
TOWARDS MESH-BASED DEEP LEARNING FOR SEMANTIC SEGMENTATION IN
PHOTOGRAMMETRY

Manuel Knott1,2∗, Rick Groenendijk1

1 University of Amsterdam, The Netherlands; 2 Cloudflight Germany GmbH, Germany
manuel.knott@protonmail.com, r.w.groenendijk@uva.nl

Commission II, WG II/4

KEY WORDS: Semantic Segmentation, Textured Meshes, 3D Computer Vision, Deep Learning, MeshCNN

ABSTRACT:

This research is the first to apply MeshCNN – a deep learning model that is specifically designed for 3D triangular meshes –
in the photogrammetry domain. We highlight the challenges that arise when applying a mesh-based deep learning model to a
photogrammetric mesh, especially w.r.t. data set properties. We provide solutions on how to prepare a remotely sensed mesh for a
machine learning task. The most notable pre-processing step proposed is a novel application of the Breadth-First Search algorithm
for chunking a large mesh into computable pieces. Furthermore, this work extends MeshCNN such that photometric features based
on the mesh texture are considered in addition to the geometric information. Experiments show that including color information
improves the predictive performance of the model by a large margin. Besides, experimental results indicate that segmentation
performance could be advanced substantially with the introduction of a high-quality benchmark for semantic segmentation on
meshes.

1. INTRODUCTION

Semantic segmentation is one of the fundamental problems
in computer vision; it is extensively researched both in
two-dimensional images and three-dimensional representations
such as voxel grids, point clouds, or mesh grids. Much like
with 2D image understanding, 3D understanding has greatly be-
nefited from the recent advances in machine learning (Griffiths
and Boehm, 2019). One area of application for 3D scene un-
derstanding is semantic segmentation in topographic landscape
models generated by remote sensing technologies such as Air-
borne Laser Scanning (ALS) or Digital Image Matching (DIM).
In the context of aerial imagery, most publications focused on
the segmentation of point clouds or their voxelized representa-
tions, respectively. These are obvious choices since those data
representations – especially voxel grids – enable the adaption of
approaches proven to be effective on 2D pixel data. However,
in the field of remote sensing and photogrammetry, triangular
textured meshes gradually replace point clouds as a final user
product (Laupheimer et al., 2020a,b).

From a machine learning perspective, meshes have valuable
properties. For one, they can represent data more efficiently
than point clouds or voxel grids: Few data points can represent
large, flat areas while at the same time, detailed areas can be
represented by a sufficient number of elements. Furthermore,
meshes can distinguish different entities of an object or scene
that are close to each other since they allow the geodesic separ-
ation of objects, despite their proximity in the euclidean space.
At the same time, meshes require different encoding to use in
deep learning methods, since their elements do neither have
a deterministic (such as voxel grids) nor a stochastic (such as
many types of point clouds generated from aerial scans) uni-
form distribution in the Cartesian space. Therefore, graph-
based machine learning approaches are preferable, as they are
better suited to the mesh representation. (Hanocka et al., 2019)
∗ Corresponding author

In recent years, there have been publications on deep learn-
ing approaches that aim to directly encode and process meshes
without omitting their particular properties, such as connectiv-
ity. However, in a predominant number of studies, the evalu-
ated data are fully synthetic and generated using modeling soft-
ware. On the other hand, meshes that are generated by pho-
togrammetry could include topological errors (such as zero-
length edges or non-watertight surfaces); could tend to a uni-
form distribution of elements; or have a high degree of detail,
such that a substantial amount of computing power is required.

This research is the first one to apply a deep learning frame-
work that is specially designed for 3D meshes as input –
MeshCNN (Hanocka et al., 2019) – to perform semantic seg-
mentation of a 3D textured mesh of an urban scene. We address
the compatibility of meshes generated by photogrammetry
with MeshCNN and, thereby, highlight the impact of the mesh
properties on the model’s predictive performance. These results
could be used by other researchers to improve their meshing
algorithms such that the pre-processed meshes are better suited
for machine learning methods. From another perspective, we
also discuss the model performance of MeshCNN on a data
set that is substantially different from those which are used for
benchmarking the method in the original work of Hanocka et
al. (2019): The photogrammetry domain requires the analysis
of complete scene chunks rather than synthesized objects.
Meshes generated from real-world scenes contain a signific-
antly higher amount of noise compared to manually designed
geometries. Moreover, the current version of MeshCNN is
designed for learning purely geometric representations and
does not include any kind of texture or color information. The
following research question is addressed:

Research Question: How can mesh-based deep learning
be applied to semantic segmentation of remotely-sensed
textured 3D meshes of urban scenes?
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The contributions of this work are threefold:

• An evaluation of the key constraints of processing remote-
sensed 3D meshes is performed.

• Practically, a novel approach to divide and reassemble a to-
pographic mesh into computable subsets, that can be pro-
cessed by a mesh-based deep learning model, is proposed.

• Experiments show that photometric information of tex-
tures, incorporated as features for the input of a mesh-
based deep learning method, improves the quality of se-
mantic segmentation.

2. RELATED WORK

3D computer vision is a rapidly emerging field of research but
there are comparably few papers in the area of photogrammetry
treating the classification and segmentation of textured meshes.
Section 2.1 provides an overview of existing approaches of se-
mantic segmentation of landscape meshes via machine learn-
ing. Section 2.2 summarizes MeshCNN and how a mesh geo-
metry is encoded into features.

2.1 Semantic Segmentation of Landscape Meshes

Semantic segmentation is a central research topic in photo-
grammetry. Early publications propose probabilistic methods
in which the segmentation is jointly done alongside 3D re-
construction for either voxel (Häne et al., 2017; Bláha et al.,
2016) or mesh (Cabezas et al., 2015) representations. In re-
cent years, there has been a clear trend of using deep learn-
ing approaches for semantic segmentation while it is most of
the time decoupled from the reconstruction task (Griffiths and
Boehm, 2019). While particular studies apply the segmenta-
tion directly on point clouds (Winiwarter et al., 2019; Zhao et
al., 2018), others use a voxelized representation (Hackel et al.,
2016; Huang and You, 2016; Tchapmi et al., 2018; Schmohl
and Sörgel, 2019). In most cases, the underlying deep learn-
ing models are variations of Convolutional Neural Networks
(CNNs). There are far fewer publications that investigate the
segmentation of 3D meshes in remote sensing; some studies
present pipelines that result in semantic meshes, but the actual
segmentation task is performed on a preceding data representa-
tion (e.g. Leotta et al., 2019).

Rouhani et al. (2017) presented an approach of semantic
segmentation of 3D textured meshes of urban scenes based
on a Random Forest classifier and Markov Random Fields.
They combine three geometrical features (elevation, planarity,
and verticality) and three photometric features (average color,
standard deviation, and color distribution in the HSV color
space) from pre-clustered mesh faces. It is the first paper, to the
best of our knowledge, to combine geometric and photometric
properties of a textured mesh.

Tutzauer et al. (2019) present a deep learning approach for
mesh segmentation, using a 1D CNN for the segmentation of
meshes. Classes are assigned per face and radiometric and geo-
metric features are calculated for each face and corresponding
vertices. However, since both kinds of features are associated
with the Center of Gravity (COG) of the face, they essentially
create a point cloud. Laupheimer et al. (2020a,b) apply a sim-
ilar approach. They use the same method for creating a COG
cloud but do not manually add contextual features. Instead, they
apply deep learning frameworks already capable of handling

2 inner angles

2 edge length ratios dihedral angle

Figure 1. The five geometrical edge features for each face-pair
used by MeshCNN (Hanocka et al., 2019)

point clouds (i.e., “Pointnet++” (Qi et al., 2017)). The work
of Laupheimer et al. (2020a,b) is used as a baseline in the cur-
rent research. While their approach is robust against inherently
mesh-based errors such as disconnected or intersected faces, it
omits the geodesic relationship between mesh elements: Point-
based methods do not exploit the potential information triangu-
lar meshes hold.

2.2 MeshCNN

Fundamental research in the area of 3D computer vision invest-
igates how a triangular mesh can be processed by a deep learn-
ing model (Masci et al., 2015; Verma et al., 2018; Tatarchenko
et al., 2018). These approaches have in common that they ad-
dress the irregularity of the mesh grid in the Euclidean space
by introducing convolution operations to fit the data properties
intrinsic to the mesh.

MeshCNN (Hanocka et al., 2019) is one of the latest and most
mature deep learning architectures that is specifically designed
to be applied to triangular meshes. The authors introduce mesh-
specific convolution and pooling layers that are applied over the
edges of a mesh. The five-dimensional feature vector for every
edge is related to the 1-ring neighboring edges, depicted in Fig-
ure 1. It comprises the following geometrical features: the di-
hedral angle, two inner angles, and the two edge-length ratios
(ratio of the base edge w.r.t to the height of the perpendicular
face) for each face. Since all those features are relative, they are
invariant to translation, rotation, and uniform scale (Hanocka et
al., 2019). All shapes are required to be manifold meshes, pos-
sibly with boundary edges. Manifold meshes do not exhibit im-
possible geometries, such as zero-length edges, zero-area faces,
or intersecting faces. Unlike other approaches, MeshCNN ex-
ploits the unique mesh properties, such as irregularity and non-
uniformity.

Hanocka et al. (2019) perform multiple experiments on bench-
mark data sets for both classification and segmentation of ob-
jects. Experiments show that MeshCNN outperforms point- and
voxel-based approaches. According to the authors, these res-
ults indicate that MeshCNN can exploit geometric properties of
a mesh – the geodesic separation of elements and the adaptive
non-uniform representation –, which could be of benefit during
segmentation. However, the data sets used on those benchmarks
are all artificially designed shapes; remotely sensed real-world
scenes usually contain a significant amount of noise. Moreover,
photometric features such as color or texture information were
not incorporated into MeshCNN. Other publications indicate
that the color information from high-resolution textures is an es-
sential feature for remotely sensed meshes and might be more
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relevant for the segmentation quality than per-point color in-
formation in point clouds (Laupheimer et al., 2020b).

3. METHODOLOGY

Even though there are benchmark data sets for both point cloud
segmentation of outdoor scenes (e.g. Hackel et al., 2017) and
mesh segmentation of general objects (e.g. Chen et al., 2009),
to the best of our knowledge, there is no publicly available suit-
able and annotated textured mesh data set of outdoor scenes at
the time this research is conducted. For this reason, an annot-
ated point cloud data set – the ISPRS Vaihingen 3D data set
(Niemeyer et al., 2014) – is used to generate a textured mesh
and the associated classes. The mesh generation and the label
generation are described in Section 3.1 and 3.2, respectively.
Section 3.3 investigates how a large mesh can be effectively
chunked into parts that can be processed by mesh-based deep
learning approaches.

In this work, MeshCNN is applied to the remote sensing do-
main. The original version of MeshCNN only encodes geo-
metric features. However, in this work, one of the goals is to
exploit texture information also. Section 3.4 covers the inclu-
sion of photometric features. Finally, Section 3.5 presents the
complete experimental setup.

3.1 Data Set Preparation

The International Society for Photogrammetry and Remote
Sensing (ISPRS) provides a data set of the town of Vaihin-
gen for 3D semantic labeling of point clouds (Niemeyer et al.,
2014). The data set comprises 2D Nadir images as well as a
3D point cloud that was generated by airborne laser scanning.
Two independent regions of the point cloud are annotated as
train and test set respectively with nine different semantic la-
bels. As a first step, the 2D Nadir images were used to generate
a 3D textured mesh via the commercial product SURE Aerial1.
Since the regions of interest are too big to be output in a single
file, chunking is applied by SURE. This chunked output causes
multiple problems when the geometry is intended to be used
as input for MeshCNN: The generated chunks can each have a
significantly different number of edges as the area is uniformly
partitioned in the Euclidean space rather than w.r.t. the num-
ber of mesh elements. In contrast, MeshCNN requires the in-
put chunks to have an approximately equal number of edges.
Therefore, before all else, the chunks need to be joined into a
single big mesh. There is no automated way to cleanly connect
the overlapping chunk borders. The result would be intersect-
ing elements and, therefore, non-manifold geometries. Besides
standard non-manifold geometries (namely zero-area faces and
intersecting faces), the mesh is also not watertight, which means
that holes exist. Even though MeshCNN can handle a certain
number of holes, the training process is likely to crash during
the pooling step when there are too many holes. This is because
edges with less than four connected adjacent edges are ignored
during pooling and, therefore, MeshCNN might run out of col-
lapsible edges within a particular area.

For those reasons, as an additional step, a watertight error-free
mesh is generated by applying Screened Poisson Surface Re-
construction (Kazhdan and Hoppe, 2013) on the vertices of the
existing mesh via the open-source mesh processing tool Mesh-
Lab (Cignoni et al., 2008). The original texture is obtained by

1 https://www.nframes.com/products/sure-aerial/

ISPRS Vaihingen class Simplified class
Power line (n/a)
Low vegetation Low vegetation
Impervious surface Ground/Other
Car Ground/Other
Fence/Hedge Low vegetation
Roof Building
Facade Building
Shrub High vegetation
Tree High vegetation

Table 1. ISPRS point cloud labels are mapped to mesh edge
labels. Because of the mesh generation, a number of classes are

collapsed to abstracted classes.

using the Texture Baking functionality of the open-source tool
Blender2. Please note that the surface reconstruction was only
applied due to the poor quality of the mesh: the raw SURE out-
put contained many non-manifold artifacts. In an automated
post-processing procedure, those often can only be cleaned by
accepting holes in the mesh. If the mesh quality is sufficient
(i.e., if there are no non-manifold geometries and only a few
holes), the remeshing step should be skipped. In principle,
Poisson Surface Reconstruction could directly be applied to a
photogrammetric point cloud. Nevertheless, a reference mesh
is needed to transfer the texture to the new mesh.

3.2 Label Generation

MeshCNN requires class annotations per edge. Since the gen-
erated mesh and the ALS point cloud of the ISPRS Vaihingen
data set using the same reference coordinate system, edge an-
notations can be generated by estimating the k-nearest points to
an edge by calculating the shortest distance between a line seg-
ment and a point in the three-dimensional space. The edge label
is assigned via majority voting of the k-nearest points; classes
are weighted by the inverse distance of a point w.r.t. the corres-
ponding line segment (wi =

1
di

).

Since the meshing process eliminates the geometries of small
objects that are a separate class in the point cloud annotations
– such as cars and power lines – the segmentation problem is
simplified to four classes. Table 1 maps the point cloud labels,
provided by the ISPRS Vaihingen data set to the class labels
used in this research.

3.3 Chunking

To process a sizeable topographic mesh via MeshCNN, it needs
to be divided into chunks. The tiles generated by SURE are
not suitable as an input for our machine learning model for two
reasons: 1) their size is defined by bounding boxes rather than
the number of elements within a chunk; 2) there is the possibil-
ity that the mesh is split in z-direction within areas with high
elevation which can lead to a highly fragmented mesh. For
those reasons, we propose an alternative chunking procedure
based on the breadth-first search algorithm. It uses the inher-
ent mesh properties to divide the mesh into chunks containing
an equal amount of elements while ensuring that no disconnec-
ted elements are created. The procedure can be applied on any
coherent error-free mesh, which in our case is after Poisson re-
construction is applied.

The partitioning of a large topographical data set is usually done
on the XY-plane while the number of samples per chunk is con-
trolled in a way such that each chunk has the same amount of
2 https://www.blender.org/
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elements (Winiwarter et al., 2019). In this approach, the dens-
ity of elements needs to be evenly distributed over the scene
model. While this assumption holds deterministically for voxel
grids and stochastically for most kinds of point clouds gener-
ated by aerial scans, it is in the nature of mesh grids that its ver-
tex density may differ substantially. Therefore, it is not practical
to use the three-dimensional Cartesian space for chunking. In
this work, an adaption of the well-known Breadth-First Search
(BFS) algorithm for graphs is used to generate overlapping
mesh chunks with an equal number of vertices. Algorithm 1
describes the procedure formally.

Algorithm 1 BFS mesh chunking
1: function GETCHUNKS(Mesh,ChunkSize, SeedCoord)
2: let Chunks be a list
3: let V isitedFaces be a set
4: while Length(V isitedFaces) < Length(Mesh.Faces)

do
5: Start← closest unvisited face to SeedCoord
6: Chunk ← BUILDCHUNK(Mesh, Start,

ChunkSize)
7: Chunks.append(Chunk)
8: end while
9: return Chunks

10: end function

11: function BUILDCHUNK(Mesh, Start, ChunkSize)
12: let Q be a queue
13: let ChunkFaces be a set
14: let ChunkEdges be a set
15: Q.enqueue(Start)
16: while Length(Q) > 0 do
17: f ← Q.dequeue()
18: if Length(ChunkEdges) == ChunkSize then
19: exit while
20: end if
21: if Length(ChunkEdges ∪ f .edges) > ChunkSize

then
22: continue while
23: ChunkFaces.add(f )
24: ChunkEdges.extend(f .edges)
25: for AdjFace in Mesh.adjacentFaces(f ) do
26: if not ChunkFaces.contains(AdjFace) then
27: if not Q.contains(AdjFace) then
28: Q.enqueue(AdjFace)
29: end if
30: end if
31: end for
32: end while
33: return ChunkFaces
34: end function

The GetChunks function receives the following input: 1) a
mesh object, holding information about vertices, edges, and
faces as well as their relationships; 2) the desired chunk size
defined by the number of edges; 3) a reference coordinate in the
Cartesian 3D space (SeedCoordinate) which defines the start-
ing node for each BFS iteration. Only complete faces are ad-
ded to a chunk to ensure the generation of manifold geometries.
Starting from the nearest face to the reference coordinate3, the
procedure visits all elements in a queue until the desired chunk
size is reached. When a face is selected, all adjacent faces not
part of the chunk nor queue are added to the queue. Two faces
are defined as adjacent if they share at least one vertex.

It is important to note that faces can be part of multiple chunks,
but as soon as a face is part of at least one chunk, it cannot be

3 w.r.t. to the origin at x, y, z = 0, 0, 0. This ensures that the face closest
to the origin and not part of any chunk is chosen as the starting face in
each iteration.

selected as a starting node. This procedure ensures all edges are
selected at least once, while each chunk has exactly the desired
size. At the same time, an overlap between the chunks is likely.
This overlap is particularly desired in semantic segmentation to
enhance reliability via face-class voting. Adding a face to the
chunk will either add one or two edges, depending on which of
its neighbors are already present. For this reason, the procedure
needs to check the size of the union of the chunk and the queued
face before adding it (see Algorithm 1, Line 21).

3.4 Inclusion of Photometric Features

MeshCNN is purely based on geometric information and does
not encode any photometric features from the mesh texture.
Rouhani et al. (2017) and Laupheimer et al. (2020b) present
semantic segmentation approaches for urban scenes in which
texture color information is included. Both argue that the HSV
color space is to be preferred over the RGB color space since it
effectively discriminates against objects with different reflectiv-
ity and is less sensitive to illumination differences.

MeshCNN is augmented with color features from transformed
HSV space. The hue channel (H) in HSV space represents a
value between 0◦ and 360◦ on the color circle. In order to en-
sure a correct proximity interpretation of the model, this circu-
lar feature is encoded into two continuous features by deriving
sine and cosine transforms. The saturation channel (S) is in-
cluded in those two features and not added as a separate one.
This ensures that the arithmetic mean applied during Mesh-
CNN’s pooling operation of two instances results in a correct
color encoding. In other words: if the angle of the vector on
the color circle would be encoded separately from its length,
the arithmetic mean would not be a valid pooling operator for
those features. The value channel (V ) representing brightness
is added as a separate feature. In order to generate HSV color
features for an edge, all texture pixels of its two adjacent faces
are first extracted and subsequently averaged. Let x1, ..., xn be
all the pixels that belong to the texture of one of the two adja-
cent faces of an edge, then the three photometric edge features
can be expressed as follows:

fedge,1 =
1

n

n∑
i=1

(
sin

(
2π ·H(xi)

360◦

)
· S(xi)

)

fedge,2 =
1

n

n∑
i=1

(
cos

(
2π ·H(xi)

360◦

)
· S(xi)

)

fedge,3 =
1

n

n∑
i=1

V (xi)

3.5 Experimental Setup

For experiments, a training set and test set were generated with
96 and 52 chunks respectively. Each chunk consists of 5,700
edges but chunks can overlap in their respective sets. Train-
ing of MeshCNN was executed on a single GeForce RTX 2080
Ti GPU with 11 GB of GPU memory. Three variations of the
model were trained, including either geometric or color features
or both. All three variations are set up with hyperparameters se-
lected based on initial evaluation on a validation data set: Mod-
els were trained with a batch size of 8 chunks over 20 epochs
with a starting learning rate of 0.001 and 30 additional epochs
with a decaying learning rate. The resolution of the pooling
layers was 4000, 2500, and 1250 while the convolution filters
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Classes
∑

Ground Low Veg High Veg Building

edges train 0.168 0.158 0.288 0.386 518,700
test 0.150 0.109 0.225 0.516 279,300

faces train 0.196 0.173 0.270 0.361 339,451
test 0.175 0.122 0.220 0.483 182,710

Table 2. Class distribution after data pre-processing. The four
class columns are denoted by the ratio of that class. The final

column denotes the total amount of primitives.

had sizes of 32, 64, 128, and 256. No data augmentation was
applied. All other hyperparameters were set according to the
default settings of MeshCNN. Python 3.7 and Pytorch (version
1.1.0) were used to execute the training.

The COG Cloud model (Laupheimer et al., 2020a,b), described
in Section 2.1, is used as a baseline for this research. In the
COG approach, the mesh is interpreted as a point cloud of the
centers of gravity of its faces and classified by Pointnet++ (Qi
et al., 2017) in its single scale grouping (SSG) setup. Next to
the X, Y, and Z coordinates of the center of gravity, the nor-
mal of a face is added as a geometric feature to encode face
orientation. Photometric information of the texture is encoded
as HSV features, as described in Section 3.4. Two variations
of the baseline model are evaluated: one solely based on the
geometric information, a second one where both the geometric
and the photometric features are taken into account. Please note
that a color-only model is not possible since the spatial relation
of the faces is internally represented through the x, y, and z co-
ordinates. In contrast, MeshCNN provides the spatial relation
of neighboring edges externally and not through the geomet-
rical features. The baseline model was trained with a batch size
of four samples in 200 epochs with a learning rate of 0.001. All
other hyperparameters were set according to the default settings
of Pointnet++. The same train and test samples, as in the Mesh-
CNN setup, were used. Since a constant number of edges does
not necessarily result in a constant number of faces, the number
of faces to be considered during training was downsampled to
3685 for all train and test samples. Python 3.5 and Tensorflow
(version 1.13.0) were used to execute the training with Point-
net++.

Since the baseline model assigns labels to faces rather than
edges, the ground truth labels need to be recalculated. Analog-
ous to the procedure that is described in Section 3.1 the labels
are derived from the ALS point cloud of the ISPRS Vaihingen
data set with the sole difference that nearest neighbors are not
calculated based on the line segment distance w.r.t. an edge
but based on the distances between a face’s center of gravity
and the ALS points. Table 2 shows the class distribution w.r.t.
edges and faces, respectively.

Both Pointnet++ and MeshCNN use classification accuracy as
a metric to select the best model based on the evaluation set.
However, the authors of MeshCNN introduced a soft accuracy
measure as an evaluation metric for the prediction of edge la-
bels to counteract the effect of ambiguous edge classes between
faces with different semantic classes. The soft accuracy con-
siders a prediction to be correct when at least one of the first
ring neighbors of an edge or the target edge itself is of that
class. In order to meet the slight class imbalance as described
in Table 2, the Jaccard index – also known as Intersection over
Union (IoU) – per class and the mean IoU of all classes are used
for additional evaluation.

Five model training runs per setup are executed in order to in-

Figure 2. Wireframe view of a partial house and street in the test
set. The generated uniformity of the mesh might affect the

ability of MeshCNN to learn geometric representations correctly.

vestigate the robustness of the metrics. Since this sample size
is too small to conclude the distribution, the exact Wilcoxon
rank-sum test is used to test the statistical significance of the
differences between setups (α = 0.05). For that purpose, the
mean Intersection over Union (mIoU) is the relevant metric, as
it is robust against class imbalance.

4. EVALUATION

In this section, the results of the experiments are presented and
discussed. Table 3 shows the evaluation metrics on the test set
for the different experimental setups.

From Table 3, it can be seen that both PointNet++ and Mesh-
CNN perform similarly poorly when only geometric features
are used. The reason for this might be two-fold: On the one
hand, the data set contains classes that are very similar in terms
of their geometrical shape. Low vegetation (in most cases grass)
usually cannot be differentiated from solid ground without pho-
tometric or radiometric information. On the other hand, the
mesh is considerably uniform w.r.t. its face areas (see Fig-
ure 2). This property was already present to a certain degree in
the original SURE output and was likely enhanced by the Pois-
son Surface Reconstruction. This uniformity is critical since
mesh encoding does not exploit the beneficial mesh property
of non-uniformity. Detailed areas are overly smoothed, and at
the same time, large flat areas are represented by too many ele-
ments. At least for MeshCNN, it can be expected that a uniform
mesh harms predictive performance.

The COG cloud baseline model and MeshCNN’s predictive per-
formances are significantly better when photometric features
are added. Since geometric features have shown to be rather
weak predictors and both models use the same encoding of
color features, it is expected that the performances of both mod-
els are very similar when both geometric and photometric fea-
tures are used. A two-sided Wilcoxon rank-sum test does not
show a significant difference (p-value=0.063).

However, the MeshCNN setup, where geometric features were
omitted, performs significantly worse than the setup where both
types of features were considered (p-value=0.031). This means
that even though the relevance of geometric features in this data
set is rather low, they do contribute to predictive performance
to some extent.

Further, a comparison between the IoU’s per class (Table 3)
and the class distributions (Table 2) shows that the more often
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Features Accuracy IoU
Model Geometric Color Soft Hard All Ground LowVeg HighVeg Building

Pointnet++ X X - 0.746±.004 0.529±.007 0.567±.027 0.314±.016 0.506±.012 0.729±.001
Pointnet++ X - 0.504±.006 0.287±.008 0.321±.038 0.164±.026 0.175 ±.023 0.488±.022
MeshCNN X X 0.814±.001 0.751±.001 0.539±.002 0.561±.001 0.311±.010 0.532±.013 0.754±.001
MeshCNN X 0.542±.013 0.446±.014 0.278±.001 0.383±.019 0.101±.011 0.307±.001 0.316±.033
MeshCNN X 0.785±.001 0.723±.006 0.501±.001 0.497±.018 0.283±.001 0.516±.011 0.727±.012

Table 3. Evaluation metrics for Pointnet++ and MeshCNN using either geometric features, photometric feature or both. The first and
second best scoring methods are highlighted for each metric. Note inclusion of color features boosts performance significantly.

a class occurs in the data set, the higher is its Jaccard index.
Before declaring this effect as systematic, further investigation
is required. This behavior is likely related to the selection of
models based on the accuracy metric. More importantly, setting
a different loss function could remedy this model bias.

Figure 3 shows the confusion matrices of the best performing
models of each of the experimental setups considering only
geometric features. Generally speaking, both models show a
poor segmentation performance. The predictions for the two
classes Ground and Building are better than random. Further-
more, the classes Ground and Low Vegetation are confused con-
siderably more often than in Figure 4a and Figure 4b. The mod-
els behave similarly for the classes High Vegetation and Build-
ing. An intuitive explanation is that those pairs of classes are
similar w.r.t. their geometry.

Figure 4a and Figure 4b represent the results of the models us-
ing both geometric and photometric features. The models show
a similar result as the Ground and Building classes are less of-
ten confused with other classes than the two vegetation classes.
This can be explained by the similar photometric appearance of
the latter classes, also apparent from Table 3. A further intuitive
explanation is that it is hard to distinguish between low and high
vegetation as there might be many edge cases in between those.
Errors are further compounded by the smoothing introduced by
the data pre-processing.

Figure 4c shows the confusion matrix for MeshCNN when only
photometric features are used. Even though geometric fea-
tures are omitted, MeshCNN still exploits the connectivity of
mesh elements. Intuitively, one might expect similar color in-
formation between the two vegetation classes and between the
Ground and Building classes, resulting in much predictive con-
fusion. Surprisingly, only a marginal difference is visible. This
indicates that either there is a significant difference in color in-
formation or that the contextual information – i.e., the adjacent
elements – improve the segmentation. Intuitively, low vegeta-
tion (grass) is more likely to be adjacent to ground or buildings
than high vegetation. Then again, bushes and trees are likely to
be adjacent to low vegetation.

Figure 5 depicts a sample from the test set. In this sample, it
can be seen that the boundaries between different classes are
challenging to classify correctly. This might be caused by the
poor quality of the mesh, and especially by the blurred textural
boundaries between regions.

5. CONCLUSION AND OUTLOOK

This research is the first to apply MeshCNN – a deep learning
model that exploits the unique properties of a mesh, such as ir-
regularity and non-uniformity – in the photogrammetry domain.

Numerous challenges arise when applying a mesh-based deep
learning model to a photogrammetric mesh, especially w.r.t.

data set properties. First, due to the lack of publicly avail-
able benchmarking data sets for semantic segmentation of pho-
togrammetric meshes, a mesh from the ISPRS Vaihingen 3D
data set was created by using the commercial product SURE
Aerial. This data set is not ideal for mesh creation due to the
lack of oblique images and trajectory data. Second, mesh er-
rors, such as zero-length edges and intersecting faces, require
post-processing, which – in the current work – resulted in the
creation of a uniform Poisson mesh. As a consequence, con-
clusive statements on the usefulness of mesh-based deep learn-
ing for exploiting purely geometrical details in urban scenes are
difficult to make. However, the generated mesh can be used to
evaluate the general properties of photogrammetric meshes, as
it can be assumed that those are independent of the mesh qual-
ity.

We believe several things can advance mesh-based deep learn-
ing in photogrammetry. For one, we hypothesize that Mesh-
CNN specifically is better suited to exploit an adaptive non-
uniform mesh than a uniform mesh. Therefore, future research
could address the use of more suitable mesh post-processing
to yield a less uniform mesh appearance. For example, mesh
reconstruction might make use of Delauney triangulation, or
apply edge collapse on the Poisson mesh. Another idea is the
use of explicit shape primitives during mesh construction, sim-
ilar to the work of Lafarge and Mallet (2012). Besides, a new
benchmarking data set for photogrammetric meshes could be of
tremendous help to further advance mesh-based deep learning
in photogrammetry. The field is moving rapidly and new data
sets are being already being announced or have been released
recently (e.g. Gao et al., 2021; Kölle et al., 2021, that were pub-
lished after this work was concluded). In order to ease the in-
tegration of photogrammetric meshes into automated machine
learning pipelines, providers of meshing software could focus
on fulfilling the mesh properties described in this research: En-
abling error-free, watertight, and adaptive non-uniform meshes
as well as offering a mesh-oriented chunking procedure, com-
pared to the one described in this paper.

Finally, additional research could be conducted on how to in-
corporate more advanced texture information into MeshCNN
instead of simple color features. There exist cases where faces
have visibly different textures but the same average (or median)
colors. Future research could develop a combined model – for
example one that uses convolutional layers as textural encoders
– that calculates photometric features directly from the texture.
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(b) Confusion matrix of MeshCNN using
geometric features only

Figure 3. Confusion matrices using geometric features only. Both models show a rather weak predictive performance. Without texture
information, the models struggle to distinguish buildings from high vegetation and ground from low vegetation, which is not least

caused by the comparably poor mesh quality.
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(c) Confusion matrix of MeshCNN using
photometric features only

Figure 4. Confusion matrices with inclusion of photometric features. Both models show a similar predictive performance when
geometric and photometric features are used together (a and b). The two vegetation classes are confused with each other the most.

There might be two reasons: 1) In some cases it might be hard to draw the line between the two classes during annotation; 2)
Photometric features are obviously dominating geometric ones in this setup. An evaluation of MeshCNN with color features only (c)

supports the second argument and also shows that geometric features at least have some impact as the vegetation classes do get
confused more often without them.

Figure 5. A test set sample classified by MeshCNN with photometric and geometric features: (left) The textured mesh; (mid-left)
ground truth; (mid-right) prediction, where dark green, light green, gray, and red colors encode high vegetation, low vegetation,

ground, and buildings respectively; (right) difference plots between ground truth and prediction, where orange are wrongly predicted
labels.
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