε3/ε3. Because of relatively early onset in the twins and other family members they were screened for mutations in PS1. The twins were found to have an A79V mutation in PS1.

There was a strong family history of AD including paternal great-grandmother (age of death 73 years), paternal grandfather (age of death 81 years), and 3 children of B2 (child
1 age of onset 58, age of death 63 years, child 2 age of onset 62 years, and child 3 age of onset 59 years) (Figure 2). Remarkably, a brother (IV-10) with the PS1 mutation is living at age 83 with moderate dementia (MMSE 15/30, CDR 1.0) and onset of memory loss at age 79.

The clinical presentation of both B twins was similar with dementia that was initially characterized by progressive memory impairment, confusion, and disorientation. B1 had a history of possible fluctuating disorientation early in the course of his illness and developed a gait disturbance (slow, unsteady) late in the course of his illness while B2 did not. There was no other reported significant neurological history included.

Clinical information was available on the two affected sons of B2. Both sons had predominantly memory problems with one son developing behavioral disturbance with aggression, while the other did not. Neither son had a gait disturbance.

The twins were concordant for AD pathologic change with frequent NP in the neocortex and Braak stage V NFT pathologic change. They were discordant for severity of LRP (table 2) with B1 having more anatomically diffuse LRP (brainstem, limbic system, and neocortex) than B2 (brainstem and limbic LRP without neocortical involvement). B1 had the earlier onset and longer duration of disease. Both twins had atheroma in the circle of Willis and evidence of recent cerebral infarcts at autopsy (B1 had a recent MCA infract, while B2 had 2 microinfarcts in his motor cortex and thalamus). B1 had less severe amyloid angiopathy than B2.

Twin set C

The C MZ twins lived and died in an urban area in the Puget Sound region of Western Washington State (Table 1). C1 worked as a fireplace sales man and C2 worked as an automotive parts man. Neither smoked or drank alcohol. Both twins graduated from high school, and C1 spent one semester in college.

LOAD developed within 7 years of each other (C1 age of onset 69, age at death 70 from metastatic adenocarcinoma, duration of disease 1 year; C2 age of onset 62, age at death 69, duration of disease 7 years). Both twins were APOE ε3/ε4.

The family history was notable for AD in at least 4 other family members (paternal grandmother (age of death 83 years), sister (age of onset 74 years, age of death 84 years, autopsy confirmed AD), brother (age of onset 89 years), and paternal cousin (age of death 62).

The C MZ twins clinical presentations differed from each other. C1 developed memory complaints only 1 year before death from metastatic cancer and at death did not have symptoms or signs of parkinsonism. His past neurological history was significant for a small stroke in his 50’s with a normal head CT scan. C2’s presentation involved features of both AD and parkinsonism. His illness onset was characterized by prominent hallucinations, fluctuating progressive confusion and paranoia with gait instability and freezing, but no resting tremor, which was suggestive of a diagnosis of Dementia with Lewy Bodies (DLB). C2’s past neurological history was significant for a mild stroke in his 30’s, myocardial ischaemia (in his 50’s), and trigeminal neuralgia. Neither twin had received antipsychotic medication.
The twins were concordant for AD pathologic change with frequent NP in the neocortex21 and Braak stage V NFT pathologic change20 (Table 2). They were discordant for LRP (Table 2), being absent in C1 and anatomically diffuse (brainstem, limbic system, and neocortical LRP) in C2. C2 had the earlier age of onset and the longer disease duration. Neither of the twins had atheroma in the circle of Willis. Both twins and moderate to severe amyloid angiopathy and C2 had a small old inferior parietal haemorrhage.

Discussion

Detailed studies of twins can provide support for genetic vs environmental factors in AD. This study is the first to our knowledge to assess the concordance / discordance of NP, NFT and LRP in 3 sets of MZ twins (6 individuals) including one twin pair positive for a PS1 mutation (Twin pair B).

This study raises some interesting findings. All the twins meet criteria for definite AD with a history of dementia and neuropathological findings consistent with AD [27].

The semi-quantitative NP and NFT staging was concordant within all twin pairs despite wide variability in the age of onset, clinical presentation, and duration of disease. This variability was most marked in the two twin pairs (A and C) without a PS1 mutation. This lack of correlation between neuropathology and disease duration supports the concept of early deposition of tau and amyloid and supports an important role for genetic factors in the development of NP and NFT in AD.

In contrast, LRP was not concordant within the MZ twin pairs and there was a suggestion of a relationship between LRP and age of disease onset and/or duration of disease. The twin within each pair with the earlier age of onset and longer duration of disease had the greater LRP burden. This difference was most marked in the 2 twin pairs without the PS1 mutation. A similar relationship between duration of disease and severity of LRP has been reported in PS1 mutation associated FAD22.

Recent studies have looked at the concordance of LRP in AD kindreds with PS1 and PS2 mutations22 and in kindreds with familial LOAD28. The genetic influences for the development of LRP seems highest in families with the PS1 mutation compared to the PS2 mutations22, while families with LOAD demonstrate more variability in the development of LRP suggesting the influence of other factors28. This pattern was reflected in our 3 twin pairs.

The discordance within the twin pairs for LRP suggests factors such as duration of disease, age of onset and environment have a greater impact than genetic factors on the development of LRP in AD. Of course, this may not be the case for LRP without coexistent AD.

Four of the 6 individuals had varying combinations of LRP and AD pathology. The presence of neocortical or limbic LRP tended to correlate with the presence of behavioral disturbances, fluctuating disorientation and gait disturbances and the twin with the highest LRP burden fulfilled clinical criteria for DLB (C2).

The PS1 A79V mutation, observed in MZ twin pair B, has been reported by other investigators29,30. Previously reported subjects with this mutation tended to have a later
age of onset of disease (mid to late 50’s) and a slower course than subjects with other PS1 mutations29,30. This trend was true in our Family B. To our knowledge family member B IV-10 represents the oldest age of onset (79 years) of a person with a PS1 mutation.

It is interesting that the twins reviewed in this study had such a wide range of age of onset, (differences within pairs ranging from 4 to 18 years), most marked in the twins with LOAD rather than the PS1 twins. Other large studies have found the difference in age of onset to be smaller in MZ twins, between 0 and 7 years9, although MZ twins can remain discordant in the development of AD for up to ~21-22 years10. The broad range of disease onset in MZ twins strongly implies the importance of environmental factors influencing this phenomenon. That these environmental factors remain largely unknown is underlined by the remarkably common environments experienced by the twins in this study.

Following submission of this paper Kauwe and colleagues have reported a family with late onset AD and the A79V mutation in PS1 (Annals of Neurology 2007 61:446-53).

\textbf{Acknowledgements / Funding}

Supported by NIA/NIH grant # P50 AG 005136-22 and AG17586, Veterans Affairs research funds, and the Neurological Foundation of New Zealand. We thank Lynn Greenup for technical assistance. Dr. Bird is part of a licensing agreement with Athena Diagnostics, Inc.

The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of all authors, an exclusive license (or non exclusive for government employees) on a worldwide basis to the BMJ Publishing Group Ltd and its Licensees to permit this article to be published in the Journal of Neurology, Neurosurgery, and Psychiatry editions and any other BMJPGL products to exploit all subsidiary rights, as set out in our licence.
References

7. Rogaeva EA, Fafel KC, Song YQ et al., Screening for PS1 mutations in a referral-based series of AD cases. 21 novel mutations. Neurology 2001; 57:621-625

12. Duda JE. Pathology and neurotransmitter abnormalities of Dementia with Lewy bodies. Dement Geriatr Cogn Disord 2004; 17:3-14

Table 1: Clinical findings for 3 MZ Twin pairs affected with AD

<table>
<thead>
<tr>
<th></th>
<th>A1</th>
<th>A2</th>
<th>*B1</th>
<th>*B2</th>
<th>C1</th>
<th>C2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>m</td>
<td>m</td>
<td>m</td>
<td>m</td>
<td>m</td>
<td>m</td>
</tr>
<tr>
<td>Age of onset (y)</td>
<td>63</td>
<td>81</td>
<td>59</td>
<td>63</td>
<td>69</td>
<td>62</td>
</tr>
<tr>
<td>Age at death (y)</td>
<td>80</td>
<td>91</td>
<td>70</td>
<td>71</td>
<td>70</td>
<td>69</td>
</tr>
<tr>
<td>Inter-twin difference in age of onset (y)</td>
<td>18</td>
<td></td>
<td>4</td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Duration of disease (y)</td>
<td>17</td>
<td>10</td>
<td>11</td>
<td>8</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>APOE</td>
<td>ε3ε4</td>
<td>ε3ε4</td>
<td>ε3ε3</td>
<td>ε3ε3</td>
<td>ε3ε4</td>
<td>ε3ε4</td>
</tr>
<tr>
<td>Family History</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environment - child</td>
<td>Rural area</td>
<td>Small town, rural area</td>
<td>Small city, urban area</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environment - adult</td>
<td>Small city, rural area</td>
<td>Small city, rural area</td>
<td>Small city, urban area</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td>High School diploma</td>
</tr>
<tr>
<td>Occupation</td>
<td>Orchardist</td>
<td>Orchardist</td>
<td>Truck driver</td>
<td>Manual laborer, then security guard</td>
<td>Sales man</td>
<td>Parts man</td>
</tr>
<tr>
<td>Cigarette use</td>
<td>u</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Alcohol use</td>
<td>u</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Early memory complaints</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Hallucinations</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Late onset increased tone</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Late gait disturbance</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Behavioral disturbance</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Fluctuating disorientation</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Antipsychotic use</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

- = absent, + = present, * = PS1 A79V mutation
Table 2: Neuropathological findings for 3 MZ Twin pairs affected with AD

<table>
<thead>
<tr>
<th></th>
<th>A1</th>
<th>A2</th>
<th>B1</th>
<th>B2</th>
<th>C1</th>
<th>C2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atrophy</td>
<td>u</td>
<td>u</td>
<td>Mild frontal</td>
<td>Moderate-severe fronto-temporal</td>
<td>Minimal frontal</td>
<td>Mild frontal</td>
</tr>
<tr>
<td>Brain weight (g)</td>
<td>u</td>
<td>u</td>
<td>1140</td>
<td>1115</td>
<td>1211</td>
<td>1180</td>
</tr>
<tr>
<td>Atheroma (circle of Willis)</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Braak stage</td>
<td>VI</td>
<td>VI</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>CERAD NP</td>
<td>Frequent</td>
<td>Frequent</td>
<td>Frequent</td>
<td>Frequent</td>
<td>Frequent</td>
<td>Frequent</td>
</tr>
<tr>
<td>SNCA overall</td>
<td>Limbic</td>
<td>Negative</td>
<td>Neocortical</td>
<td>Limbic</td>
<td>Negative</td>
<td>Neocortical</td>
</tr>
<tr>
<td>SNCA amygdala</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>SNCA Medulla</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>SNCA Substantia nigra</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>SNCA Locus coeruleus</td>
<td>u</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>SNCA Transentorhinal cortex</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>SNCA Cingulate gyrus</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>SNCA Frontal cortex</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Cerebral amyloid angiopathy</td>
<td>Mild-moderate</td>
<td>none</td>
<td>Mild</td>
<td>Mild (mild in occipital lobe)</td>
<td>Moderate-severe</td>
<td>Moderate-severe</td>
</tr>
</tbody>
</table>

SNCA = alpha synuclein, + = inclusions present, - = inclusions absent, u = unknown, Semi-quantitative SCNA pathology ratings: 0 = absent (no LBs), 1 = mild, 2 = moderate, 3 = severe, CERAD NP = frequent neuritic plaques [21], Braak stage V = widespread NFT involvement of the neocortex sparing or minimally involving the primary motor field, primary sensory areas and the unimodal secondary fields, VI = NFT in all neocortical regions[20].
Figure Legends

Figure 1: Amygdala, tau (PHF-1 antibody, a and c) and alpha-synuclein (LB509, b and d) immunostaining in the A twin brothers (*twin A1 is a and b, twin A2 is c and d*). While both brothers had tau pathology, only one (twin A1) had additional alpha-synuclein immunopositive inclusions and neurites.

Figure 2:
- Unaffected female
- Affected female, deceased
- Affected male

O = age at onset (years), D = age at death (years), ε = APOε allele, PS1(+) = Presenilin 1 mutation (A79V)
Figure 1

Twin A1

Tau a.

SCNA b.

Twin A2
c.
d.
Figure 2: Pedigree of Twin pair B

I

II

III

IV

V
Clinicopathological concordance and discordance in three monozygotic twin pairs with familial Alzheimer's disease

Kiri L Brickell, James B Leverenz, Ellen J Steinbart, Malia Rumbaugh, Gerard D Schellenberg, David Nochlin, Thomas H Lampe, Ida E Holm, Vivianna Van Deerlin, Wuxing Yuan and Thomas D Bird

J Neurol Neurosurg Psychiatry published online July 5, 2007

Updated information and services can be found at: http://jnnp.bmj.com/content/early/2007/07/05/jnnp.2006.113803

Email alerting service

These include:

Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections

Articles on similar topics can be found in the following collections

Neuropathology (180)
Dementia (995)
Memory disorders (psychiatry) (1360)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/