Dynamic QoS-Aware Coalition Formation

Luís Nogueira, Luís Miguel Pinho
{luis,lpinho}@dei.isep.ipp.pt

IPP-Hurray! Group
School of Engineering, Polytechnic Institute of Porto
Porto, Portugal
Outline

- Problem statement
- Proposed approach
- QoS requirements specification
- Coalition formation
- Proposals evaluation
- Proposals formulation
- Conclusions
Problem statement

- Heterogeneous environment
 - Resource constrained wireless devices
 - High performance neighbors
- Several work in computation offloading
 - To face heavy resource requirements in clients
- However
 - End-users do not have real influence on obtained QoS
 - Different users tolerate different QoS levels or combination choices
 - How to select the best neighbors according to user’s QoS requirements?
Proposed approach

- User specify **spectrum** of acceptable QoS levels in **request**
 - Through semantically rich QoS specification interface
 - Relative decreasing order expresses user’s preferences
- Underlying offloading mechanism splits application into tasks
- Formation of temporary **coalition** for service execution
 - Neighbors **cooperate** with resource-constrained device
 - Taking advantage of **global** available resources
 - **Offloading** computation
QoS specification interface

- QoS is often **multi-dimensional**
- Important to provide a **semantically rich** QoS specification
 - Users specify acceptable QoS levels
 - **Quality tradeoff** when resources are scarce

\[
QoS = \{ Dim, Atr, Val, DA_r, AV_r, Deps \}
\]

- Proposed scheme
 - **Defines** dimensions, attributes and values of a domain
 - **Relations** that maps
 - dimensions \rightarrow attributes
 - attributes \rightarrow values
 - **Dependencies** between attributes’ values
Service request

• Conflict
 ◦ Rich user’s request → accurate proposals’ evaluation
 ◦ User can’t specify utility of every quality choice
• Impose a preference order over dimensions, attributes and values
 ◦ Relative decreasing order expresses user’s preferences
• Example:
 1. Video Quality
 (a) frame rate: \{[10→5], [4→1]\}
 (b) color depth: \{3,1\}
 2. Audio Quality
 (a) sampling rate: 8
 (b) sample bits: 8
Coalition formation

- Objectives
 - Enable cooperation between neighbors
 - Address increasing demands on resources and performance
 - Maximize user’s influence on QoS provisioning
- Different groups of nodes → different service execution performance
- Distributed QoS optimization algorithm
 - Evaluation of multi-dimensional proposals
 - Selection of nodes offering service closer to user’s QoS preferences
Coalition formation

1. On the source node N_i, *QoS Provider* broadcasts **description** of each task T_i as well as user’s **QoS constraints** Q_i

2. Every N_j **formulates proposal** and replies to N_i with proposal P_j and its **local reward** W_j, resulting from its proposal acceptance

3. *QoS Provider* at N_i **evaluates** all received proposals for each T_i and **selects** the own that offers the values **closer to user’s QoS constraints** Q_i

4. N_i offloads each T_i to winning node(s)
Proposal’s formulation in neighbor node

- Proposal’s formulation centered in two principles
 - **User’s QoS constraints** expressed in request
 - **Local reward** of accepting new task

- Local QoS Provider
 - Recomputes QoS levels for new set of local tasks
 - Maximizing local reward
 - May involve degrading some tasks

- Guaranteeing user’s request
 - Receive service at **one** of requested QoS levels
Proposal’s formulation in neighbor node

- Each task T_i have an associated set of user’s preferences
 - Presented in decreasing relative order
- Each k QoS dimensions have n possible attributes

1. Start by selecting the best QoS level in all k dimensions, $Q_{kj}[0]$, for the new arrived task T_a

2. While the new set of tasks is not schedulable
 - For each task T_i receiving service at $Q_{kj}[m] > Q_{kj}[n]$
 - Determine the utility decrease resulting from degrading attribute j to $m + 1$
 - Find task T_{min} whose decrease is minimum and degrade it to the $m + 1$’s level
Local reward

- Degree of **global** satisfaction

\[
 r = \begin{cases}
 n & \text{if task is being served at } \mathbf{Q}_{kj}[0] \text{ for all dimensions} \\
 n - \sum_{j=1}^{n} \text{penalty}_j & \text{if } \mathbf{Q}_{kj}[m] > \mathbf{Q}_{kj}[0]
 \end{cases}
\]

- *penalty* is a parameter that decreases the reward value
 - Increases with distance to preferred values
Proposals’ evaluation in source node

- Relative decreasing order in user’s request
 - Imposes preferences
- Proposals evaluated **according to user’s preferences**

\[
\text{distance} = \sum_{k=1}^{n} w_k \times \text{dist}(Q_k)
\]

- For each dimension \(k \) evaluate
 - **Difference** between proposed and requested values

\[
\text{dist}(Q_k) = \sum_{i=1}^{\text{attr}_k} w_i \times \text{dif}(\text{Prop}_{ki}, \text{Pref}_{ki})
\]
Proposals’ evaluation in source node

- Degree of **acceptability** of proposed value
 - Compared to requested one

\[
\text{dif} = \begin{cases}
\frac{\text{Prop}_{ki} - \text{Pref}_{ki}}{\max(Q_k) - \min(Q_k)} & \text{if continuous } Q_{ki} \\
\frac{\text{pos(Prop}_{ki} - \text{pos(Pref}_{ki})}{\text{length}(Q_k) - 1} & \text{if discrete } Q_{ki}
\end{cases}
\]
Conclusions

- Resource-constrained nodes may need to cooperate
 - To fulfill services at user’s QoS preferred values
 - Coalition’s performance is superior
- Users have different QoS requirements
 - Expressed through a semantically rich QoS specification
- Distributed service allocation
 - Multi-attribute proposals’ evaluation
 - Selecting nodes offering service closer to user’s preferences
- Proposals formulation for service execution
 - Local QoS optimization heuristic