RAINBOW TRIANGLES IN 3-EDGE-COLORED GRAPHS

József Balogh, Ping Hu, Bernard Lidický, Florian Pfender, Jan Volec, Michael Young

SIAM Conference on Discrete Mathematics
Jun 17, 2014
Problem

Find a 3-edge-coloring of a complete graph K_n maximizing the number of copies of rainbow colored triangles.
Problem

Find a 3-edge-coloring of a complete graph K_n maximizing the number of copies of rainbow colored triangles.

Color edges randomly, expected density $\frac{2}{9}$.

Problem

Find a 3-edge-coloring of a complete graph K_n maximizing the number of copies of rainbow colored triangles.

Color edges randomly, expected density $\frac{2}{9}$.

Iterated blow-up of triangle

\[\frac{1}{4} = \text{denotes graph and/or its density} \]
\[F(n) = \max \text{ # of } \begin{array}{c}
\text{over all 3-edge-colorings of } K_n
\end{array} \]
$F(n) = \max \# \text{ of } \triangle \text{ over all 3-edge-colorings of } K_n$

Conjecture (Erdős and Sós; ’72)*

For all $n > 0$,

$$F(n) = F(a) + F(b) + F(c) + F(d) + abc + abd + acd + bcd,$$

where $a + b + c + d = n$; a, b, c, d are as equal as possible, and $F(0) = 0$.

![Diagram](attachment:diagram.png)
$F(n) = \max \text{ # of over all 3-edge-colorings of } K_n$

Conjecture (Erdős and Sós; ’72−)

For all $n > 0$,

$$F(n) = F(a) + F(b) + F(c) + F(d) + abc + abd + acd + bcd,$$

where $a + b + c + d = n$; a, b, c, d are as equal as possible, and $F(0) = 0$.
$F(n) = \max \text{ # of } \begin{array}{c}
\begin{array}{c}
\text{over all 3-edge-colorings of } K_n
\end{array}
\end{array}$

Conjecture (Erdős and Sós; ’72−)

For all $n > 0$,

$$F(n) = F(a) + F(b) + F(c) + F(d) + abc + abd + acd + bcd,$$

where $a + b + c + d = n$; a, b, c, d are as equal as possible, and $F(0) = 0$.

0.4 = \begin{array}{c}
\begin{array}{c}
\text{\textbullet}
\end{array}
\end{array} \begin{array}{c}
\begin{array}{c}
\text{\textbullet}
\end{array}
\end{array} \begin{array}{c}
\begin{array}{c}
\text{\textbullet}
\end{array}
\end{array} \begin{array}{c}
\begin{array}{c}
\text{\textbullet}
\end{array}
\end{array} \begin{array}{c}
\begin{array}{c}
\text{\textbullet}
\end{array}
\end{array} $$
Flag algebras application

Construction: $0.4 \leq \begin{array}{c}
\begin{array}{c}
\text{\includegraphics[width=1cm]{triangle.png}}
\end{array}
\end{array}$

- get a matching upper bound ≈ 0.4
- round the result
- get subgraphs with 0 density
- get extremal construction (stability)
Flag algebras application

Construction: $0.4 \leq \approx 0.4$

- get a matching upper bound
- round the result
- get subgraphs with 0 density
- get extremal construction (stability)

Flag algebras (on 6 vertices) give only ≤ 0.4006, not enough for rounding.
Flag algebras application

Construction: $0.4 \leq \approx 0.4$

- get a matching upper bound
- round the result
- get subgraphs with 0 density
- get extremal construction (stability)

Flag algebras (on 6 vertices) give only ≤ 0.4006, not enough for rounding.

The iterative extremal construction is causing troubles....
Not iterated extremal constructions

Theorem (Turán)

\# of edges over K_1-free graphs is maximized by

Theorem (Hatami, Hladký, Král, Norine, Razborov)

\# of C_5s over triangle-free graphs is maximized by

Theorem (Cummings, Král, Pfender, Sperfeld, Treglown, Young)

\# of monochromatic triangles over 3-edge-colored graphs is minimized by

And more... http://flagmatic.org
$(n$ large enough$)$
Iterated extremal constructions

Theorem (Falgas-Ravry, Vaughan)

The number of \(\left\langle \right\rangle \) and \(\left(\right) \) is maximized by

Theorem (Huang)

The number of \(\downarrow \) is maximized by

Theorem (Hladký, Král, Norine)

The number of \(\downarrow \) is maximized by
Our main result

\[F(n) = \max \text{ # of } \begin{array}{c} \text{over all coloring of } K_n \end{array} \]

Theorem (Balogh, Hu, L., Pfender, Volec, Young)

For all \(n > n_0 \),

\[F(n) = F(a) + F(b) + F(c) + F(d) + abc + abd + acd + bcd, \]

where \(a + b + c + d = n; a, b, c, d \text{ are as equal as possible.} \)
Sketch of proof

Goal: maximizing gives edge-coloring like
Sketch of proof

Goal: maximizing gives edge-coloring like

- pick a properly 3-edge-colored K_4
Sketch of proof

Goal: maximizing gives edge-coloring like

• pick a properly 3-edge-colored K_4
Sketch of proof

Goal: maximizing gives edge-coloring like

- pick a properly 3-edge-colored K_4

How to pick the properly 3-edge-colored K_4?

($|X_i|$ is close to $0.25n$, few wrongly colored edges, small trash)
Sketch of proof

Goal: maximizing gives edge-coloring like

- pick a properly 3-edge-colored K_4
- partition the rest
Sketch of proof

Goal: maximizing gives edge-coloring like

- pick a properly 3-edge-colored K_4
- partition the rest
Sketch of proof

Goal: maximizing gives edge-coloring like

- pick a properly 3-edge-colored K_4
- partition the rest

How to pick the properly 3-edge-colored K_4?

(|$|X_i|$ is close to 0.25n, few wrongly colored edges, small trash)
Sketch of proof

Goal: maximizing gives edge-coloring like

- pick a properly 3-edge-colored K_4
- partition the rest

- $|X_i|$ close to 0.25n, few wrongly colored edges, small trash
Sketch of proof

Goal: maximizing gives edge-coloring like

- pick a properly 3-edge-colored K_4
- partition the rest
- correct edges between X_is
Sketch of proof

Goal: maximizing \(X_1 \) gives edge-coloring like \(X_2 \)

- pick a properly 3-edge-colored \(K_4 \)
- partition the rest
- correct edges between \(X_i \)'s
- no orange trash
Sketch of proof

Goal: maximizing gives edge-coloring like

- pick a properly 3-edge-colored K_4
- partition the rest
- correct edges between X_is
- no **orange** trash
- balance sizes of X_is
Goal: maximizing gives edge-coloring like

- pick a properly 3-edge-colored K_4
- partition the rest
- correct edges between X_is
- no orange trash
- balance sizes of X_is
Sketch of proof

Goal: maximizing g gives edge-coloring like

- pick a properly 3-edge-colored K_4
- partition the rest
- correct edges between X_is
- no orange trash
- balance sizes of X_is

How to pick the properly 3-edge-colored K_4?

($|X_i|$s close to 0.25n, few wrongly colored edges, small trash)
How to pick K_4?

Use Flag Algebras!
How to pick K_4?

Use Flag Algebras!

Try 1: Pick maximizing

\[
|X_1| + |X_2| + |X_3| + |X_4| > 0.988(n - 5)
\]

Balancing needed...
How to pick K_4?

Use Flag Algebras!

Try 1: Pick maximizing

$(n - 5) \geq$
How to pick K_4?

Use Flag Algebras!

Try 1: Pick maximizing

$$(n - 5) \geq \frac{1}{\binom{n}{4}} \sum (n - 5)$$
How to pick K_4?

Use Flag Algebras!

Try 1: Pick maximizing

\[
(n - 5) \geq \frac{1}{\binom{n}{4}} \sum \binom{n - 5}{4} = \frac{2 \binom{n}{5}}{\binom{n}{4}}
\]
How to pick K_4?

Use Flag Algebras!

Try 1: Pick maximizing

$$(n - 5) \geq \frac{1}{\binom{n}{4}} \sum \left(n - 5 \right) = \frac{2 \binom{n}{5}}{\binom{n}{4}} = \frac{2}{5} (n - 5)$$

Balancing needed...
How to pick K_4?

Use Flag Algebras!

Try 1: Pick maximizing

$$\sum \frac{n}{4} \geq \frac{n}{5} \cdot (n-5)$$

Result for K_n:

$$|X_1| + |X_2| + |X_3| + |X_4| > 0.988 (n-5)$$

FA: ≥ 0.4 then > 0.23516, < 0.0952
How to pick K_4?

Use Flag Algebras!

Try 1: Pick $\text{maximizing} > 0.988$

$$\sum_{(n - 5)} \geq \frac{1}{\binom{n}{4}} \sum \binom{n}{4} (n - 5) = \frac{2\binom{n}{5}}{\binom{n}{4}} = \frac{2\binom{n}{5}}{5} (n - 5)$$

FA: $\geq 0.4 \text{ then } > 0.23516, < 0.0952$
How to pick K_4?

Use Flag Algebras!

Try 1: Pick maximizing > 0.988

$$(n - 5) \geq \frac{1}{\binom{n}{4}} \sum (n - 5) = \frac{2\binom{n}{5}}{\binom{n}{4}} = \frac{2}{5}(n - 5)$$

FA: ≥ 0.4 then > 0.23516, < 0.0952

Result for K_n:

$$|X_1| + |X_2| + |X_3| + |X_4| > 0.988(n - 5)$$
How to pick K_4?

Use Flag Algebras!

Try 1: Pick maximizing > 0.988

\[
(n - 5) \geq \frac{1}{\binom{n}{4}} \sum (n - 5) = \frac{2\binom{n}{5}}{\binom{n}{4}} = \frac{2}{5}(n - 5)
\]

FA: ≥ 0.4 then > 0.23516, < 0.0952

Result for K_n:

\[
|X_1| + |X_2| + |X_3| + |X_4| > 0.988(n - 5)
\]

Balancing needed...
How to pick K_4?

Use Flag Algebras!

Try 2: Pick maximizing

$$+ \quad + \quad - \quad \frac{26}{9}$$

$n^2 F = \text{wrongly colored edges.}$
How to pick K_4?

Use Flag Algebras!

Try 2: Pick maximizing

$$\begin{align*}
\text{FA: } & \frac{4}{15} \left(\begin{array}{c}
\text{ } + \\
\text{ } + \\
\text{ } - \frac{26}{9}
\end{array} \right) > 0.002629
\end{align*}$$
How to pick K_4?

Use Flag Algebras!

Try 2: Pick maximizing

$$\begin{align*}
\sum_{1 \leq i < j \leq 4} |X_i| |X_j| - \frac{26}{9} > 0.0276
\end{align*}$$

$$\begin{align*}
FA: \quad \frac{4}{15} \left(\begin{array}{c}
\begin{array}{c}
\text{Diagram 1}
\end{array}
\end{array} + \begin{array}{c}
\begin{array}{c}
\text{Diagram 2}
\end{array}
\end{array} + \begin{array}{c}
\begin{array}{c}
\text{Diagram 3}
\end{array}
\end{array} \right) - \frac{26}{45} > 0.002629
\end{align*}$$
How to pick K_4?

Use Flag Algebras!

Try 2: Pick maximizing

$$\begin{pmatrix} + & + & - \\ \end{pmatrix} > 0.0276$$

FA: $$\frac{4}{15} \left(\begin{pmatrix} + & + & - \\ \end{pmatrix} \right) - \frac{26}{45} > 0.002629$$

Final equation:

$$2 \sum_{1 \leq i<j \leq 4} |X_i||X_j| - |F| - \frac{26}{9} \sum_{1 \leq i \leq 4} |X_i|^2 > 0.0276n^2$$

$F =$ wrongly colored edges.
How the first step worked

\[2 \sum_{1 \leq i < j \leq 4} |X_i||X_j| - |F| - \frac{26}{9} \sum_{1 \leq i \leq 4} |X_i|^2 > 0.0276n^2 \]

Implies:

\[0.244n < |X_i| < 0.256n \]
\[|Trash| < 0.006n \]
\[|F| < 0.00008 \binom{n}{2} \]

\(F = \) wrongly colored edges.
Theorem

of rainbow K_3s is maximized by

if on 4^k vertices.
More results

Theorem

of rainbow K_3s is maximized by if on 4^k vertices.

![Diagram of four vertices with edges in different colors]

Theorem

of induced C_5s is maximized by if on 5^k vertices.

![Diagram of five vertices forming a cycle]

(for all k)
More results

Theorem

of rainbow K_3s is maximized by

if on 4^k vertices.

Theorem

of induced C_5s is maximized by

if on 5^k vertices.

Theorem

of induced oriented C_4s is maximized by

if on 4^k vertices.
More results

Theorem

of rainbow K_3s is maximized by if on 4^k vertices.

Theorem

of induced C_5s is maximized by if on 5^k vertices.

Theorem

of induced oriented C_4s is maximized by if on 4^k vertices.

(for all k)
Thank you for listening!