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ABSTRACT: 
 
In the Galapagos Islands, where 97% of the territory is protected and ecosystem dynamics are highly vulnerable, timely and accurate 
information is key for decision making. An appropriate monitoring system must meet two key features: on one hand, being able to 
capture information in a systematic and regular basis, and on the other hand, to quickly gather information on demand for specific 
purposes. The lack of such a system for geographic information limits the ability of Galapagos Islands’ institutions to evaluate and act 
upon environmental threats such as invasive species spread and vegetation degradation. In this context, the use of UAVs (unmanned 
aerial vehicles) for capturing georeferenced images is a promising technology for environmental monitoring and management. This 
paper explores the potential of UAV images for monitoring degradation of littoral vegetation in Puerto Villamil (Isabela Island, 
Galapagos, Ecuador). Imagery was captured using two camera types: Red Green Blue (RGB) and Infrarred Red Green (NIR). First, 
vegetation presence was identified through NDVI. Second, object-based classification was carried out for characterization of vegetation 
vigor. Results demonstrates the feasibility of UAV technology for base-line studies and monitoring on the amount and vigorousness 
of littoral vegetation in the Galapagos Islands. It is also showed that UAV images are not only useful for visual interpretation and 
object delineation, but also to timely produce useful thematic information for environmental management.  
 
 

1. INTRODUCTION * 

A critical factor for rational natural resources management is 
information availability (De Gruijter et al., 2006). In the 
Galapagos Islands, where 97% of the territory is protected and 
ecosystem dynamics are highly vulnerable, timely and accurate 
information is key for decision making. An appropriate 
monitoring system must meet two key features: on one hand, 
being able to capture information in a systematic and regular 
basis; and on the other hand, to quickly gather information on 
demand for specific purposes. The lack of such a system for 
capturing geoinformation limits the ability of Galapagos Islands’ 
institutions to evaluate and act upon environmental threats such 
as invasive species spread and environmental degradation.  
 

It was reported that anthropogenic impacts have already caused 
the degradation of 5% of the Archipelago (Watson et al., 2010). 
Large populated places in Galapagos are located near the 
coastline, where dominant vegetation are shrubs and mangroves. 
Degradation of littoral vegetation, and mangroves in particular, 
is critical for both, land and marine species. As an example, the 
critically endangered mangrove finch (Camarhynchus 
heliobates) was historically recorded in five mangrove forests on 
Isabela Island and one of them was close to Puerto Villamil’s 
urban area. This specie is currently confined to only three small 
mangrove patches on the island (Fessl et al., 2010) and the 
population size is estimated in only about 100 individuals 
(BirdLife International, 2015). Littoral vegetation monitoring is 
therefore of utmost importance in Galapagos, in order to trigger 
early warning alerts when vegetation degradation is detected. 

                                                                 
*  Corresponding author 

 
Imagery from remote sensing satellite platforms has been used in 
Galapagos for several decades for environmental research and 
management (Trueman et al., 2013; Trueman et al., 2014). 
However, a number of disadvantages limit the applications of 
such platforms in regions such as Galapagos (Matese et al., 
2015). On the one hand, the high frequency of cloud coverage 
above the islands along the year makes difficult to obtain clear 
imagery at regular time intervals. On the other hand, the 
relatively low spatial resolution of free and low-cost products 
limits the possibilities for timely detection of changes at small 
scales. These limitations hinder the potential of satellite imagery 
based monitoring systems in Galapagos. In this context, UAVs 
(unmanned aerial vehicles) are a promising technology for 
environmental monitoring in the Galapagos Islands. They offers 
a low-cost and rapid deployment alternative for geoinformation 
generation (Anderson and Gaston, 2013). UAVs are 
revolutionizing the way in which georeferenced imagery is 
captured (Colomina and Molina, 2014). Images have very high 
spatial resolutions (sub-decimeter) which generate a huge 
amount of information (several billion pixels) (Hardin and 
Jensen, 2011). Conversely , spectral resolution is usually low due 
the limited characteristics of the sensors that are generally used 
(Teodoro and Araujo, 2016). 
 

UAV technology is currently in growth and expansion, providing 
a wide range of available options in the market. Colomina and 
Molina (2014) provided an UAV classification according to their 
main characteristics. In relation to its weight, they range from 
micro UAV (less than 5kg), mini (less than 30kg), to tactical (less 
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than 150kg). In relation to the coverage area, from less than 10km 
to 70km or more; in relation to flight autonomy from few minutes 
to 30 hours. UAV are also available with fixed wing or propellers 
and with cameras in the visible, infrared, multi-spectral, thermal 
and LiDAR spectrums.  
 

The wide variety of UAVs makes also very wide the range of 
possible applications, such as agriculture (Zhang and Kovacs, 
2012); environment and ecology (Anderson and Gaston, 2013; 
Salamí et al., 2014); natural disasters (Baiocchi et al., 2013); 
cadaster (Rijsdijk et al., 2013) and cultural heritage (Bendea et 
al., 2007). Specifically for environmental management is was 
applied to biomass monitoring (Bendig et al., 2015); forest tree 
discrimination (Clark et al., 2005); health condition of riparian 
forest species (Michez et al., 2016); weed mapping in crop fields 
(Peña et al., 2013); forest fallen trees detection (Inoue et al., 
2014) and quantification of forest gap patterns (Getzin et al., 
2014). 
 

This paper explores the potential of UAV images for monitoring 
degradation of littoral vegetation in Puerto Villamil (Isabela 
Island, Galapagos, Ecuador). UAV imagery was captured in June 
2015 using two camera types: Red Green Blue (RGB) and Nir 
Red Green (NIR). First, vegetation presence was identified 
through NDVI. Second, object-based classification was carried 
out for characterization of vegetation vigor. This work 
demonstrates the feasibility of UAV technology for base-line 
studies and monitoring on the amount and vigorousness of littoral 
vegetation in the Galapagos Islands.  
 

2. METHOD 

2.1 UAV flights  

Fights were done in June 2015 in Puerto Villamil which is located 
in Isabela Island, Galapagos (Figure 1). It was used an eBee AG 
from SenseFly (https://www.sensefly.com/drones/ebee-ag.html). 
Two flights were done, one focused on the visible region of the 
spectrum and the other in the near infrared region. Both flights 
were conducted in order to achieve a spatial resolution of 7 cm.  
 

 
(a)                                             (b) 

 

Figure 1 Galapagos Islands. (a) In the American Continent 
context, and (b) Puerto Villamil, Isabela Island 

 

In the first flight, the UAV was equipped with a RGB camera 
(Sony WX with blue 450 nm, red 520 nm and green 660 nm 
bands). It was covered 409 ha, collecting 242 images. Post-
processing was done with Postflight Terra 3D and consisted of 
three steps. First, an initial calibration processing generated a 
quality report indicating the overlapping density per pixel, gaps 
or mosaic distortion, number of images calibrated and 
georeferenced. Second, densification of 3D point cloud was 
done. Third, the orthomosaic and digital surface model were 

generated. This resulted of 64 tiles with around 1.3 billion pixels 
(Figure 2). In the second flight, the UAV was equipped with a 
NIR camera (Cannon S110 with green 550 nm, red 625 nm and 
infrared 850 nm). It was covered a smaller area of 85 ha, 
collecting 69 images. After post-processing, an orthomosaic with 
12 tiles was obtained (around 207 million pixels) (Figure 2). 
 

 
 

Figure 2. Overlapped orthomosaics generated with the two 
UAV flights (RGB and NIR). In red is highlighted the selected 

region of interest 
 
2.2 Region of interest and NDVI masking 

One of the main bottleneck to perform image classification is 
computing time. In order to achieve a reasonable computing time, 
we selected a region of interest containing land cover types which 
were representative for the whole image (Figure 3). It contained 
urban areas (roads and buildings) and natural areas (vegetation, 
sea, sand, bare soil, and lava rocks). It covered 5.7 ha with close 
to 12 million pixels.  
 

   
(a)                                             (b) 

 

Figure 3. Region of interest. (a) RGB image and (b) NIR image 
 

Since images were obtained from two flights, shifts of 4 to 6 cm 
were detected among images. To correct this effect, NIR image 
was linearly moved to overlap RGB image. Spatial resolution 
was kept at 7 cm. Finally, a multiband image was created groping 
red, green and blue bands from RGB image as well as infrared, 
red and green bands from NIR image (i.e. r_RGB, g_RGB, 
b_RGB, nir_NIR, r_NIR and g_NIR bands).  
 

Finally, in order to focus attention of OBIA classification only on 
vegetation, NDVI was calculated and values larger than 0.025 
were selected, while the smaller were masked. The threshold was 
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selected through visual interpretation. These processes were done 
in QGIS in combination with R using rgdal and raster packages. 
 
2.3 OBIA classification 
 

Traditional imagery classification methods are pixel-based. Each 
individual pixel is compared with training information in order to 
decide the class it belongs to. They have been largely used for 
low spatial and large spectral resolutions. However, when 
classifying UAV images with pixel-based classification, three 
challenges are present. First, it has been shown that the quality of 
prediction is reduced when spatial resolution increase. Second, 
billon pixels of UAV significantly increase computing time. 
Third, UAV has very low spectral resolution which is a 
disadvantage for classification. In this context, object-based 
image classification (OBIA) showed a better performance in 
comparison to pixel-based analysis. OBIA is performed through 
two steps: segmentation and classification (Blaschke et al., 2014; 
Teodoro and Araujo, 2016). 
 
2.3.1 Segmentation 
 

Segmentation is the process by which an image is subdivided into 
homogeneous objects. It was performed with the Mean Shift 
Segmentation algorithm (MSS) implemented in ORFEO toolbox. 
It selects neighboring pixels based on iterations of spatial radius 
and color range. Three main parameters need to be set: the spatial 
radius used to define the neighborhood, the range radius used to 
define the interval in the color space, and the minimum size for 
the regions to be kept after clustering. Then, the segmented image 
is converted to shapefile polygons (Teodoro and Araujo, 2016). 
 

We performed segmentation with the multiband image (r_RGB, 
g_RGB, b_RGB, nir_NIR, r_NIR and g_NIR bands). 
Segmentation was masked with NDVI smaller than 0.025. The 
three MSS parameters were set as: spatial radius of 10, range 
radius of 20, minimum regions size of 4. They were chosen after 
combination of different parameter values and visual 
interpretation of results.  
 
2.3.2 Classification 
 

Supervised image classification transforms a set of bands with 
multispectral reflectance information in a single layer containing 
discrete thematic information, typically "classes" of land cover. 
It requires to identify a set of predictive variables (bands) and the 
classes or land cover to classify. It is also needed to select training 
as well as validation polygons. Then a classificator is executed to 
assigns each segmented object to a defined class. 
 

We selected two classes: high and low vegetation vigor. High 
vegetation vigor was related to high chlorophyll level and those 
located in high water content soil. Low vegetation vigor was 
related to leafless trees, low chlorophyll level and algae on lava 
rocks in the intertidal zone. We used 6 predictive variables, 3 
bands from the RGB image (red, green and blue), and 3 from NIR 
image (infrared, red and green). Training polygons were 
identified based on segmentation results. A total of 139 segments 
were recognized as belonging to high vigor class (60 segments) 
or to low vigor class (79 segments). Polygons identification were 
scattered throughout the region of interest taking into 
consideration class variability (Figure 4a). 
 

The used classificator was Random Forest (Breiman, 2001). This 
is based on a collection of decision trees, where each tree is form 
with a subset of segments. The subset is selected through a 
ramdom sampling with replacement (Bagging o Bootstrap 
Aggregating). In this sampling, 1/3 of the data is left out to 

estimate the goodness of classification, in order to compute the 
“out-of-bagging error” or OBB. Each decision tree returns a 
“vote” and the algorithm choose the class that most votes 
obtained in all generated trees (Belgiu and Dragut, 2016; 
Lawrence et al., 2006; Rodriguez-Galiano et al., 2012). For 
computation, it was used the randomForest library in R (Liaw 
and Wiener, 2002), with 500 decision trees. 
 
Finally, validation segments were labeled independently from 
classification results in order to build a confusion matrix and 
report classification accuracy. A total of 84 polygons were 
labeled (Figure 4b). The confusion matrix was generated with 
Caret library in R (Kuhn, 2008). 
 

 
(a)                                             (b) 

 

Figure 4. Labeled segments. (a) Training segments (a), and (b) 
validation segments 

 

3. RESULTS 

3.1 NDVI masking 

Figure 5 shows the NDVI map. In red color there is the sea 
(values between -0.5 to -0.8), in orange and yellow colors there 
are the bare soil, buildings, roads and sand (values between -0.5 
and 0.025), and in different shades of green there is vegetation 
(values between 0.025 and 0.6). Darker green color is associated 
with high chlorophyll content while light green with lower 
chlorophyll content, which may be due to dried or leafless plants. 
NDVI was also able to highlight small amounts of marine algae 
located in lava rocks in the intertidal zone. Maximum NDVI 
value was of 1, however only 3 pixels had values larger than 0.4. 
Figure 6 summarizes NDVI value distribution. After NDVI 
masking, the region of interest was reduced to 2.45 ha with 5 
million pixels (Figure 5b). 
 

 
(a)                                             (b) 

 

Figure 5. NDVI. (a) NDVI map and (b) masked NDVI with 
values smaller than 0.025 
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Figure 6. Distribution of NDVI values for the region of interest. 
Red dashed line is the mean NDVI value 

 
3.2 Segmentation 

Segmentation gave as result 18815 polygons (Figure 7), which 
represented only the 0.2 % of the total pixels from the region of 
interest. It was well performed being able to detect small as well 
large segments of homogenous vegetation. Mean segmentation 
area was of 1.3 m2. Only 10 segments had areas larger than 100 
m2, and all of them represented high vegetation vigor. Figure 8 
shows the histogram of segment areas for smaller areas than 10 
m2 (which contained 99.25 % of total segments). 
 
It was detected that some building roofs were segmented. Their 
NDVI values were larger than 0.025, which may be because of 
roof material reflecting infrared wavelength or moss presence on 
the roofs. The first case is likely to occur in two cases when the 
whole roof was segmented, while the second in cases where only 
small parts of the roof were segmented. Additionally, some 
vegetation located in soil with high water content were not 
selected for segmentation since their NDVI was lower than 
0.025. 
  

 
(a)                                             (b) 

 
Figure 7. Segmentation. (a) For the whole region of interest and 

(b) for a detailed region 
 
 

 

 
 
Figure 8. Histogram of segment areas for segments smaller than 

10 m2. Red dashed line is the mean segment area 
 
3.3 Classification 

Table 1 and Figure 9 show classification results. They show a 
predominance of vegetation with high vigor (75 %) and less 
presence of vegetation with low vigor (25 %). 
 

Vegetation  
Number of 
segments 

Area (ha) % 

High vigor 10386 1.83 74.67 
Low vigor 8429 0.62 25.33 

Total 18815 2.45 100.00 

 
Table 1. Vegetation distribution by class. 

 

 
 

Figure 9. Classification of region of interest. Red squares are 
details shown by figure 10 

 
Figure 10 shows detailed areas for classification and their 
respective NIR images. Figures 10a and 10b show algae in the 
intertidal zone. This vegetation is essential to feed the marine 
iguanas. This were classified as vegetation with low vigor 
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because it has low chlorophyll level and density. In other to 
capture this type of vegetation is needed to plan UAV flights 
during low tides. Figures 10c and 10d mainly show palm plants 
in urban area of Puerto Villamil. In Galapagos’ urban areas are 
typical to find non-native and invasive species such as palms. 
Most of the palms were classified as vegetation with high vigor, 
while few of them with low vigor. Finally, figures 10e and 10f 
show mangroves located close to the sea. There are mangrove 
areas with high vigor because of high chlorophyll level and 
density, while others with low vigor because of leafless plants or 
poor mangrove density. 
 

 
 

Figure 10. Classification detailed areas. (a - b) Algae in 
intertidal zone; (c - d) Palm urban vegetation; (e - f) Mangrove 

vegetation 
 
For training data, the overall OOB error was 2.16 %. The error 
class for low vegetation vigor was 0%, while for high vigor was 
0.05% with 3 segments misclassified. For validation data, table 2 
shows the confusion matrix with misclassification by coverage 
type. Overall classification accuracy was of 0.94 with a Kappa 
index of 0.88. Vegetation with high vigor was correctly 
classified, while vegetation with low vigor had a 12% of 
misclassifications. 

Vegetation 
coverage 

High vigor Low vigor 
Misclassification 

(%) 

High vigor 43 0 0 
Low vigor 5 36 12 

 
Table 2. Confusion matrix for validation segments 

 
Finally, figure 11 shows the predictive variables importance for 
classification by the Mean Decrease Accuracy. In the y-axis are 
the predictive variables and in the x-axis their importance for 
classification. It illustrates how the accuracy of the classification 
was reduced during the "out-of-bagging” process. It is observed 
that the bands that had more impact on the classification accuracy 
were green NIR and blue RGB bands, followed by the infrared 
NIR band. Less impact on the classification accuracy had green 
RGB and both RGB and NIR red bands. Variable importance 
could be used in future classifications for variable selection. 
 

 
Figure 11. Variable importance for classification 

 
4. DISCUSION AND CONCLUSIONS 

This study explored the potential of UAV image analysis for 
monitoring degradation of littoral vegetation in a pilot area of the 
Galapagos Islands. OBIA classification for high and low 
vegetation vigor was done on a NDVI masked image. This image 
was compound of RGB and NIR bands. The segmentation step 
of OBIA was performed with the Mean Shift segmentation 
algorithm implemented in ORFEO toolbox, and the classification 
step with the randomForest library in R. This work demonstrates 
the feasibility of UAV technology for base-line studies and 
monitoring on the amount and vigorousness of littoral vegetation 
in the Galapagos Islands. The results showed that images of 
UAVs are not only useful for visual interpretation and 
digitization, but that they are also suitable for generation of 
environmental thematic information. 
 
In the analysis presented here, we did not perform atmospheric 
and radiometric corrections which, in the case of satellite images, 
are needed to obtain radiance values for proper interpretation of 
NDVI and temporary analysis. While the effect of the atmosphere 
is much lower in UAVs than satellite images, this effect needs to 
be quantified in order to properly apply image analysis. 
 
Regarding NDVI masking, two issues need to be addressed. First, 
in areas with high soil water content, NDVI had very low values. 
So that vegetation located in these areas were masked by the 
selected threshold. Second, some building roofs had NDVI larger 
than 0.025. This could be because of roof material reflecting 
infrared wavelength or moss presence on the roofs for the high 
humidly levels in the region of interest. Therefore, it will be 
needed to explore and compare the NDVI masking process with 
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other vegetation indices such as EVI (Enhanced Vegetation 
Index), SAVI (Soil-adjusted Vegetation Index) or IPVI (infrared 
percentage vegetation index). 
 
The bottleneck in UAV image analysis is the huge amount of 
pixels, the very high spatial resolution and the low spectral 
resolution. Consequently, OBIA classification offers a solution 
to manage these issues. Segmentation as well as classification 
could be improved by the use of textures. This will be necessary 
for specie identification, especially for invasive species such as 
blackberry, Spanish cedar (Cedrela odorata), or guayagillo 
(Eugenia pachychlamys). 
 
UAVs are revolutionizing geoinformation capturing, allowing on 
demand and rapid deployment captures. This become especially 
relevant in tropical areas, such as Galapagos Islands, were 
satellite monitoring is very limited because of an almost 
permanent cloud coverage. We identified potential applications 
of UAV for environmental management in both protected and 
populated areas of Galapagos, for instance: invasive species 
identification, vegetation health monitoring, tourist visiting sites 
monitoring, monitoring of mining materials or wood extraction, 
and extension and seasonality variation of wetlands. Our future 
research will be related to explore OBIA classification with 
texture analysis for invasive species identification. 
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