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Abstract: Remarkable improvement has been made in object detection and image classification, mainly due to the 
availability of large-scale labelled data and also the progress of deep convolutional neural networks (CNNs). 
Thus, this amount of training data enables CNNs to learn data-driven image features. However, generating 
the efficient sample patches from the satellite images for training the CNNs remains a challenge. In this 
study, we use a CNN for the case of landslide detection based on the optical data from the Rapid Eye 
satellite. We separate the image into training and test areas of the highly landslide-prone Rasuwa district in 
Nepal. Thus, the sample patches were extracted from the training area of the Rapid Eye image. Although the 
approach of random sample patches is considered as the most common for feeding the CNNs, it is not the 
best solution for all object detection aims. We feed our structured CNN with the randomly selected sample 
patches as our first approach. For the second approach, the same CNN architecture is trained by the patches 
that selected based on only the central areas of any landslide. The trained CNNs based on both approaches 
were used to detection the landslides in an area where considered as our test zone. The detection results are 
compared against a precise inventory dataset of landslide polygons through a mean intersection-over-union 
(mIOU). The mIOU value of the first approach is 53.56%. However, that of the second one is 56.24%, 
which shows an approximately 3% improvement in the resulting accuracy of the landslide detection using 
the sample patches generated by the second approach. Rather, the current performance of CNNs in object 
detection domain they strongly depend on the quality of the training data and augmentation strategies. 
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1 INTRODUCTION 

Landslide detection has been considered as one of 
the important active study domains in remote 
sensing today because of the adverse consequences 
of this natural hazard on the human habitation (Hong 
et al., 2017). It is essential regarding fast response 
actions after a destructive landslide. Although there 
are some new field surveying methods for landslide 
detection and mapping, e.g. laser rangefinder 
binoculars by applying a GPS receiver (Guzzetti et 
al., 2012), the problems of the accessing to such 
areas still remains a challenge . Therefore, remotely 
sensed imagery is the most accessible data providing 
critical information required for supporting 
humanitarian response (Lang et al., 2017). Analysis 
and classification of the remotely sensed imagery for 

extracting landslides have done in several studies. 
Previous researches have primarily focused on 
detecting the changes occurred on the environment 
due to the landslides based on the remotely sensed 
imagery and some knowledge-based methods or 
manually image processing methods (Amit and 
Aoki, 2017). Moreover, different machine learning 
techniques, e.g. MLP Neural Nets have been used 
for landslide detection (Mezaal et al., 2017; Bui et 
al., 2016). (Moosavi et al., 2014) proposed a 
landslide detection approach based on support vector 
machines to find whether the occurrence of the 
landslide. 

Recently, convolutional neural networks (CNNs) 
have become the new hot topic in various image 
processing domains and object detection in 
particular (Zhang et al., 2018). CNNs are specific 
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kind of deep learning techniques based on artificial 
neural networks. CNNs can directly get the images 
as input data, to avoid the traditional approaches 
with pre-processing methods and feature extraction 
by the complex operations (Yu et al., 2017). They 
have achieved acceptable results in wide range of 
image analysis tasks in computer vision (Zhu et al., 
2017; Ghorbanzadeh et al., 2018). There are several 
studies that used CNNs for image segmentation 
(Längkvist et al., 2016), scene classification 
(Qayyum et al., 2017), and object detection 
(Radovic et al., 2017). The large numbers of labelled 
images along with CNNs were used to some object 
detection aims, e.g. airplanes, vehicles, and some 
specific trees. The availability of massive amount of 
labelled images is considered as one of the main 
reasons for achieving fairly good results by CNNs. 
However, the way of using these data for training 
the CNNs is still a topic of discussion. Randomly 
sample patches selection is the common and 
traditional way to patch extraction for the CNNs, but 
not the best method for any application. A critical 
problem in object detection using CNNs is the 
selection way of sample patches. Because in some 
cases such as landslide detection results with poor 
quality when the sample patches are selected 
randomly. Therefore, the method of selection of the 
patches can be improved regarding the target object 
that should be detected. For example, the Genetic 
Algorithm was used to identify the best sample 
patches from all of the selected patches of tile-based 
texture synthesis by (Dong et al., 2005). In another 
study (Zhang et al., 2018) used the Moment 
bounding (MB) box for identifying the location of 
the optimal patches on objects in the urban land use 
classification. However, using the mentioned 
approaches for the case of landslide detection has 
some difficulties regarding the various shapes of 
landslides.  

In this study, ones we use the conventional 
approach of a random selection of sample patches. 
Then we selected the sample patches were located 
on the central part of any landslide. Most of the 
landslides have linear shape started from SCAR 
(area of initial failure) to the deposition area (Fan) 
that leads to a high ratio of length to width. Thus, we 
selected the patches of the central areas of the 
landslides to get those with the most area from 
landslides. Both approaches of randomly and central 
selection of sample patches were implemented on 
optical satellite imagery from the Rapid Eye sensor. 
We compare the results from the CNNs based on 
both approaches to illustrate the performance of each 
approach and its impact on landslide detection. For 

comparison, the resulting detected landslide the 
mean intersection-over-union (mIOU) accuracy 
assessment method was used. 

2 STUDY AREA 

The case study area lies in the southern part of the 
Rasuwa district in Nepal (see figure 1). The study 
area has an area of about 1544 km2. The land cover 
is mostly forest, followed by shrub land, grassland, 
agriculture, and villages. This district is located in 
the higher Himalayas and is one of the most 
landslide-prone areas along the Trishuli River. Some 
of the known landslides had adverse consequences 
on the built-up areas and have already caused 
casualties in settlement areas. Landslides have also 
destroyed the bridges and roads of the main 
transport corridor between this country and China. 

 

 

Figure 1: The geographic location of the study area. 

3 METHODOLOGY 

3.1 Overall Methodology 

The Rapid Eye images were used to evaluate the 
performance of two approaches of randomly and 
central sample patches selection within a structured 
CNN for the detection of landslides. The workflow 
of the present study is as follow:  

 Landslide inventory data set creation; 
 Designing the training data set of the spectral 

information; 
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 Generating the random sample patches by 
considering a window size of 32×32 pixels; 

 Generating the central sample patches by 
considering the same window size; 

 Structuring CNN; 
 Testing and validating the performances of each 

sample patches selection approaches using 
mIOU method.  

The experimental results and related descriptions of 
this study are organized in the following sections. 
More explanations and discussions about the impact 
of using different approaches on the resulting 
landslide detection can be found in the conclusion 
section.  

3.2 Landslide Inventory 

Our landslide inventory data set was generated 
within an extensive field survey in the Rasuwa 
district in the higher Himalayas using a GPS device 
(Garmin Etre 20X). The resulting GPS polygons of 
landslides were then manually boosted using the 
satellite images. Therefore, our inventory data set 
was generated using the GPS data, correcting 
instances, and finally adding landslide areas visible 
in the image but not mapped in the field. The 
Geographic Information System ArcGIS 10.3 was 
used for the correction process. 

3.3 Data 

The data used for the present study is from 
RapidEye that is a constellation of five Earth-
observing satellites with a height of 680 km, the 
swath width of 77 km and a 5-day revisit period. 

These five satellites deliver sun synchronous of 5 
m spatial resolution images (Mahdianpari et al., 
2018). Two RapidEye cloud-free satellite images 
were used for this study. We used multispectral 
bands (Red, Green, Blue, Red Edge, and Near 
Infrared) of RapidEye as following:  
 Blue 440 – 510 nm; 
 Green 520 – 590 nm; 
 Red 630 – 685 nm; 
 Red Edge 690 – 730 nm; 
 Near-Infrared 760 – 850 nm. 

Moreover, the normalized difference vegetation 
index (NDVI) as a widely used ratio was calculated 
from the near-infrared and the red spectral bands 
(Modzelewska et al., 2017). Therefore, we prepared 
a data set of the spectral information of RapidEye 
and the NDVI. 

3.4 Convolution Neural Network 
(CNN) 

CNNs have introduced state-of-the-art results for 
image processing and computer vision (Zhang et al., 
2018). Multi-layer neural networks of a CNN can 
obtain the important feature representations of an 
image. Thus, these networks can distinguish the 
visual laws in the image without any expert-
designed complex rule (Ding et al., 2016). CNNs 
have a basic architecture, where each so-called 
hidden layer normally contains convolutional and 
pooling layers, whereby the convolutional layers are 
considered as the main building block of any CNN 
(Ghorbanzadeh et al., 2018). The sample patches of 
the input image are convolving with a set of 
trainable kernels that scan across the entire input 
patch resulting in a group of feature maps. 
Therefore, the set feature maps result from the 
convolution of the filter, with its corresponding local 
region on the original sample patches of the input 
image. 

Structuring a CNN with the architecture that 
results in the best performance vary regarding the 
application and still is an ongoing discussion in the 
deep learning field (Csillik et al., 2018). In this 
study, a seven-layer depth CNN was structured and 
trained separately with sample patches resulting 
from both random and central approaches. This layer 
depth was selected according to our sample patches 
size of 32×32 through cross-validation. By using 
two different sample patches and the same CNN, we 
could investigate the impacts of sample selection 
approaches on landslide detection. Our structured 
CNN was fed by the input sample patches with 
32×32×6 units, where 32×32 is the size of one layer 
of sample patches and 6 is the number of image 
layers (Red, Green, Blue, Red Edge, and Near 
Infrared). The first convolution layer was 
implemented with a filter size of 5 continuing with 
further convolution layers with a smaller filter size 
of 3. A max-pooling layer of 2×2 was used 
immediately after any convolution layer except the 
last one. The architecture of the CNN is shown in 
figure 5.  

3.5 Sample Patches Selection 

In this section, the generation of two different the 
datasets based on random and central approaches as 
well as the problem of using the moment bounding 
(MB) box for our case is detailed. Generally, the 
scope of the datasets is to obtain a consistent set of 
patches with the aim of training the CNNs for any 
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object detection or classification aims (Depeursinge 
et al., 2012). The random selection of the patches 
approach was used in several studies, and the 
randomly extracted patches were applied to train 
their network (Wei et al., 2014; Ghorbanzadeh et al., 
2019). The moment bounding (MB) box is 
considered as a useful method for finding the 
position of the sample patches and also the size of 
the patches. However, for the object of the landslide, 
on the one hand, this method leads to defining a 
wide range of patch sizes and consequently much 
more computations. On the other hand, considering 
the specific shape of some landslides (see figure 2), 
selecting the patches based on the position that 
defined by MB box results in having much more 
non-landslide areas in the patch. It means the CNN 
would train by the patches that have less useful data 
for landslide detection. Using the MB box for CNN 
is fully described by (Zhang et al., 2018). 
 

 
Figure 2: An illustration of different sizes and shapes of 
the landslides that resulted in different moment bounding 
(MB) boxes. 

In this study, we used this approach for 
generating our first training data set. The CNN that 
trained with this approach was named as random-
CNN. More than 3000 original samples were 
generated from the training area (see figure 1). 
However, approximately 2000 sample patches were 
manually extracted from the central areas of 
landslides. The lower number of central sample 
patches is because of avoiding much overlap of 
patches on the image. By selecting the patches from 
the central areas of the landslides, it is more likely to 
have more areas from the landslide polygon in the 
extracted patch than the non-landslide areas. 
Therefore, the central-CNN will train with the 

patches that have more data from the landslide areas. 
The difference of sample patches selection is 
illustrated in figure 2. 

 

Figure 3: An example of the sample patches selection 
based on central (left) and random (right) approaches. 

4 RESULTS 

The same CNNs trained with different sample 
patches extracted from both random and central 
approaches were tested on the Rasuwa district where 
considered as our test area. For both CNNs, we used 
the same threshold of 95% and those detected 
landslides which were smaller than 70 pixels were 
removed. As described earlier, the main goal of this 
study is to investigate the impact of using different 
input sample patches of CNN on the accuracy of 
landslide detection. The sample patches extracting 
from both approaches are presented in figure 4. 
 

 

Figure 4: An illustration of convolution input sample 
patches extracting based on central (upper) and random 
(lower) approaches. 

GISTAM 2019 - 5th International Conference on Geographical Information Systems Theory, Applications and Management

36



 

 

 
 

 
Figure 5: Flowchart of different sections of the methodology and accuracy assessment. 

Two landslide maps were generated based on 
different sample patches selection approaches and 
the same CNN. Figure 6 shows the resulting 
landslide detected maps. Both approaches were 
implemented with five spectral layers from the 
RapidEye images (Red, Green, Blue, Red Edge, and 
Near Infrared) and the NDVI.  

 

Figure 6: Landslide detection results using central and 
random-CNNs. 

5 VALIDATION 

5.1 Quantitative Results 

In this section, we represent quantitative results of 
the resulting maps based on random-CNN and 
central-CNN. In this regard, the area and also the 
percentage of three classified pixels, namely, true 
positive (TP), false positive (FP), and false negative 
(FN) were assessed. These are the common 
measures that used in the remote sensing and the 
computer vision domains to validate the 
performance of the models. TP is referring to the 
pixels that were correctly detected as the target 
object. FP relates to pixels that were detected as the 
target object, but they are not. FN points to ground 
truths that are not detected as such by the applied 
model (Guirado et al., 2017). Regarding the 
calculation of these measures, a reliable inventory 
data set of the ground truths is required. The 
accuracy and details of the inventory data set can 
easily affect the final accuracy assessment results. 
Obtaining these measures make it possible to find 
any uncertainty among the location, and boundaries 
of the areas where the model detected as the 
landslide area. The areas and percentages of each 
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measure and the approach were represented in table 
1. 

5.2 Mean Intersection Over Union 
(mIOU) 

The mIOU is an accuracy assessment metric applied 
to measure the accuracy of the result of a predictor 
model based on ground truth. The mIOU is a known 
validation metric in computer vision domain, 
particularly for object detection studies (Liu et al., 
2018). The mIOU is a general validation metric 
where any model that generates bounding polygons 
can be evaluated by using this metric based on an 
inventory dataset of ground truth polygons (see 
figure 7). It is defined as the mean of the following 
equation (1): 
 

IOU = (Area of Overlap) ⁄ (Area of Union) (1)
 

 

Figure 7: An illustration area of union and area of overlap. 

The resulting mIOU value for both landslide 
maps generated by random-CNN and central-CNN 
were calculated and represented in table 1. 
According to the mIOU values, random-CNN 

yielded a landslide detection result with the mIOU 
value of 53.56. However, using the central-CNN 
improved the mIOU value to 56.24.  

Table 1: The area and percentage of each measure along 
with the mIOU. 

Model 
TP (ha) 
TP (%) 

FP (ha) 
FP (%) 

FN (ha) 
FN (%) mIOU (%) 

Random-CNN 309.065 
53.56 % 

35.079 
6.07 % 

232.835 
40.35 % 

53.56 

Central-CNN 186.839 
56.24 %

81.092 
24.42 % 

64.227 
19.34 % 

56.24 

6 DISCUSSION 

In this study, we illustrated the importance of the 
quality of CNN training sample patches on the final 
result in the case of landslide detection. For the same 
model used, different training strategies will 
significantly influence the results. In this study, we 
generated two different training data sets. First, we 
randomly selected the sample patches from the 
landslides that occurred in the area where we 
considered as the training area. Second, we chose 
sample patches from the central area of the same 
landslides in the training area. Using the second 
approach improved the value of the mIOU metric. It 
means the landslides detected by the central-CNN 
have more overlap with those of indicated by the 
inventory map. However, it is not as simple as to 
generally compare, for instance, the TP value of the 
random-CNN is much more than that of central-
CNN. 

Moreover, random-CNN could not detect only 6 
% of all landslides in the test area. Whereas, this is 
more than 24 % for the central-CNN. Therefore, the 
second approach was not successful to detect a 
quarter of the landslides, which is a significant 
portion. The better achievement of the central-CNN 
in the mIOU is because of it’s lower FN value 
compare to that of random-CNN. Therefore, the 
second approach showed a better performance to 
differentiate between landslide and non-landslide 
areas.  

7 CONCLUSIONS 

The growing availability of remotely sensed imagery 
opens many options for updating any classification 
and object detection through the deep learning 
models. Generating of the appropriate training data 
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sets for these models is still a challenging task due to 
the variety of the applications, scale of working and 
target classes or objects. CNN training data sets are 
traditionally generated by random sample patches 
from the whole image or region of interest. 
However, in parallel to the improvements in the 
methodology and training processes, several 
attempts have been made to improve the quality of 
training data sets generating approaches. In this 
study, we observed that selecting the CNN sample 
patches from only the central part of objects such as 
landslides is helpful to increase the final accuracy of 
the results. Although we used fewer sample patches 
for the central-CNN, we got a better result regarding 
mIOU. Thus, we can conclude the quality of the 
training data set for CNNs is as important as their 
quantity. For our future study, we aim to develop an 
object-based CNN method for the CNN sample 
patches generation. We also want to evaluate the 
multiple window sizes for the selection patches from 
the landslides of different sizes. 
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