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Abstract

Biogeography, systematics and taxonomy are complementary scientific disciplines. To

understand a species’ origin, migration routes, distribution and evolutionary history, it is first

necessary to establish its taxonomic boundaries. Here, we use an integrative approach that

takes advantage of complementary disciplines to resolve an intriguing scientific question.

Populations of an unknown moss found in the Canary Islands (Tenerife Island) resembled

two different Californian endemic species: Orthotrichum shevockii and O. kellmanii. To

determine whether this moss belongs to either of these species and, if so, to explain its pres-

ence on this distant oceanic island, we combined the evaluation of morphological qualitative

characters, statistical morphometric analyses of quantitative traits, and molecular phyloge-

netic inferences. Our results suggest that the two Californian mosses are conspecific, and

that the Canarian populations belong to this putative species, with only one taxon thus

involved. Orthotrichum shevockii (the priority name) is therefore recognized as a morpholog-

ically variable species that exhibits a transcontinental disjunction between western North

America and the Canary Islands. Within its distribution range, the area of occupancy is lim-

ited, a notable feature among bryophytes at the intraspecific level. To explain this disjunc-

tion, divergence time and ancestral area estimation analyses are carried out and further

support the hypothesis of a long-distance dispersal event from California to Tenerife Island.

Introduction

Since Wegener’s plate tectonics theory was proposed, ancient fragmentation has long been con-

sidered the main process explaining common distribution patterns in plant biogeography [1],
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while dispersal is seen as a random and irrelevant process [2]. However, more recent molecular

tools and the development of dating and divergence time estimations have pointed to dispersal as

a key process contributing to current species distributions [3–7]. In the case of oceanic islands,

which originate without a former connection to a continental landmass, dispersal is considered to

play a fundamental role in the generation of biodiversity and biogeographical patterns [2,8–12].

For the Macaronesian islands, a biogeographic region that encompasses the archipelagos of the

Canary Islands, the Azores, Madeira and Cabo Verde (but see Vanderpoorten et al. 2007), it has

been suggested that the endemic bryophyte component of the flora has a different biogeographi-

cal origin compared to angiosperms. This pattern has been explained, at least partially, by their

different dispersal capabilities, since ancestors of a few endemic bryophytes seem to have colo-

nized the islands from more distant continental pools [13,14]. Similarly, compared to tracheo-

phytes, the larger distribution ranges of bryophytes have been attributed to their higher dispersal

capabilities [15]. In many cases, these ranges involve intercontinental disjunctions at the species

level, while in vascular plants these mostly occur at a genus level [15,16].

Recent studies have provided evidence for the traditional hypothesis that vicariance

through ancient fragmentation may explain the origin of widely disjunct distributions in a few

bryophyte lineages [17–19]. There is growing evidence that long-distance dispersal (LDD),

however, has shaped the bulk of transoceanic bryophyte distributions [20–23]. This phenome-

non also applies to taxa present in Macaronesia [24–26]. Despite this, it is worth noting that

processes like incomplete lineage sorting, slow evolutionary rates [27–29], and cryptic specia-

tion (for review see [30,31]), may contribute to establishing apparently disjunct distributions

in bryophytes. This may also be the result of incomplete taxonomical knowledge [32,33]. All of

these caveats call for accurate species delimitation methods, which are a necessary first step in

assessing distribution patterns, and performing biogeographic analyses in widely distributed

bryophytes. To this end, a plethora of integrative approaches has proved useful [23,29,32–38].

During recent field surveys on Tenerife Island (Canary Islands), several saxicolous popula-

tions of an unknown Orthotrichum Hedw. species were found in the area of El Teide National

Park, at altitudes around 2100 m a.s.l., growing in protected crevices of volcanic rocks and walls.

A preliminary morphological examination of these specimens revealed that their main character-

istics differed from any Orthotrichum species known in the Mediterranean and North Atlantic

areas. Surprisingly, these populations resembled two Californian species: O. shevockii Lewinsky-

Haapasaari & D.H. Norris, and O. kellmanii 1D.H.Norris, Shevock & Goffinet. Orthotrichum she-
vockii is a saxicolous moss described from two localities in dry mountain areas in the southern

Sierra Nevada, California, between 1150 and 1600 m a.s.l.; it is restricted to granitic rock out-

crops, ceilings and underhangs of large boulders where plants receive only indirect sunlight and

moisture by capillarity supply from the rock surfaces. Orthotrichum kellmanii is another saxico-

lous species, known from just a few localities in the coastal mountains of central California,

where the climatic regime is characterized by high winter rainfall and infrequent summer fog

from the Pacific Ocean. It grows on sandstone rock outcrops in chaparral areas, at altitudes

around 650 m a.s.l. These two similar species mainly differ in gametophytic traits. Orthotrichum
shevockii is characterized by leaves with bi- to tristratose margins and highly papillose leaf cells

[39], whereas the leaves of O. kellmanii have a completely bistratose lamina [40]. However, the

description of O. kellmanii based its diagnostic characters mainly on the presence of heterophyl-

lous leaves (reproductive and vegetative stems leaves have different shapes), and a weakly clado-

carpous growth across the substrate. The specimens from the Canary Islands have leaves with a

highly variable degree of bistratosity among different individuals, from completely bistratose leaf

laminae to bistratosity restricted to the leaf margins.

The bryophyte flora of Macaronesia is one of the best known among oceanic island regions

worldwide [14]. However, the knowledge of its diversity and levels of endemism is still
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incomplete, as suggested by the increasing number of recent descriptions and re-circumscrip-

tions of species for this region (e.g. [29,35,38,41,42]). Herein, in order to evaluate the true

nature of the populations discovered in the Canary Islands, we address the following questions:

(1) What is the identity of the new moss found in the Canary Islands? (2) What are the taxo-

nomical relationships between the Canarian Orthotrichum moss lineages and the Californian

O. shevockii and O. kellmanii? (3) What is the evolutionary and biogeographical history of

these lineages? To accurately address these questions, we used an integrative taxonomic

approach combining morphological analyses, phylogenetic inferences, molecular dating and

the estimation of ancestral ranges.

Material and methods

Field collecting permits were granted by both California state and federal ownership, where

applicable, as well as from Parque Nacional del Teide.

Sampling design

The material for this study includes the collections sampled on Tenerife, herbarium specimens

of O. shevockii and O. kellmanii from UC, CAS, CONN and NY herbaria (including type mate-

rial), and specimens obtained during specific collecting campaigns to several Californian

mountain ranges and neighboring regions of western Nevada. Specimens were selected to rep-

resent the whole distribution and ecological range of the species. For the target species, 30 sam-

ples were included in the morphological analyses: nine from Tenerife and 21 from California

(Fig 1 and S1 Appendix). Based on the availability and quality of the specimens, a subset of 16

samples representative of the morphological diversity and geographic distribution of the spe-

cies was selected for molecular analyses (Fig 1 and S2 Appendix). To provide a phylogenetic

context for the assessment of the monophyly in these two putative species, along with the pop-

ulations from the Canary Islands, in addition to our ingroup sequences, we included speci-

mens of other Orthotrichum species from the western coast of North America and the Canary

Islands, some endemic to these areas [25,33,39]. Three species of Lewinskya F.Lara, Garilleti &

Goffinet, one of Macrocoma (Hornsch. ex Müll.Hal.) Grout, one of Nyholmiella Holmen & E.

Warncke, and two of Zygodon Hook. & Taylor were selected as outgroups, resulting in a total

of 66 samples (see S2 Appendix for voucher information and GenBank accession numbers).

Morphological analyses

A morphological analysis was conducted on the 30 selected specimens to assess the differences

between the Californian plants attributed to either O. shevockii or O. kellmanii, and those from

Tenerife. A set of morphological characters, both qualitative and quantitative, was selected and

studied according to our previous experience with Orthotrichaceae [32,33,43–45]. Qualitative

traits of the gametophyte included plant habit and several leaf characters such as leaf shape,

leaf margin, lamina bistratosity, and cell papillosity. Sporophyte characters are usually of great

diagnostic value for the genus [46,47], and we therefore focused the study on capsule shape,

exothecial band structure, stomata position, structure and ornamentation of the peristome

calyptra, and vaginula hairiness.

For quantitative morphometric analyses, 16 characters were selected. Measurements and

construction of the dataset protocol followed Vigalondo et al. [45]. To detect a possible

unknown underlying structure within the dataset, an exploratory multivariate analysis was

performed (principal component analysis, PCA). A correlation matrix was used in the PCA to

scale the morphological variables, and only principal components (PCs) accounting for more

than 10% of the variance were considered in the results. Univariate analysis of variance
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(ANOVA) was conducted to assess the homogeneity of variances for each of the 16 quantita-

tive variables for California and Tenerife specimens. Multivariate analyses were run twice: (i)

discarding samples with missing values; and (ii) replacing missing values with the mean value

of each character. Results from the two approaches were congruent, so to avoid reducing the

sample size, we used the data set with missing values replaced with the mean for the final anal-

yses (S1 Table). Descriptive statistics were ultimately computed for all quantitative variables,

considering populations from Tenerife and California separately. The results were summa-

rized in the form of beanplot graphs [48], representing the empirical density shape, mean, and

all individual observations for each of the two evaluated geographical groups. All statistical

analyses were conducted in R v.3.3.1 [49].

DNA extraction and sequencing

DNA was extracted from apices of stems and branches from dried herbarium specimens using

the DNeasy Plant Mini Kit for DNA isolation (Qiagen). We selected four loci previously used for

phylogenetic reconstructions of Orthotrichum [33,45]: three chloroplast loci, namely atpB-rbcL,

rps4, and trnL-F, and the nuclear internal transcribed spacer II (ITS2). The primer pairs used for

each locus were atb1/rbcL1 [50], rpsA/trnaS [51,52], trnC/trnF [53] and ITS2F/ITS2R [54].

Double-stranded DNA templates were prepared by PCR, which was performed using

Ready-To-Go PCR Beads (Amersham Pharmacia Biotech Inc.) in a final reaction volume of

Fig 1. Geographic origin of the studied specimens. (a) California and Nevada, (b) the Canary Islands, (c) Tenerife. Numbers indicate specimens

included both in morphometric and phylogenetic analyses (see S1 and S2 Appendices). �� = original locality of O. shevockii, ��� = original locality of

O. kellmanii.

https://doi.org/10.1371/journal.pone.0211017.g001
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25 μL according to the manufacturer’s instructions. PCR amplification of atpB-rbcL, rps4, and

trnL-F was performed using the protocol described in [33], while the ITS2 protocol followed

[45]. PCR products were purified using the Exo/SAP protocol (Thermo Fisher Scientific,

Spain). Samples were incubated with 1 μL of Exo1 enzyme and 4 μL of FastAP following the

manufacturer’s instructions. Cleaned PCR products were sequenced by Macrogen (www.

macrogen.com). All new sequences were deposited in GenBank (see S2 Appendix).

Phylogenetic and dating analyses

Nucleotide sequence contigs were edited and assembled for each DNA region using Geneious

7.1.2 (http://www.geneious.com, [55]) and PhyDE v.0.9971 [56]. Sequences were aligned man-

ually and trimmed at the ends. Regions of ambiguous or incomplete data were identified with

GBlocks [57] and excluded from subsequent analyses.

Phylogenetic analyses were performed using maximum likelihood (ML) and Bayesian infer-

ence (BI). The best-fitting substitution models for each locus were inferred under the Bayesian

Information Criterion (BIC) in jModelTest v.2.1.3 [58]. Maximum likelihood analyses were

run with RAxML 8 [59], and the best ML tree was selected from 100 iterations and its support

was assessed with 1000 replicates of bootstrap resampling under the ML criterion. Bayesian

phylogenetic analyses were carried out using MrBayes v.3.2.1 [60]. The Markov chain Monte

Carlo (MCMC) was run for 2 to 5 million generations with two runs and four chains, sampling

trees, and parameters every 1000 generations. After checking that stationarity had been

reached (i.e. the average standard deviation of split frequencies remained below 0.01 for the

last 10,000 generations), posterior probabilities (PP) were estimated from the 50% majority-

rule consensus trees after a burn-in of 25% of the starting trees. The resulting trees for both

ML and BI analyses were plotted using FigTree v.1.4.2 [61].

Insertions and deletions (indels) in non-coding regions are sometimes difficult to assess

[62] and can lead to ambiguous alignments. To determine the effect of their inclusion, phylo-

genetic information from indels was coded as an adjacent block with the program SeqState

[63], using the simple indel coding method [64]. The analyses were performed with and with-

out codified indels with the same parameters indicated above, using model F81 for the indel

partition in MrBayes, as recommended by [65]. The inclusion of the indels did not change the

topology of the trees or result in increased statistical support as measured by PP, and further

analyses were performed on the matrix treating the indels as missing data.

All independent gene data sets were combined in a single concatenated matrix, as no incon-

gruences were identified in branches supported with posterior probability� 0.95 and boot-

strap support� 85 when each gene was analyzed separately. The final analyses included only

those sequences for which all loci were obtained, thus discarding 11 sequences from the final

matrix. The resulting concatenated data set was analyzed in PartitionFinder [66] to select the

best partitioning scheme and nucleotide substitution model, using the greedy algorithm with

linked branch lengths under the BIC criterion. Three partitions were defined: ITS2 (HKY+G),

rps4 (HKY+G) and the combined atpB-rbcL and trnL-F (GTR+G).

Divergence times were estimated using BEAST 1.8.0 [67]. Because the inclusion of identical

sequences in dating analysis results in many zero-length branches at the tip of the tree and can

cause the model to over partition the dataset [68], we reduced the data set to haplotypes (30

sequences) using DnaSP 5.10.1 [69]. This program considered all samples from the Canary

Islands as a unique haplotype, although one of them appeared outside the main group of this

area in the phylogenetic analyses. Thus, we compared BEAST analyses with the sample

(BV050 [13]) either separate or included in the general haplotype from the Canary Islands. For

all the analyses, clock and tree models were linked across partitions, and models of substitution
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were unlinked across the three partitions. Both strict and uncorrelated log-normal relaxed

clocks were tested under two different speciation tree models: Yule and birth-death process. In

the absence of fossil records of Orthotrichum, the uncertainty of dating estimates was modelled

with a uniform distribution under two increasingly conservative nucleotide substitution rate

assumptions incorporated into the ucld.mean parameter in BEAST. First (analysis I), we used

an absolute substitution rate of mean = 4.453E-4 and stdev = 1.773E-6 substitutions/site/million

years, inferred from relaxed-clock analyses across the Moss Tree of Life [70]. Second (analysis

II), to provide an alternative to time estimates that might be overestimated (given that Laenen

et al. [70] performed the analyses at the generic level), we applied a distinct rate for the plastid

(5.0E-4, stdev range 2–8E-4, subst./site/ma) and nuclear partitions (4.13E-3, stdev range 1.72–

8.34E-3, subst./site/ma), proposed by Villarreal & Renner [71]. All BEAST analyses were run

for four independent chains of 40 million generations each, sampling every 10 thousand gener-

ations and their convergence was assessed by confirming that all parameters had reached sta-

tionarity and sufficient effective sample sizes (> 200) in all converged runs using Tracer v1.6

[72]. The best model was selected through marginal likelihood estimates (MLEs) that were

assessed using path-sampling (PS, [73]) and stepping-stone (SS, [74]) methods. The resulting

MLEs were averaged across replicate runs to generate a single PS and SS value for each model.

The obtained MLEs for all hypotheses were ranked, and Bayes factors were then calculated. In

this study, the birth-death process model performed best (S2 Table). After discarding the

burn-in steps, tree files from the four independent runs of the selected model were combined

using LogCombiner 1.8 [67] and the resulting maximum clade credibility (MCC) tree was

summarized in TreeAnnotator 1.8 [67] and viewed in FigTree v.1.4.2 [61].

Ancestral area estimation

To infer the historical biogeography of O. shevockii, we defined six geographical areas, also consid-

ering the whole distribution of the rest of the ingroup species: western North America (W), eastern

North America (E), Caribbean, Central America and South America (N), Europe (U, including the

Mediterranean and North Africa), Macaronesia (M), and Asia (A). We used the time-calibrated

MCC tree obtained from BEAST, but removing the outgroups, to perform ancestral area estima-

tions across the Orthotrichum ingroup with the R package BioGeoBEARS [75]. BioGeoBEARS

allows the use of the Lagrange DEC model (Dispersal-Extinction-Cladogenesis), which includes

dispersal (d) and extinction (e) as free parameters, and a model (DEC+J) that includes an addi-

tional parameter J taking founder-event speciation into account ([75] and references therein).

Since different ancestral area reconstructions are based on different assumptions, one can compare

these two versions of the DEC model with a likelihood version of the Dispersal-Vicariance Analysis

(DIVALIKE), and a likelihood version of the range evolution model of the Bayesian Binary Model

(BAYAREA), with the option of also adding founder-event speciation to either of these two alter-

native models. However, in a recent study, Ree and Sanmartı́n [76] proposed that DEC+J might be

a poor model of founder-event speciation and statistical comparisons of its likelihood with a pure

DEC model may be inappropriate. Consequently, we refrained from implementing the DEC+J in

the present study and focused on the classical versions of the three biogeographical models imple-

mented in BioGeoBEARS (DEC, DIVALIKE, BAYAREA). These three models were estimated

under a maximum likelihood framework, and compared in terms of how well they fitted the data

using the Akaike Information Criterion (AIC) [75,77]. Implementing the same best-fit model of

ancestral area estimation (i.e. DEC; see results section), we determined the degree to which differ-

ences in tree topology and branch lengths yield different ancestral area estimations for nodes by

using a customized script to run BioGeoBEARS on a subset of 100 BEAST trees randomly sampled

from the posterior probability distribution obtained from BEAST analyses.
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Results

Morphology

Only a limited number of specimens from California and Nevada could be clearly ascribed to

either O. shevockii or O. kellmanii. This was not possible for the majority of specimens, which

actually showed morphological traits of both taxa, traits that can also display a wide range of

variation (Figs 2A–2D and 3H–3I). Moreover, all Californian specimens share some character-

istics that are very uncommon in the genus Orthotrichum, such as: (1) stomata that appear

restricted to the capsule neck, and only occasionally reach the base of the urn (Fig 4A and 4I);

Fig 2. Plant habit and dry capsule characteristics of specimens from the different geographic areas. (a-d) Orthotrichum
shevockii from Western North America; (e-g) samples from Tenerife; (h-i) O. kellmanii from California. (a, c, f and i)

capsule detail; (b, d, e, g and h) habit; (e) two different habits from the same voucher. Scale bars: a, c, e and i = 0.5 mm, b, d,

f, g and h = 1 mm. Vouchers: a-b, Shevock 13404 (CAS 958716, paratype); c, Shevock 21948 (CAS 1040048); d, Shevock
21802 (UC 1754431); f, Losada-Lima, León & Díaz s.n. (TFC-Bry 15904); e-g, Losada-Lima s.n. (TFC-Bry 17428); h,

Shevock 32935 (MAUAM 5097); i, Shevock 32935 (NY 1140598).

https://doi.org/10.1371/journal.pone.0211017.g002
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(2) exostome teeth that are usually lacunose, showing lacunae in both the external and internal

layers around the median line, sometimes appearing within the teeth cell areas (Fig 4B, 4J and

4K); and (3) an endostome external layer that is frequently ornamented with oblique or vertical

lines (Fig 4D and 4L).

Other qualitative characters exhibit a wide range of variation among and within regions,

and frequently even among stems from the same cushion. Plants commonly form short and

dense cushions or tufts, but in some cases, they look longer and looser (Fig 2B and 2D). Con-

cerning gametophyte traits, those related to leaves show great variation (Fig 3A). Leaf margins

are typically bistratose for most of their length, occasionally 3–4 cells thick and rarely unistra-

tose. Similarly, the leaf lamina is predominantly or completely bistratose in its upper 1/2-2/3

part, but can have sparse bistratose bands in its upper half or, rarely, only small bistratose

strands or patches restricted to the apex. Papillosity of leaf lamina is also highly variable, with

cells featuring 2(3–4) papillae on each side; papillae can be prominent, simple or bifurcate, or

Fig 3. Leaf thickness variation and leaf cross-sections of specimens from the different geographic areas. (a) Orthotrichum
shevockii from western North America; (b) samples from Tenerife, (c) O. kellmanii from California. (a,b) from left to right:

bistratose leaf (except base), leaf with a bistratose upper part and bistratose bands, leaf with dispersed bistratose bands in the

upper part, leaf almost unistratose with bistratose patches around the apex. (c) top: bistratose leaf (except base), bottom: leaf

with bistratose upper part and bistratose bands. Each leaf belongs to a separate individual. Cross-sections belong to a different

leaf of the same individual. Arrowheads indicate bistratose strands or margins; in (c) they indicate the tristratose margins.

Scale bars: leaves = 0.5 mm, cross sections = 100 μm. Vouchers: a, Shevock & Anderson 16754 (UC 1754230), Lara, et al. s.n.

(MAUAM-Brio 3289), Shevock & York 13404 (CAS 958716, paratype of O. shevockii), Shevock 21802 (UC 1754431); b, J.M.B.,

J.G.M. & J.L.P s.n., (TFC-Bry 15957), Losada-Lima s.n. (TFCBry-17428), Losada-Lima, León & Díaz s.n. (TFC-Bry 15861),

Losada-Lima, León & Díaz s.n. (TFC-Bry 15904); c, Shevock 32935 (NY 1140598).

https://doi.org/10.1371/journal.pone.0211017.g003
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in other cases short or even negligible. Papillosity to a great extent appears to be related to leaf

thickness: bistratose leaves have lamina cells with low papillae or almost smooth, while leaves

only bistratose at the margins or with bistratose strands in the lamina show high and bifurcate

papillae. Upper leaves, both vegetative and perichaetial, can be broadly to narrowly lanceolate,

and their apices are usually acute, although sometimes perichaetial leaves are shortly acumi-

nate (Fig 3A).

Fig 4. Capsule and peristome ornamentation of specimens from different geographic areas. (a-d) Orthotrichum shevockii from

western North America; (e-h) samples from Tenerife; (i-k) O. kellmanii from California. (a, e and, i) capsules with stomata mostly

restricted to the neck; (b, f and j): exostome structure, showing the teeth lacunosity; (c, g and k) endostome internal layer (IPL)

papillose ornamentation; (c and k) exostome internal layer (PPL), black arrows indicate striae at base; (d, h and l) endostome external

layer (PPL) ornamentation; white arrows indicate lines or striae, sometimes forming plaques. Scale bars: a, e and i = 200 μm; b-c, f-g, j-

l = 20 μm; d-h = 10 μm. Vouchers: a, Lara, et al. s.n. (MAUAM-Brio 3289); b, d, Shevock 13404 (CAS 958716, paratype), c, Shevock
21802 (UC 1754431); e, Losada-Lima s.n. (TFC-Bry 15567); f, Losada-Lima, León & Díaz s.n. (TFC-Bry 15904); g, Losada-Lima s.n.

(TFC-Bry 17406); h, Losada-Lima, León & Díaz s.n. (TFC-Bry 15952); i-j, Shevock 32935 (MAUAM 5097); k-l, Shevock 32935 (NY

1140598).

https://doi.org/10.1371/journal.pone.0211017.g004
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As for the sporophytic traits, capsule exothecial bands are formed by 4–8 isodiametric to

rectangular cells, varying among samples, and usually extend along the whole urn length, but

are occasionally restricted to the upper half only (Fig 4A). The ornamentation of the different

components of the peristome is noticeably variable (Fig 4B–4D). The exostome outer layer

consists of a reticulum at the basal part, where transverse lines are usually more apparent, and

it is covered by a variable proportion of papillae. In contrast, the middle and upper parts of

teeth have a denser ornamentation with a predominance of tall (occasionally low) papillae or,

less frequently, vertical lines (Fig 4B). Ornamentation of the inner surface of the exostome can

be papillose, reticulate, striate, or a mix, and predominantly shows very well-marked vertical

striae at the base (Fig 4C). Regarding the ornamentation of the endostome, the internal layer is

rugulose or papillose, with papillae sometimes densely disposed and variably prominent (Fig

4C), while the external layer can be smooth or variably ornamented with lines, sometimes

densely grouped in plaques (Fig 4D).

The isotype material of O. kellmanii and two other samples originally ascribed to this spe-

cies fit the variability encountered in the rest of the Californian samples (Figs 2H and 2I and

3C and 4I–4L). They also exhibit the above-mentioned characteristics. The only peculiarities

noticed for these three samples concern leaf characteristics. As in other Californian samples,

leaves are extensively bistratose, both in margins and lamina, but exceptionally show up to

three layers of cells in areas adjacent to the nerve and near the apex (Fig 3C). Additionally, the

perichaetial leaves are consistently shortly acuminate. Although most sporophytes show the

typical structure described above, in some capsules the exothecial bands are unusually weak,

made up of 3–6 cell rows and restricted to the upper part of the urn (Fig 4I). None of the mate-

rial shows a cladocarpous growth pattern as described in Norris et al. [40].

The specimens from both Tenerife and California share all the qualitative characters men-

tioned above, and exhibit the same degree of variation for gametophytic (Figs 2 and 3) and

sporophytic traits (Fig 4). The few peculiarities observed affect only the frequency of some leaf

traits. In Tenerife, the leaf lamina of most samples is commonly partially bistratose, with bis-

tratose margins and dispersed bistratose bands in the upper part of the lamina. Leaf cell papil-

lae are commonly short, and perichaetial leaves are usually broadly lanceolate (Fig 3B).

Statistical analyses of morphological quantitative traits also showed no differences between

California and Tenerife specimens. In PCA analyses, the three first principal components

(PCs) accounted for 59.98% of the variance. The PCA biplot shows a dispersion of samples

within the represented space, where specimens from California and Tenerife overlap without

any geographical or taxonomical structure (Figs 5 and S1). With respect to the specimens orig-

inally identified as O. kellmanii, only one of them appears separated in the positive extreme of

PC1. The most important variables in each of the three PCs are indicated in Table 1. When

variables are considered independently comparing California and Tenerife, ANOVA analysis

only shows significant differences for one variable: perichaetial leaf width (Table 1 and Fig 6).

Phylogeny, dating and ancestral area reconstruction

Information regarding sequence length and variability within each marker and the combined

matrix is presented in Table 2, whereas pairwise differences among ingroup samples are

shown in S3 Table. Phylogenetic analyses of ML and BI (Fig 7) group samples from California

and Tenerife in the same monophyletic lineage with high support (BS = 75, PP = 1.0). This

lineage is embedded within a clade with a PP of 0.93, composed of taxa restricted to California

and Nevada along with Orthotrichum handiense F.Lara, Garilleti & Mazimpaka from Fuerte-

ventura (Canary Islands). Samples of O. kellmanii are also placed within the clade of O. she-
vockii in BI and ML analyses.
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When considering a unique substitution rate (analysis I), dating analyses indicate that the

split of O. shevockii between California and Tenerife populations dates back to the late Mio-

cene–Pliocene (2.75 Ma; 95% highest posterior density interval (HPD): 0.44–6.69 Ma, Fig 8

node A). The results considering different rates for the nuclear and plastid partitions (analysis

II) place the split 1.74 Ma (95% HPD: 0.17–3.73 Ma, S2 Fig node A). The common ancestor of

the Californian clade dates back to 24.4 Ma (95% HPD: 10.9–31.45 Ma, Fig 8 node D) in analy-

sis I and 18.44 Ma (95% HPD: 10.37–28.1 Ma, S2 Fig, node D) in analysis II. The best-fit

model of ancestral area estimations, the DEC (Table 3), suggests that the present distribution

of O. shevockii results from at least one long-distance dispersal event from western North

America, which is supported by its inclusion in a highly supported western North American

clade along with, as mentioned before, the Canary Island endemic O. handiense (Fig 7). When

running the DEC analyses on 100 BEAST trees randomly sampled from the posterior probabil-

ity distribution, the ancestral area estimates for the clades of interest (i.e. O. shevockii) were

fully consistent with the former analysis (S3 Fig).

Fig 5. Principal component analysis (PCA) representing the first two components. The percentage of variance explained by each component is given between

brackets. Arrows represent the variables included in the analyses. cos2 represents the squared loadings for variables. ! = samples originally identified as

Orthotrichum kellmanii.

https://doi.org/10.1371/journal.pone.0211017.g005
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Discussion

Taxonomic relationships of Orthotrichum shevockii and O. kellmanii

Our results show a lack of morphological or molecular differences that would have supported

the consideration of O. shevockii and O. kellmanii as separate species, based on the analysis of a

significant number of samples and including type materials from both taxa. The morphologi-

cal analyses revealed that a large number of qualitative traits exhibited a uniform variation

range among these specimens. These traits include some basic qualitative traits regarding the

Table 1. Quantitative characters evaluated for specimens of each geographic region, and results of quantitative morphometric analyses.

Descriptive statistics a PCAb

Character Tenerife

(CI)

O. shevockii
California & Nevada

(wNAm)

O. kellmanii
California

(wNAm)

PC1 PC2 PC3 ANOVAc

Gametophyte

Shoot length 1 0.55 ± 0.16

[0.39–0.8]

0.48 ± 0.13

[0.3–0.81]

0.63 ± 0.04

[0.6–0.65]

0.277 -0.272 0.082 0.990

Upper leaf length 2 2.37 ± 0.26

[1.81–2.65]

2.27 ± 0.25

[1.77–2.72]

2.65 ± 0.43

[2.18–3.02]

0.329 0.272 -0.020 0.153

Upper leaf width 2 0.66 ± 0.11

[0.44–0.79]

0.57 ± 0.09

[0.41–0.71]

0.71 ± 0.06

[0.66–0.78]

0.372 0.016 0.072 2.212

Perichaetial leaf length 2 2.98 ± 0.21

[2.58–3.27]

2.79 ± 0.32

[2.18–3.35]

3.43 ± 0.78

[2.56–4.08]

0.376 0.166 0.081 0.306

Perichaetial leaf width 2 0.84 ± 0.1

[0.7–1.04]

0.7 ± 0.1

[0.52–0.89]

0.91 ± 0.07

[0.83–0.97]

0.389 -0.004 0.042 4.833�

Sporophyte

Vaginula length 400.56 ± 76.46

[325–550]

423.33 ± 63.54

[320–510]

437.5 ± 53.03

[400–475]

0.155 0.010 0.054 0.866

Seta length 526.55 ± 68.57

[443.33–650]

521.76 ± 60.34

[425–635]

617.22 ± 32.5

[585–650]

0.175 -0.047 0.057 0.097

Capsule length 1 1.45 ± 0.11

[1.25–1.62]

1.46 ± 0.14

[1.23–1.69]

1.56 ± 0.17

[1.38–1.71]

0.261 -0.059 0.314 0.172

Capsule neck length 417.83 ± 44.41

[380–525]

410.42 ± 49.68

[320–505]

501.67 ± 58.92

[460–543.33]

0.191 0.425 0.053 0.007

Exotecial band width 145.94 ± 17.87

[122–174]

133.66 ± 18.9

[105–170]

110.5 ± 23.25

[87.5–134]

0.031 -0.374 0.132 3.869

Exotecial band cell length 36.96 ± 4.03

[31.5–42.5]

35.2 ± 5.56

[25.5–48]

46 ± 8.35

[38.5–55]

0.213 0.244 -0.181 0.007

Exotecial band cell width 25.33 ± 5.52

[18.5–34]

27.81 ± 3.05

[22.5–35.5]

25.83 ± 4.16

[22.5–30.5]

-0.135 -0.331 0.217 1.896

Endostome segment length 202.72 ± 43.38

[106–246.25]

213.69 ± 49.9

[150–319.38]

266.25 ± 9.92

[255–273.75]

0.190 -0.361 0.151 1.155

Exostome teeh length 260.27 ± 30.62

[202.5–290.83]

243.57 ± 59.54

[154.17–341.88]

291.93 ± 47

[252.04–343.75]

0.297 -0.356 -0.036 0.216

Spore length 11.86 ± 0.76

[10.63–13.13]

12.47 ± 0.94

[10.31–13.75]

12.19 ± 0.81

[11.38–13]

-0.166 0.231 0.574 2.722

Spore width 11.37 ± 0.44

[10.63–12.19]

12.03 ± 1.01

[10.31–13.75]

11.85 ± 0.79

[11.25–12.75]

-0.091 0.133 0.648 3.512

a Descriptive statistics (mean ± SD [range]); all measurements are in μm except those with 1 = cm and 2 = mm.
b PCA component loadings for each original variable are represented, in bold variables with the highest loadings for each component; percent of total variance explained

for first component (PC1) = 33.96%, PC2 = 13.62% and PC3 = 12.4% (see Fig 5 and S1 Fig).
c ANOVA F statistic and significance level (� � 0.05) for each variable for Canary Islands and western North America (including the three samples of O. kellmanii = O.

shevockii). CI = Canary Islands, wNAm = western North America.

https://doi.org/10.1371/journal.pone.0211017.t001
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gametophyte and sporophyte, but also others that are singular within the genus Orthotrichum
[33,44,46,78], and thus can be considered as diagnostic characters, such as: stomata restricted

to the neck, exostome lacunose, and endostome PPL ornamented with lines or striae (Fig 4).

Fig 6. Beanplots of the quantitative variables for Orthotrichum shevockii. Yellow = Tenerife (Canary Islands), blue = California (western North America,

including O. kellmanii isotype materials). Individual observations are represented by small horizontal lines (in the case of multiple observations with the same

values, the corresponding number of lines were merged), mean per group is shown by a bold long line and the mean for all data by a dotted line. Estimated density

of the data distribution is displayed by the density shape in grey (for details see [48]). Stars indicate ANOVA significance values: � 0.05.

https://doi.org/10.1371/journal.pone.0211017.g006
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Moreover, quantitative traits did not reveal any evidence of taxonomic differentiation (Fig 5),

and molecular analyses resulted in grouping the different samples ascribable to these two Cali-

fornian species in a well-supported clade. Within this group, further segregation of samples

seems to have no geographical, ecological or taxonomical meaning.

Our findings do not support the previous consideration of O. shevockii and O. kellmanii as

two different species, and probably points to the fact that the description of both taxa was

made based on very few samples, which exhibited extremes of the morphological variation

with respect to some gametophytic traits. Orthotrichum shevockii was described [39] based on

samples from two close inland xeric localities at the junction of the southern Sierra Nevada

and western Mojave Desert, whose specimens have leaves with bistratosity mostly restricted to

the margins. Orthotrichum kellmanii was described [40] based upon samples from two nearby

coastal localities in which specimens showed completely bistratose leaves. Additionally, game-

tophores of these latter samples were larger than usual. In fact, these coastal localities of O. kell-
manii are at considerably lower altitudes and receive more humidity due to the Pacific Ocean

influence, with occasional summer fog, which could favor the greater development and shoot

size of these populations. Under these circumstances, specimens of this moss species form

long sympodial gametophytic axes with: (i) abundant basal short and ligulate leaves (identified

as vegetative by [40]); (ii) and upper leaves (from female axes) that are progressively larger and

lanceolate. This could explain why [40] interpreted the habit as weakly cladocarpic with

extreme heterophylly, as the plants spread prostrate across the smooth sandstone rock surface.

The development of shorter and somewhat different basal leaves, although rarely highlighted,

is a common characteristic in Orthotrichum and related genera (see for example [44]), whereas

true heterophylly related to male and female branches has only been reported for one Euro-

pean moss [79]. Considering all of these arguments, it is clear that there is no morphological

or molecular evidence that would further support the separation of O. kellmanii and O. she-
vockii as two distinct species. Therefore, we propose that O. kellmanii be synonymized under

the priority name of O. shevockii.
Orthotrichum shevockii Lewinsky-Haapasaari & D.H. Norris, Bryologist 101(3): 435. 1998.

= Orthotrichum kellmanii D.H.Norris, Shevock & Goffinet, Bryologist 107(2): 210. 2004.

syn. nov.

Taxonomic status of Tenerife populations

Once the circumscription of O. shevockii has been clarified, including the synonymization of

O. kellmanii therein, we can now consider the identity of the Tenerife populations. Our analy-

ses reveal that the moss populations newly found in the Canary Islands (Tenerife island) also

Table 2. Characteristics of the four sequenced DNA regions and the resulting combined matrix used for phylogenetic analyses.

ITS2 rps4 trnL-F atpB-rbcL Combined

Sequences 60 66 64 63 55

Aligned length (bp) 543 642 508 560 1715

Total matrix

Variable sites 184 98 132 124 317

Potentially informative sites 72 62 114 87 243

Orthotrichum shevockii
Variable sites 4 1 5 6 12

Potentially informative sites 4 1 3 6 11

Substitution model (BIC) HKY+G HKY+G HKY+G GTR+G

https://doi.org/10.1371/journal.pone.0211017.t002
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correspond to O. shevockii. Specimens from these populations are rather uniform in gameto-

phyte and sporophyte characteristics, and fall within the range of morphological variation

encountered in western North America. As mentioned above, the fact that all samples from

the Canary Islands and western North America share some diagnostic qualitative traits

Fig 7. Majority-rule consensus tree obtained in the Bayesian analysis. Bayesian posterior probabilities (� 0.90) and maximum likelihood bootstrap values (� 70%)

are shown above and below branches, respectively. Sequence labels of Orthotrichum shevockii are followed by identification number, geographical origin, and number

identification between brackets as in Fig 1 and S1 and S2 Appendices. �� = paratype material of O. shevockii, ��� = isotype material of O. kellmanii.

https://doi.org/10.1371/journal.pone.0211017.g007
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considered unusual within the genus (see Fig 4), along with their strong phylogenetic related-

ness, is highly suggestive that these lineages represent the same species, from an evolutionary

point of view.

Indeed, the molecular results (Fig 7), although based on only four molecular markers, with

three of them belonging to the chloroplast compartment, agree with the morphological evi-

dence, with the Canarian clade being nested within the Californian one. Additionally, ecologi-

cal aspects point in the same direction. In Tenerife, for instance, O. shevockii occurs in arid

Fig 8. Molecular dating and biogeographic analyses. Maximum clade credibility tree from the relaxed molecular-clock analysis of the four loci in BEAST with an

absolute nucleotide substitution rate (analysis I, mean = 4.453E-4, stdev = 1.773E-6subst./site/ma). Asterisks (�) at nodes refer to highly supported nodes (PP>0.95).

Sequence labels are followed by identification number and geographical origin. In the case of Orthotrichum shevockii, sequence labels are also followed by an

identification number between brackets as in Fig 1 and S2 Appendix (��� = isotype material of O. kellmanii). For the Orthotrichum group, letters in colored boxes in

each node show the area or combination of areas with the highest probability of being ancestral, according to the reconstructions based on the DEC model

implemented in BioGeoBEARS. Letters correspond to the following ancestral areas or combination of areas: W = western North America; E = eastern North

America; N = Neotropics; M = Macaronesia; U = Europe; A = Asia. The complete probabilities of each biogeographical region are presented in S3 Fig.

https://doi.org/10.1371/journal.pone.0211017.g008

Table 3. Performance of competing models of ancestral-area estimation according to BioGeoBEARS.

lnL n d e AIC

DEC -74.0978 2 0.0065 10−12 152.2

DIVALIKE -74.3172 2 0.0075 10−12 152.6

BAYAREALIKE -80.9334 2 0.0045 0.02 165.9

The best model is highlighted in bold. Performance assessed by lnL (log-likelihood) and AIC (Akaike information criterion). DEC, dispersal–extinction–cladogenesis;

DIVA, dispersal–vicariance analysis; n, number of parameters; d, rate of dispersal; e, rate of extinction.

https://doi.org/10.1371/journal.pone.0211017.t003
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areas at high altitudes, as a saxicolous moss associated with crevices, rock ceilings, and vertical

faces on volcanic rocks. This is also the most frequent (micro-) ecological setting of O. she-
vockii in western North America, except for the occurrence of all the inland populations on

acidic granitic (granodiorite) rocks, while the few coastal mountain localities are on a wide

variety of rock types, from metavolcanics to marble.

The discovery of O. shevockii as new to the Canary Islands raises the number of species of

Orthotrichaceous mosses to 14 (4 Lewinskya, 9 Orthotrichum, 1 Pulvigera) known for this

archipelago [80,81]. It is evident that the increasing implementation of integrative taxonomic

approaches substantially improves our knowledge of the real regional diversity of plant groups

with reduced morphologies like mosses, and, in general, of the still incomplete cryptogamic

floras of oceanic biogeographic regions like Macaronesia [14].

California–Macaronesia disjunction of Orthotrichum shevockii
Our results lead to the conclusion that the distribution of O. shevockii is disjunct and includes

western North America (California and Nevada) and Macaronesia (Canary Islands, Tenerife).

The connection of cryptogamic floras of Macaronesia and America has already been described,

mainly referring to species present on the Azores and Madeira archipelagos, and involving dis-

junctions with tropical or Caribbean regions [14,82]. Some of these species have their main

distribution in America, similar to O. shevockii. However, the disjunction reported here

between the Californian region and the Canary Islands is quite uncommon. Other spore-pro-

ducing organisms such as lichens, also have species with this type of distribution [83], but

among bryophytes, species that are present in both regions tend to also expand their distribu-

tion into the Mediterranean basin [45,84,85].

The dating analyses place the colonization of Tenerife directly from western North America

between 2.75 Ma (95% HPD: 0.44–6.69 Ma, analysis I) and 1.74 Ma (95% HPD: 0.17–3.73 Ma,

analysis II), long after Tenerife island (11.9 Ma), and even the central and larger parts of the

island (3 Ma) [86,87], where O. shevockii currently occurs, were formed. The phylogenetic

inferences resolved O. shevockii within a clade composed of Californian endemic species, and

the ancestral area estimation suggests a western North American origin for its ancestor (Figs 7

and 8). Our findings thus support that the present distribution of O. shevockii is the result of a

long-distance dispersal event from California to the Canary Islands. This confirms the hypoth-

esis that recurrent events of long-distance dispersal have occurred within the genus Orthotri-
chum from western North America (California) to the Macaronesian region, and in particular

to the Canary Islands [25]. These events have taken place at different times and reflect different

dispersal windows, with the split of O. underwoodii and O. handiense being older [25] than the

disjunction of O. shevockii (Fig 8).

The Californian origin of O. shevockii provides additional support for the hypothesis that

the Macaronesian cryptogamic flora may be more related to the New World [14], at least for

certain groups of bryophytes, whereas angiosperms are more related to Europe and North

Africa [13]. Moreover, it increases the evidence for bryophyte species with transoceanic dis-

tributions, which includes a number of Macaronesian taxa [25,82,88]. In the case of the

Canary Islands, trade winds that cross the Atlantic Ocean run from east to west—opposite

to the direction that has been identified for this long-distance dispersal—and cannot explain

this disjunction. On the contrary, the high altitude subtropical jet stream that crosses over

California and the Canary Islands [89,90] seems to be a suitable vector for wind-mediated

dispersal events from west to east, as has been suggested in general for long-distance wind

dispersal events in bryophytes [91] and, in particular for the North America-Europe dis-

junction [92].

Orthotrichum shevockii, from California to Macaronesia

PLOS ONE | https://doi.org/10.1371/journal.pone.0211017 February 13, 2019 17 / 24

https://doi.org/10.1371/journal.pone.0211017


Although O. shevockii’s range is constrained to few scattered locations in western North

America (mountainous areas of California and nearby regions of westernmost Nevada), the

presence of the species in the Canary Islands is restricted to a significantly smaller area.

Restricted ranges in bryophytes are related to a recent origin, loss or lack of dispersal ability,

extinction, preference for a specific habitat or a combination of some of these factors [92]. Our

dating analyses do not rule out a relatively recent origin for the disjunction, which could be

placed between 0.17 and 6.69 Ma (see above). Concerning dispersal capabilities, all collected

samples showed sporophytes with high numbers of spores that are small enough (ca. 12 μm in

diameter), a particular size thought to be easily carried by wind over long distances [10,93].

Furthermore, it has been suggested that Macaronesian bryophyte species do not necessarily

lose their dispersal ability, maintaining connections between islands, archipelagos and nearby

continents [24,94–97]. Therefore, its restricted area is not a priori attributed to reproductive

constraints, but likely to habitat limitations.

Most of the bryophyte species (endemic or otherwise) with restricted distributions in the

Canary Islands grow in very rare habitats, which is especially observed among taxa restricted

to the laurel forest or inhabiting high altitude scrublands [82]. The latter match the distribu-

tion of O. shevockii in Tenerife, since it only occurs on rocks in open arid zones dominated by

leguminous scrubs at altitudes around 2100 m a.s.l. On this archipelago, these altitudes are also

found in La Palma Island, where the favorable habitat for this moss is more restricted than in

Tenerife. This type of habitat is absent from the Azores and Cape Verde, the other Macarone-

sian archipelagos that exceed elevations of 2000 m a.s.l. [98]. Therefore, the distribution of O.

shevockii in Macaronesia, which is currently restricted to Tenerife, could be explained by the

lack of a suitable habitat in the region, a relatively recent founding event or a combination of

these two phenomena. Future research on the landscape population genetics of disjunct line-

ages like O. shevockii represent a unique opportunity to improve our mechanistic understand-

ing of origin, evolution and distribution of insular bryophyte floras.
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S1 Appendix. Selection of samples used for morphological analyses. DNA ID numbers cor-

respond to the specimens included in molecular analyses as used in Fig 1 and S2 Appendix.
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S2 Appendix. Specimens included in the molecular analyses and GenBank accession num-

bers. New accessions from this study are in italics. Numbers between brackets after taxon ID

correspond to the specimens included in molecular analyses as used in Figs 1 and 7. Samples

originally identified as Orthotrichum kellmanii appear under this name in the table.

(PDF)

S1 Fig. Results of the principal component analysis (PCA) representing the first three com-

ponents. The percentage of variance explained by each component is given in brackets.

Arrows represent the variables included in the analyses. cos2 represents the squared loadings

for variables. ! = samples originally identified as Orthotrichum kellmanii.
(TIF)

S2 Fig. Molecular dating using a distinct nuclear and plastid nucleotide substitution rate.

Maximum clade credibility tree from the relaxed molecular-clock analysis of the four loci in

BEAST from analysis II with a distinct rate for the plastid (5.0E-4 (2–8E-4) subst./site/ma) and

nuclear partitions (4.13E-3 (1.72–8.34E-3) subst./site/ma). Black and grey circles at nodes refer

to node support of PP>0.95 and PP>0.75 - <0.95, respectively. Identification number and

geographical origin follow sequence labels. In the case of Orthotrichum shevockii, sequence

Orthotrichum shevockii, from California to Macaronesia

PLOS ONE | https://doi.org/10.1371/journal.pone.0211017 February 13, 2019 18 / 24

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0211017.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0211017.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0211017.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0211017.s004
https://doi.org/10.1371/journal.pone.0211017


labels are also followed by number identification between brackets as in Fig 1 and S2 Appendix

(��� = isotype material of O. kellmanii).
(TIF)

S3 Fig. Biogeographical analyses. Ancestral area reconstructions. Chronogram of the phylo-

genetic relationships among the four loci from analysis I, and ancestral area estimations for the

Orthotrichum shevockii group and the evaluated ingroup estimated from analyses run using

100 BEAST trees randomly sampled from the posterior probability distribution. Pie charts

show the relative probability of each area or combination of areas being ancestral, according to

the ancestral area reconstructions under the DEC model implemented in BioGeoBEARS.

Ancestral states: global optim, 6 areas max.; d = 0.0065; e = 0; LnL = −75.09. Letters in coloured

boxes correspond to the following ancestral areas or combination of areas: W = western North

America; E = Eastern North America; N = Neotropics; M = Macaronesia; U = Europe;

A = Asia.

(TIF)

S1 Table. Quantitative morphological data.

(XLSX)

S2 Table. Marginal likelihood (MLE) and Bayes factor (BF) values for alternative clocks

and models tested in BEAST. The best model is marked in bold.

(PDF)

S3 Table. Pairwise nucleotide differences among the ingroup sequences of the Orthotri-
chum shevockii group.

(PDF)
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