Sample Size Considerations for Japanese Patients in a Multi-Regional Trial Based on MHLW Guidance

Hui Quan, Peng-Liang Zhao, Ji Zhang, Martin Roessner and Kyo Aizawa

Sanofi-Aventis

Presented at 2009 Rutgers Biostatistics Day April 3, 2009

- Bridging study to Multi-regional clinical trial (MRCT)
- PMDA guidance
- Normal endpoint
- Survival endpoint
- Simulation Results
- Examples
- Discussion

From Bridging study to MRCT

- Differences in ethnicity, culture and clinical practice may have impact on efficacy, safety and dose regimen
- Duplications of large clinical trials in all regions demand resources and delay the approvals of new drugs.
- ICH E5 issued in 1998 recommends a framework for evaluating ethnical impact
 - Conduct Bridging study to show evidence of similarity
 - Extrapolate data from the original region to a new region

From Bridging study to MRCT (2)

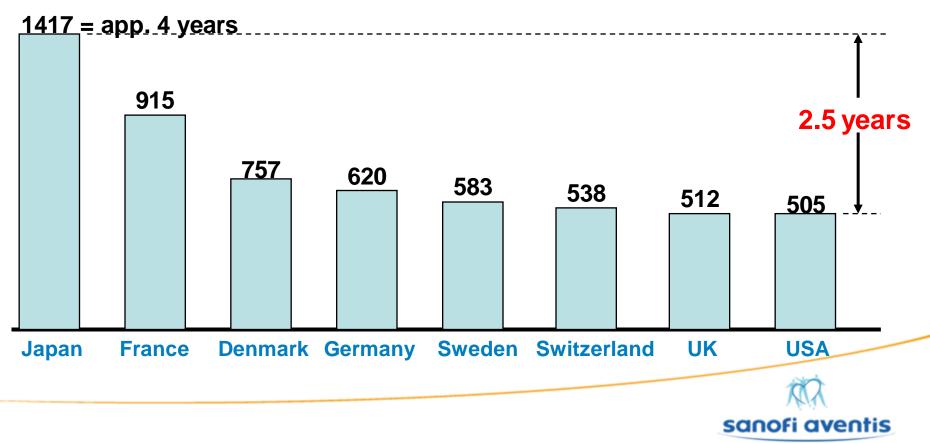
No standard for bridging studies: no statistical criteria to assess similarity of two populations

- Shih (2001): predictive probability of new data falling within the previous experience
- Chow et al (2002): sensitivity index and bioequivalence approach
- Hsiao et al. (2003): GS technique for internal validity assuming sequential data availability

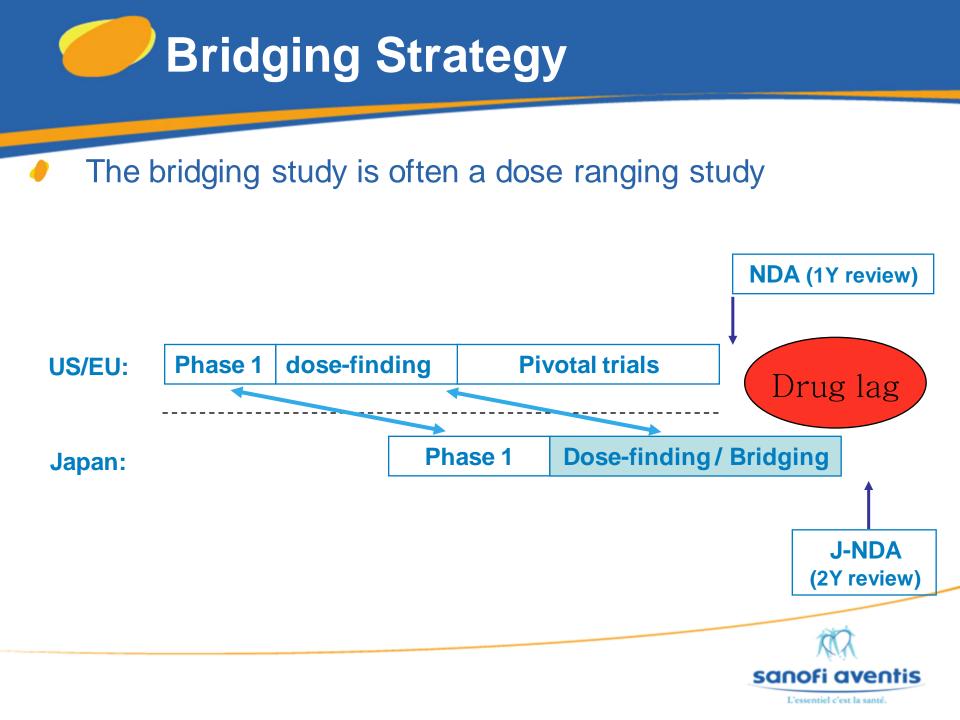
In Japan: similarity criteria to be set on a case-bycase basis through a PMDA consultation

From Bridging study to MRCT (3)

Since ICH E5, new drug approvals in Japan based on bridging strategy increased from 3.2% in 1999 to 25% in 2003


However, bridging studies were often after new drug's approval in the original region

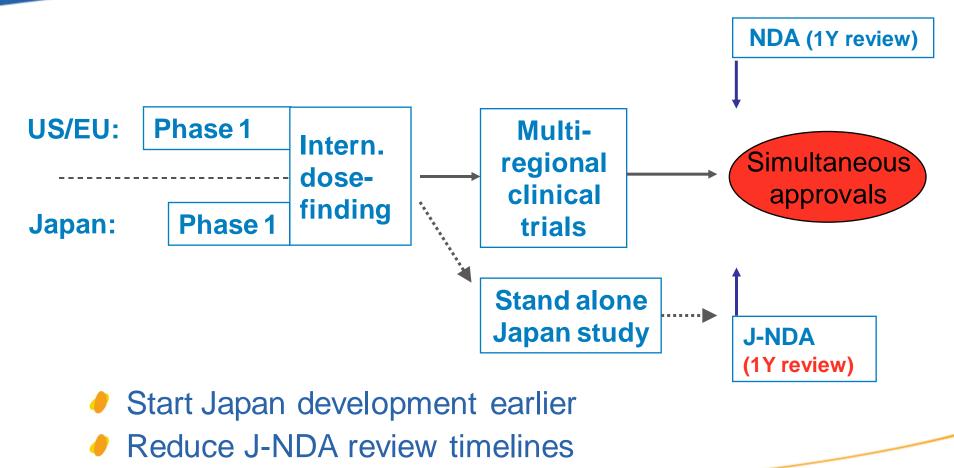
 Availabilities of new drugs to Japanese patients were delayed



"Drug lag" in Japan

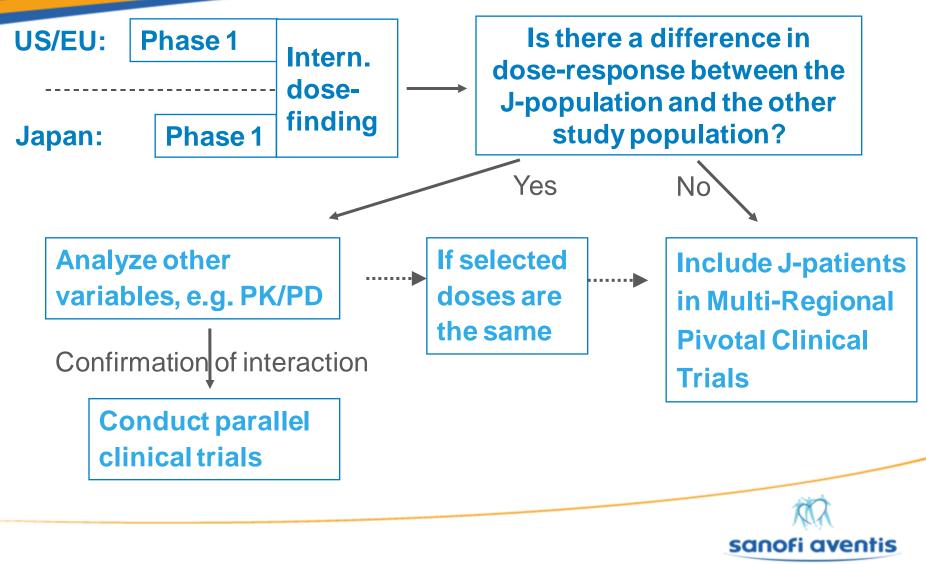
Days from first approval in the world to launch in each country (average of top 100 products)

L'essentiel c'est la santé.


PMDA dual approach:

PMDA issued a new guidance in September 2007

- To Promote Japan's participation in multi-regional (Global) clinical trials to shorten sponsor's drug development time in Japan
- In a Q&A format
- Q6 is specifically for assessing consistency of treatment effects
- PMDA planned to shorten the review time
 - Increase PMDA reviewers from 90 to 300 by 2011
 - Decrease review time from 21 months to 12 months by 2011
 - Reviewers 9 months / sponsor 3 months
- Overall, reduce drug lag (time between overseas and Japan approvals) from 4.3 years to 1.5 years by 2011



MRCT towards Simultaneous submissions

Key decision point about MRCT

L'essentiel c'est la santé.

PMDA Guidance on MRCT

No recommendation of any definitions for consistency, but two methods were provided as examples (superiority trials, Non-inferiority trials?) Method 1: Enough Japanese patients for $Pr(D_{Japan}/D_{all} > \pi) = 1 - \beta' \ge 0.8$ and $\pi \ge 0.5$ Observed non-inferiority ► Not H₀: $\delta_{JP} < \pi \delta$ vs H_a: $\delta_{JP} \ge \pi \delta$ Method 1: Sekiguchi et al. (JSM, 2007) using simulation for a MR oncology trial.

Method 2: Enough patients in all regions for Pr(D1>0, D2>0, D3>0)=1-β' ≥0.8
►lack of observed qualitative interaction
Method 2: Kawai et al. (DIJ, 2007)

The focus here: Method 1

A systematic and comprehensive discussion on sample size calculations

Closed form formulas for normal, binary and survival endpoints.

For $1 - \beta$ power and α level two-sided test, the overall

$$N = \frac{2\sigma^2 (z_{\alpha/2} + z_{\beta})^2}{\delta^2}$$
$$\hat{\delta} = (N \hat{\delta} + N \hat{\delta}) / \delta$$

Then

$$\hat{\delta}_{all} = (N_J \hat{\delta}_J + N_{NJ} \hat{\delta}_{NJ}) / N$$

Suppose treatment effects $\delta_J = u \delta_{NJ}$ and f_u is the fraction of Japanese patients ($N_{uJ} = f_u N$)

For

 $\Pr(\hat{\delta}_{I} > \pi \hat{\delta}_{all} | \delta_{I}, \delta_{NI}) = 1 - \beta'$

We have

 $z_{\beta'} = \frac{(z_{\alpha/2} + z_{\beta})\sqrt{f_u}(u - \pi - \pi(u - 1)f_u)}{(1 + (u - 1)f_u)\sqrt{1 + (\pi^2 - 2\pi)f_u}}$

Normal Endpoint (3)

If
$$u=1$$
 or $\delta_J = \delta_{NJ}$, a closed form solution

$$f_1 = \frac{z_{\beta'}^2}{(z_{\alpha/2} + z_{\beta})^2 (1 - \pi)^2 + z_{\beta'}^2 (2\pi - \pi^2)} \uparrow \text{of } \pi$$

Treating $\hat{\delta}_{all}$ as a fixed δ

$$\Pr(\hat{\delta}_J > \pi \delta \mid \delta_J = \delta_{NJ} = \delta) \ge 1 - \beta'$$

We have $N_{J} = \frac{2\sigma^{2} z_{\beta'}^{2}}{\delta^{2} (1-\pi)^{2}} = \frac{z_{\beta'}^{2} N}{(z_{\alpha/2} + z_{\beta})^{2} (1-\pi)^{2}} = f_{1}^{'} N > f_{1} N$ sanofi a Ventis

L'essentiel c'est la santé.

Normal Endpoint (4)

Table 1. Values of $f_{0.9}$, f_1 , $f_{1.1}$, $f_1^{'}$ ($\alpha = 0.05$)

π	$1 - \beta$	$1 - \beta'$	$f_{0.9}$	f_1	$f_{1.1}$	f_1
0.5	0.90	0.80	0.290	0.224	0.174	0.270
0.5	0.95	0.80	0.248	0.187	0.143	0.218
0.5	0.90	0.85	0.383	0.313	0.253	0.409
0.5	0.95	0.85	0.334	0.265	0.209	0.331
0.5	0.90	0.90	0.494	0.426	0.361	0.625
0.5	0.95	0.90	0.437	0.367	0.303	0.506
					-	
0.6	0.90	0.80	0.396	0.311	0.240	0.421
0.6	0.95	0.80	0.349	0.265	0.198	0.341
0.6	0.90	0.85	0.496	0.416	0.340	0.639
0.6	0.95	0.85	0.444	0.360	0.285	0.517
0.6	0.90	0.90	0.603	0.537	0.467	0.977
0.6	0.95	0.90	0.549	0.475	0.401	0.790

To have a positive trial and satisfy MHLW requirement, consider

$$\Psi = \Pr(\hat{\delta}_J - \pi \hat{\delta}_{all} > 0, \hat{\delta}_{all} - z_\alpha \sigma / \sqrt{N/2} > 0 \mid \delta_J = \delta_{NJ} = \delta)$$

Correlation $\rho = \frac{z_{\beta'}}{z_{\alpha/2} + z_{\beta}} > 0$ $\Psi \approx > (1 - \beta)(1 - \beta')$

The conditional probability

$$\Pr(\hat{\delta}_J - \pi \hat{\delta}_{all} > 0 \mid \delta_{all} - z_\alpha \sigma / \sqrt{N/2} > 0, \delta_J = \delta_{NJ} = \delta) \approx 1 - \beta^*$$

Sanofi aventis

Normal Endpoint (6)

Table 2. Values of ρ and Ψ (α =0.05)

π	$1 - \beta$	$1 - \beta'$	$(1-\beta)(1-\beta)$) p	Ψ^*
0.5	0.90	0.80	0.720	0.260	0.735
0.5	0.95	0.80	0.760	0.233	0.768
0.5	0.90	0.85	0.765	0.320	0.781
0.5	0.95	0.85	0.808	0.288	0.816
0.5	0.90	0.90	0.810	0.395	0.826
0.5	0.95	0.90	0.855	0.356	0.864
0.6	0.90	0.80	0.720	0.260	0.735
0.6	0.95	0.80	0.760	0.233	0.768
0.6	0.90	0.85	0.765	0.320	0.781
0.6	0.95	0.85	0.808	0.288	0.816
0.6	0.90	0.90	0.810	0.395	0.826
0.6	0.95	0.90	0.855	0.356	0.864

For imbalanced design, *N* for placebo and *kN* for active treatment, replace

$$2\sigma^2$$
 by $rac{k+1}{k}\sigma^2$

Actually,
$$f_u$$
 and f_1 are independent with k

For binary endpoint, replace

$$2\sigma^2$$
 by $p_1(1-p_1) + p_0(1-p_0)$

Consider Proportional Hazards model

$$\lambda_1(t) = \lambda_0(t) e^{\gamma}$$

The power is often based on log rank test

$$T \sim N(\mu, 1)$$
 and $\mu = \gamma \sqrt{E} / 2$

where *E* is the expected total number of events of 2 groups. $\hat{\gamma} = 2T / \sqrt{E} \sim N(\gamma, 4/E)$

For power $1-\beta$,

$$E = \frac{4(z_{\alpha/2} + z_{\beta})^2}{\gamma^2}$$

Survival Endpoint (2)

There are 4 approaches depending on what asymptotic distributions are used for

$$\Pr(\frac{1-e^{\hat{\gamma}_J}}{1-e^{\hat{\gamma}_{all}}} > \pi \mid \gamma_J, \gamma_{all}) \ge 1-\beta' \quad (*)$$

Difficult to calculate the correlation between $\hat{\gamma}_J \& \hat{\gamma}_{all}$ if pooled data are used for $\hat{\gamma}_{all}$

Consider
$$\hat{\gamma}_{all} = w\hat{\gamma}_J + (1-w)\hat{\gamma}_{NJ}$$
 $(0 \le w \le 1)$

Note that, this is for design not for analysis

Survival Endpoint (3)

When $w = E_J / E$, weight=inverse of the variance and $Var(\hat{\gamma}_{all}) = 4 / E$

is same as the one from the pooled analysis. Consider the asymptotic distribution for

$$1-e^{\hat{\gamma}_J}-\pi(1-e^{\hat{\gamma}_{all}})$$

Suppose $\gamma_J = u \gamma_{NJ}$ and $E_{uJ} = g_u E$. g_u should satisfy

$$\frac{\sqrt{E}(1-\pi+\pi e^{(ug_u+1-g_u)\gamma_{NJ}}-e^{u\gamma_{NJ}})}{2\sqrt{\frac{1}{g_u}}e^{2u\gamma_{NJ}}-2\pi e^{(u(1+g_u)+1-g_u)\gamma_{NJ}}+\pi^2 e^{2(ug_u+1-g_u)\gamma_{NJ}}} = z_{1-\beta'}.$$

Survival Endpoint (4)

When $\gamma_J = \gamma_{NJ}$, a closed form solution

$$g_1 = \frac{4e^{2\gamma}z_{\beta'}^2}{E(1-\pi)^2(1-e^{\gamma})^2 + 4e^{2\gamma}(2\pi-\pi^2)z_{\beta'}^2}$$

The number of events for Japanese patients

$$E_{1J} = g_1 E$$

Survival Endpoint (5)

Replace $\hat{\gamma}_{all}$ by γ_{all} . For

$$\Pr(\frac{1 - e^{\hat{\gamma}_J}}{1 - e^{\gamma_{all}}} > \pi \mid \gamma_J = \gamma_{all} = \gamma) \ge 1 - \beta'$$

the number of events for Japanese patients

$$E_{J} > \frac{4z_{\beta'}^{2}}{\left(\gamma - \log(1 - \pi(1 - e^{\gamma}))\right)^{2}} = E_{2J}$$

Survival Endpoint (6)

As Hung et al. (SIM, 2003), we can also consider asymptotic distribution for

$$\hat{\eta} = \log(\frac{1 - e^{\hat{\gamma}_J}}{1 - e^{\hat{\gamma}_{all}}}) (\geq \log \pi)$$

Then, when $w = E_J / E$ in $\hat{\gamma}_{all}$ and $\gamma_J = \gamma_{NJ}$

$$E_{3J} = \frac{4e^{2\gamma}z_{\beta}^{2}E}{E(\log \pi)^{2}(1-e^{\gamma})^{2}+4e^{2\gamma}z_{\beta}^{2}}$$

Or if set $\hat{\gamma}_{all} = \gamma$ in $\hat{\eta}$, $E_{4J} = \frac{4e^{2\gamma}z_{\beta'}^2}{(\log \pi)^2(1-e^{\gamma})^2} > E_{3J}$

L'essentiel c'est la santé

Survival Endpoint (7)

Table 3. Number of Events for Survival Endpoint ($\alpha = 0.05$)

$1 - e^{\gamma}$	$1 - \beta$	$1 - \beta'$	Ε	E_{1J}	E_{2J}	E_{3J}	E_{4J}
0.2	0.90	0.80	844	156	204	85	94
0.2	0.95	0.80	1044	160	204	87	94
0.3	0.90	0.80	330	54	75	29	32
0.3	0.95	0.80	409	55	75	30	32
0.4	0.90	0.80	161	23	34	12	13
0.4	0.95	0.80	199	23	34	12	13
0.2	0.90	0.80	844	221	312	144	174
0.2	0.95	0.80	1044	231	312	149	174
0.3	0.90	0.80	330	77	113	50	59
0.3	0.95	0.80	409	80	113	52	59
0.4	0.90	0.80	161	33	51	21	24
0.4	0.95	0.80	199	34	51	22	24
	0.2 0.3 0.3 0.4 0.4 0.4 0.2 0.2 0.3 0.3 0.3 0.4	$\begin{array}{cccc} 0.2 & 0.90 \\ 0.2 & 0.95 \\ 0.3 & 0.90 \\ 0.3 & 0.95 \\ 0.4 & 0.90 \\ 0.4 & 0.95 \\ \end{array}$ $\begin{array}{c} 0.2 & 0.90 \\ 0.2 & 0.95 \\ 0.3 & 0.90 \\ 0.3 & 0.95 \\ 0.4 & 0.90 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

sanofi aventis

L'essentiel c'est la santé.

Survival Endpoint (8)

 Different approaches give very different required number of events

For the first case, $E_{1J} = 18.5\% E$ $E_{2J} = 24.2\% E$

$$E_{3J} = 10.1\% E$$
 $E_{4J} = 11.1\% E$

Simulation is used to check the coverage

Consider a fixed stopping time design: patients enter at staggered time but stop at the same common study end date.

Expected number of events for Treatment i

$$E_{i} = \frac{r\lambda_{i}}{\lambda_{i} + \tau} \left(A - \frac{e^{-(\lambda_{i} + \tau)L}}{\lambda_{i} + \tau} \left(e^{(\lambda_{i} + \tau)A} - 1\right)\right) = rV_{i}$$

where A=enrollment period, r=enrollment rate

 τ =dropout rate, L=study duration

$$N = rA = AE/(V_0 + V_1)$$

Number of Japanese patients can be derived using

$$N_J = AE_J / (V_0 + V_1)$$

If the Japanese sites are anticipated to be opened later than the other sites, more than N_J Japanese patients are needed to reach E_J when the total number of events for the study reaches E.

Table 4. Probabilities of (*)

 $(\alpha = 0.05, \lambda_0 = 5\%, \tau = 0 \text{ and } L = 36)$

π	$1 - e^{\gamma}$	$1 - \beta$	$1 - \beta'$	Ε	P_{1J}	P_{2J}	P_{3J}	P_{4J}
0.5	0.2	0.90	0.80	844	0.779	0.826	0.710	0.727
0.5	0.2	0.95	0.80	1044	0.780	0.814	0.715	0.726
0.5	0.3	0.90	0.80	330	0.771	0.815	0.702	0.717
0.5	0.3	0.95	0.80	409	0.774	0.808	0.706	0.714
0.5	0.4	0.90	0.80	161	0.762	0.816	0.698	0.711
0.5	0.4	0.95	0.80	199	0.775	0.808	0.698	0.713
0.6	0.2	0.90	0.80	844	0.791	0.842	0.726	0.752
0.6	0.2	0.95	0.80	1044	0.789	0.831	0.732	0.751
0.6	0.3	0.90	0.80	330	0.782	0.842	0.731	0.752
0.6	0.3	0.95	0.80	409	0.781	0.832	0.725	0.741
0.6	0.4	0.90	0.80	161	0.773	0.839	0.717	0.733
0.6	0.4	0.95	0.80	199	0.775	0.827	0.725	0.732

Example 1 (Continuous endpoint)

- A multi-regional trial to evaluate treatment effect on HbA1c.
- 2:1 imbalanced design for more safety data
- 372 in active treatment and 186 in placebo for 99% power to detect 0.5% difference with SD=1.3% and α =0.05 (two-sided).

Table 5. Sample Size for Japanese Patients in a HbA_{1c} Trial

π	$1 - \beta'$	f_1	f_1'	N_{1J} via f_1		$N_{1J}^{'}$ ·	via $f_1^{'}$
				Pbo	Treat	Pbo	Treat
0.5	0.80	0.138	0.154	26	51	29	57
0.5	0.85	0.199	0.234	37	74	43	87
0.5	0.90	0.282	0.358	52	105	67	133
0.6	0.80	0.200	0.241	37	75	45	90
0.6	0.85	0.280	0.365	52	104	68	136
0.6	0.90	0.380	0.559	71	141	104	208

Example 2 (Survival endpoint)

- A multi-regional oncology trial on overall survival
- Median survival time for control=21 months:

 $\lambda_0 = 3.30\%$ /month

Table 6. Number of Events and Sample Size for Japanese Patients

π	$1 - \beta'$	E_{1J}	E_{2J}	E_{3J}	E_{4J}	N_{1J}^{*}	N_{2J}^{*}	N_{3J}^*	N_{4J}^{*}
0.5	0.80	156	204	85	94	261	342	142	158
0.5	0.85	221	310	122	143	370	518	205	239
0.5	0.90	306	474	174	219	512	792	291	366
0.6	0.80	221	312	144	174	370	522	241	291
0.6	0.85	301	473	201	263	503	791	336	441
0.6	0.90	397	723	273	403	664	1210	456	674

- The trend is moving away from bridging study to MRCT
- Method 1 in the guidance focuses on observed consistency (observed non-inferiority) for superiority trial.
- Closed form formulas are available for all types of endpoints
- For normal endpoint, mininum=22.4% of total sample size
- It may be prudent to include selected East Asian nations
- How the consistency should be defined for non-inferiority trials if no between-treatment difference is assumed?
- For Method 1?
- For method 2: D1> Δ , D2> Δ , D3> Δ

- ICH International Conference on Harmonization Tripartite Guidance E5.
- Shih WJ. Clinical trials for drug registrations in Asian-Pacific countries: proposal for a new paradigm from a statistical perspective. Controlled Clinical Trials 2001; 22: 357-366.
- Chow SC, Shao J and Hu OYP. Assessing sensitivity and similarity in bridging studies. Journal of Biopharmaceutical Statistics 2002; 12: 385-400.
- Hsiao CF, Xu JZ and Liu JP. A group sequential approach to evaluation of bridging studies. Journal of Biopharmaceutical Statistics 2003; 13: 793-801.
- Uyama Y, Shibata T, Nagai N, Hanaoka H, Toyoshima S and Mori K. Successful bridging strategy based on ICH E5 guideline for drugs approval in Japan. Clinical Pharmacology & Therapeutics 2005; 78: 102-113.
- Ministry of Health, Labour and Welfare of Japan, Basic Principles on Global Clinical Trials. September 28, 2007.
- Kawai N, Chuang-Stein C, Komiyama O and Li Y. An approach to rationalize partitioning sample size into individual regions in a multiregional trial. Drug Information Journal 2007; 42: 139-147.
- Sekiguchi R, Ogawa S and Uesaka H. Sample size determination of Japanese patients for multi-regional clinical trial (MRCT) in oncology. Presentation at Joint Statistical Meetings, Salt Lake City, USA, July 29-August 2, 2007.

