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1. Introduction 

The majority of the ocean world’s features are being discovered, identified, characterized 

and imaged by their interactions with sound (Medwin and Blue, 2005). Often a specifically 

designed sound source is used to learn about the sea and its boundaries (Medwin and Clay, 

1998), as in the case of the use of acoustical geophysical devices that provide information 

about the seafloor and the strata below, transforming the things that we cannot see into 

numerical data and pictures which give us a model that is able to visually represent the 

seabed and to outline its physical proprieties and processes (Morang et al., 1997). Such a 

model, based on the behaviour of the sound pulses and their interaction with water, 

sediment, rocks and the whole marine environment in which they are emitted, reveals 

diverse seascapes from shallow water to deep sea and allows us to determine the nature and 

characteristics of the seabed and additionally, to promote a wide range of practical 

applications. The research in the marine environment (from oceanography to marine 

geology, benthic ecology, marine archaeology etc.) now depend heavily on such tools, that 

provide, as the first step in obtaining the information, the geological framework that can 

further promote focussed scientific investigations and also better drive seabed utilization for 

social and economical purposes.  

The indirect techniques of investigation used for exploration and study of the submerged 

environment are different and change according to particular research purposes (Jones, 

1999). Generally, acoustical geophysical devices are sound sources that work by 

transmitting and receiving the sound waves that are reflected, diffracted or scattered off the 

bottom. They differentiate themselves from each other by the different frequencies 

employed and thereby the different information that are able to provide about the seabed’s 

proprieties (table 1, Morang et al., 1997). Echo-sounders, side-scan sonar and sub-bottom 

profilers are the three principal acoustic devices, used to map the seabed in sea exploration 

programmes, collecting geophysical data that in turn produce morphological and 

sedimentary models which became instrumental in determining and understanding the 

geomorphology and the present-day (Holocene) sedimentary processes of the investigated 

areas. Echo-sounders with a single-beam (Single-Beam Echo-Sounder – SBES) are used for 

hydrographic (bathymetric) surveys. The Multi-Beam Echo-Sounders (MBES) represent an 
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improvement upon the traditional SBES and allow the reconstruction of high resolution 3D 

views of submarine structures and of topography. The side-scan sonar provides an image 

(sonograph) from which an understanding of the nature of materials on the seafloor can be 

drawn (Fish and Carr, 1990; Blondel and Murton, 1997; Blondel, 2009). The sub-bottom 

profilers are used for examining the high resolution sismo-stratigraphy of the seabed for 

better interpreting sedimentary processes acting upon the seafloor (Damuth, 1980; Flood 

1980). 

Imaging of the seabed started in the 1940s, when the first side-scan sonar (SSS) sonograph 

(hard copy output of sonar data) was recorded (Fish and Carr, 1990). The first sonographs 

had low resolution and were only able to detect and to image large physical targets on the 

seafloor, such as big shipwrecks. Then, the rapid developments in acoustic electronics of the 

1970s and 1980s led to the production of high-resolution images of the seabed. The SSS 

system is considered the most relevant acoustic device able to produce images of the 

seafloor: pursuant to its emission of a pulse of acoustic energy, it amplifies and records the 

intensity of backscattering from the seafloor, generating the sonograph, that may be 

considered analogous to a continuous aerial photograph (see Fish and Carr, 1990; Blondel 

and Murton, 1997 and Blondel, 2009 for details in generating a sonograph).  

We can distinguish between high frequency SSS systems, that work roughly between 100 

and 1000 kHz (Table 1), and low frequency systems that operate with lower frequencies, 

down to less than 10 kHz (see Table 1 from Blondel 2009 for the technical specifications of 

the most common low frequency SSSs).  

High frequency SSSs generally work between 25 and 600m of operated range and 

sonograph resolution is range dependent. The choice of the operated range depends on the 

purposes of the survey and on the environment conditions. A number of sonographs, 

recorded by high frequency SSS systems during different national and international research 

programmes, have been recovered and examined in order to produce a representative 

collection of sonographs collected within the Mediterranean setting. The dataset presented 

in this chapter was ground-truthed with sediment samples and/ or video data acquired by 

means of Remotely Operated Vehicles (ROVs). This chapter does not pretend to be an 

exhaustive list of everything from the Mediterranean seascape, although the sonographs 

here presented will attempt to outline the most significant features that characterise the 

Mediterranean continental shelves. A brief description of the side-scan sonar performance 

and its technical specifications is given in the following paragraph, to help in the 

understanding of the organization of the data presented, although it is recommended to 

refer to authoritative books (such as Fish and Carr, 1990; Blondel and Murton, 1997 and 

Blondel, 2009) for more detailed and precise explanations on the technical aspects related to 

the acquisition and processing of sonar imagery.  

2. The side-scan sonar as a tool to image the seafloor 

SSS has been defined as an acoustic imaging device used to provide wide-area, high-

resolution pictures of the seabed (Kenny et al., 2003). This technique was developed by 

Professor Harold Edgerton and others in the 1960s and is based on the Anti-Submarine 

Detection Investigation Committee (ASDIC) system built during World War II to detect 

submarines (Fish and Carr, 1990; Jones, 1999). Its first applications mainly pertained to the 
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Table 1. Examples of some of the most common models of high frequency SSS systems and 

their different technical specifications (data are from a survey of products carried out by 

Hydro International Journal and available at http:/ / www.hydro-

international.com/ productsurvey). 

search for objects on the seabed, subsequent works have led to far-reaching advances in the 

use of sonar in marine geophysics and geology (see Belderson et al., 1972; McQuillin and 

Ardus 1977; Blondel and Murton, 1997; Jones 1999 and Blondel, 2009 to get an historical 

perspective on the evolution of side-scan sonar systems applied to the exploration of the 

seafloor). 

Due to its capacity to provide seabed images, SSS has become an instrumental tool in 

seafloor mapping, with a number of applications, such as:  

- Investigation of seafloor morphology and sediment characteristics (i.e. occurrence of 

reliefs, depressions, sedimentary structures etc.) 

- Map the distribution of marine sediments and even peculiar biocenosis like seagrass 

meadows, coral banks etc.  

- Detect specific targets on the seafloor such as shipwrecks, mines, sunken objects, etc. 

- Identify the proper placement of infrastructures (oil drilling, platforms, cables etc.) 

- Monitoring the seafloor for environmental applications, such as coastal and deep 

environment management. 

The system typically consists of an underwater transducer connected via a cable to a 

shipboard recording device. The emitting lobe of sonar energy (narrow in azimuth from the 

transducer) has a beam geometry that insonifies a wide swath of the seabed, particularly 

when operated at low frequencies (<100 kHz). The returning echoes from the seafloor are 

received by the transducers over a short period of time (from a few milliseconds to 1 s), 

amplified on a time-varied gain curve and then transmitted to the recording unit. Most 

technological advances relate to the control of the phase and amplitude of the emitting sonar 

signal, and in the precise control of the time-varied gain applied to the return signals. In the 

case of a non-digital transducer, the analogue signal is converted into a digital format, the 

proper position for each signal in the final record (pixel by pixel) is calculated and then 
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these echoes are printed on electro-sensitive or thermal paper, one scan or line at a time. 

Modern high (dual) frequency digital SSS devices offer high-resolution images of the seabed 

on which objects in the order of few centimetres may be detected at a variable range, from a 

few tens of metres up to 600 m either side of the tow fish (in this latter case the total swath 

width is 1200 m and horizontal resolution can reach less then 100cm).  

The sonographs present as grey level (or optionally as colour scale) the local backscattering 

coefficients. The different backscattering intensities received by the sonar depend on a 

number of physical (the frequency of the system  - which significantly varies from 100 up to 

1000 kHz - and other technical configurations), geometric (angle at which the acoustic wave 

reaches the seafloor) and geological parameters (porosity and roughness of the seafloor that 

define the acoustic proprieties of the surface sediments in accordance to their physical and 

chemical nature). A copious literature (see, among others, Jackson and Briggs, 1992; Boyle 

and Chatiros, 1995; Blondel et al., 1998; Goff et al., 2000; Holland et al., 2000) has been 

developed to define the dependence of the acoustic backscattering on the different factors 

mentioned before, providing backscattering models. Nevertheless, no consensus exists on 

which model is the better one for side-scan sonar backscattering and research is still very 

active (Blondel and Murton, 1997; Blondel, 2009). Besides, different seabed types can be seen 

on the sonographs as different textures of the various parts of the image. In an effort to 

make side-scan sonar interpretation a function of quantitative analysis, a lot of authors 

(among others see Blondel et al., 1998; Huvenne et al., 2002;  Cochrane and Lafferty, 2002) 

have reported the use of some image texture processing algorithms (i.e. co-occurrence 

matrix) to discriminate the regions of different seabed types. 

Since different seabed types can be seen on the sonographs as different textures on the 

various parts of the image; the first step of sonograph interpretation consists of the 

discrimination of the different textures that compose the sonographs that in turn produce 

the identification of different acoustic facies. This process can be carried out through 

supervised or unsupervised automatic classification (of image textures) operated by proper 

software or by human discrimination of different textures, which is often the case, although 

qualitative interpretations of acoustic imagery are increasingly supported by quantitative 

analyses of backscatter and by the study of the role that the seafloor plays in its variations 

(Loiacono et al., 2009). The association of ground-truth information (sediment samples 

and/ or video recording and still images) to the acoustic facies that have been picked out with 

both the analysis, provide then aid classification of the seabed.  

2.1 The side-scan sonar performance 
Precision and accuracy of sonographs depend on a number of factors and they are 

determined according to SSS performance. Defining the SSS performance is thus necessary 

to understand what SSS can image from the seafloor environments and how. For instance, 

the resolution is an important feature in sonographs, because it provides the measure of the 

detail that is possible to detect on the sonograph. The resolution of SSS can be meant in a 

different way:  

- The system resolution: governed by the shape of the acoustic beam and the length of the 

transmitted pulse (Jones, 1999). So it depends on the three-dimensional distribution of 

the acoustic energy of the system that affects the size of the footprint. If the side-scan 

sonar has low frequency sources (10-30 kHz), the sound pulse will be transmitted and 

received at long range (covering a large area in a short time), but this configuration 
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provides lower resolution in the sonographs. If the needs of the survey are for accurate, 

fine image details, then it is better to use a higher frequency sonar (100 – 500 kHz), even 

if the short wavelengths generated cannot be transmitted long distance and thereby 

limit the usable range. For this reason these kinds of systems are employed mainly on 

continental shelves. Flemming et al. (1976) well described the characteristic transverse 

resolution and range resolution of the side-scan sonar systems; they can be meant as 

across-track footprint and along-track footprint respectively (Blondel and Murton, 

1997). Obviously each transducer capability can offer different resolution, depending on 

the technical specification of each sonar (Table 1) and also the speed of the transducer in 

the water influences the along-track resolution. Lastly, for each system, the across-track 

resolution strictly depends on the range setting employed (nowadays, for new models, 

the along-track resolution can be independent of range). 

- The sonograph resolution: governed by the pixel size. Indeed the successive across-track 

profiles are ‘plotted’ into sonographs by computation of square picture elements 

(pixels).  

The resolution is not the only parameter that affects the system performance and data 

quality. The underwater environment (current, density, salinity etc.) can considerably 

impact the data, and even more importantly, so too can the operator management of the 

system. Survey vessel course, transducers speed, tow fish altitude above the seabed and the 

range setting will determine the quality of the sonar data, according to the aim of the 

survey.  

3. Data and methods 

The data presented here were collected at different sites located on the continental shelf of 

the Mediterranean sea. Different range settings are presented, illustrating the different 

resolution capacity of the employed high frequency (100 – 500 kHz) sonar systems. The 

sonographs are arranged in three paragraphs, according to their range, for a total of three 

sections (wide-, medium-, small-range). An additional paragraph discusses some peculiar 

situations that can occur during a side-scan sonar survey, as noise comes from the 

underwater environment (e.g. signal generated from other ship propellers and/ or from 

interference with other acoustic sources, artefacts created by objects or fishes in the water 

column). In each sonograph, where it is not specified, high levels of backscatter are shown 

as dark tones. Each section is introduced with an overview on the different types and spatial 

scale of seafloor features that can be investigated, according to the employed range setting. 

It is worth noting that the range setting also determines the operational conditions of the 

survey, because the tow fish must be located at a precise distance above the bottom, 

approximately equivalent to between 10% and 20% of the range. So, the geomorphological 

setting and the survey environment do not always allow a free choice of the range setting. 

With complex topography and in a deep environment it is not possible to use narrow range 

that requires to have the tow fish at a short distance from the bottom (this situation indeed 

does not guarantee the safety condition of towed equipment), to operate in a deep 

environment, high frequency SSS must be integrated within AUV or specific ROV. In 

shallow water we cannot use a wide range, because it is recommended to have more than 

10% of the range setting as a distance above the bottom. Therefore, the range setting not 

only influences the aim of the survey (because of the associated sonograph resolution), but 
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also the depth range in which the survey can be performed, according to the environment 

condition (Table 2). 

 

Range 

setting (m) 

Optimum

two fish 

distance 

from the 

bottom 

Resolution

(m x pixel)
Geomorphological setting Main aims of the survey 

From few 

metres to 

150 

5-50m <1 

Continental shelf in shallow 

water, between –10 and –30 

m up to –50 m if the 

topographic features are 

known and without reliefs.  

Research of specific target, 

such as small shipwrecks,  

Monitoring of underwater 

infrastructures, such as 

pipelines or other small 

structures.  

150-300 15-30m Ca. 1 
From 30 m of water depth 

down to the shelfbreak. 

Meso-scale maps of the 

seafloor to represent a 

number of environment 

features (geological, 

sedimentological, 

geomorphological, habitat 

maps, etc.).  

300-600 30-60 m >1 
From -40 m up to the inner 

slope (600 m). 

Meso-scale maps of the 

seafloor. 

Table 2. Summary of the three main classes of high frequency SSS range settings (from top 

to bottom: small-, medium and wide-) with indication of the associated sonograph 

resolution, optimum geomorphological setting and aim of surveys (from Savini, 2004). 

3.1 High frequency SSS imagery through wide-range setting 
SSS surveys through wide-range setting aim to cover wide areas of the seafloor on the outer 

continental shelf and the upper slope. Range from 300 up to 600 m are considered, so an 

operating frequency not higher than 100kHz should be employed with the sonograph’s 

resolution reaching roughly 1 m per pixel. Wide-range settings, through high frequency SSS 

systems, are adopted when medium to small-scale maps of the seafloor must be produced 

and water depth is more than a minimum of 40 m (because the distance of the tow fish from 

the bottom should not be less than the 10% of the operating range). The outer continental 

shelf and the upper continental slope are candidate areas to be investigated by wide-range 

setting, where the roughness of the seafloor can vary a lot, outlining homogeneous seafloors, 

with a gently sloping shelf-break and muddy bottom, or various types of articulated seabeds 

with reliefs and/ or depressions of different sizes, rocky outcrops and abrupt changes in 

slope gradient. If the seafloor morphology is very rough (especially in an active geodynamic 

context), huge shadows and repeated echoes can characterize the associated sonographs. 

Geological attributes that can be relevant to map with wide-range setting can be: 

- Canyon heads and scarps of different origin and sizes (Fig. 1). 

- Rocky outcrops where typical small scale faults and other structural features can be 

detected. 
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- Boulders and/ or masses of different sizes, often associated with failure deposits on the 

upper slope. 
 

 

Fig. 1. Edge of canyons on the shelf break (Thyrrenian Sea). The left side of the sonographs 

has very low levels of backscatter due to the high steepness of the bottom. The sonographs 

follows the shelf break, the continental shelf is toward the right. 

- Confined seafloor morphologies, such as gullies and channels (i.e. gateways and 

channels – Fig. 2). 
 

 

Fig. 2. Confined erosional bedforms on the shelf break (Thyrrenian Sea). The continental 

shelf is toward the right. 
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- Erosive seafloor features related to bottom current e.g. scours, furrows etc. (Fig. 3). 
 

 

Fig. 3. Furrows (highlighted by straight black lines) and patches of coarse grained sediment 

(rounded areas with high levels of quite homogeneous backscatter). Thyrrenian Sea,  

continental shelf, 40m of water depth. 

- Positive reliefs of biogenic origin (carbonate mounds, carbonate build-ups  etc. Fig. 4). 
 

 

Fig. 4. Positive reliefs on the seafloor (Thyrrenian Sea – 80m of water depth). 
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- Mud volcanoes and pockmarks, methane-derived carbonate heterogeneous crusts and 

slabs, carbonate build-ups associated with seepage (Fig. 5). 

 

 

Fig. 5. Small mud volcanoes and seepage-related seafloor features (Sicily channel - 160m of 

water depth). 

- Sedimentary structures: from small to large dunes in their different morphologies 

(barchan dunes, lunate dunes etc. Fig. 6), sediment waves of metric scales, gravel/ sand 

bars, irregular gravel/ sand patches (Fig. 3), sand/ gravel ribbons, obstacles and scours 

(comet marks) etc. 

 

 

Fig. 6. Depositional bedforms on the outer continental shelf (Thyrrenian Sea - 80m of water 

depth).  

- Failure-related seafloor features, such as blocks of detached sediment, pressure ridges, 

tension cracks (Fig. 7) etc.  
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Fig. 7. Depositional bedforms on the outer continental shelf (Thyrrenian Sea - 60m of water 

depth). 

 

 

Fig. 8. Fractures on the seafloor (Thyrrenian Sea - 180m of water depth). The sonographs run 

parallel to the shelf break, the orientation of the fractures suggests a possible inception of 

mass-wasting, probably due to seabed creeping. 
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3.2 High frequency SSS imagery through medium-range setting 
SSS surveys through a medium-range setting aim to cover relatively wide areas of the 

seafloor on the continental shelf. Range between 150 and 300 m are considered. The 

sonograph’s resolution can be less than 1 m per pixel. SSS sonographs of medium-range 

setting produce medium-scale maps of the seafloor to image the local 

geological/ geomorphological attributes of the investigated areas. Indeed the medium-range 

setting is relevant for mapping seafloor morphologies and sediment characteristics of the 

whole continental shelf, from roughly 20 m of water depth down to the shelf break. It is 

worth considering that seafloor mapping at meso-scales is important because many of the 

solutions to environmental problems (from geo-hazards to offshore resources management)  

require changes in management strategies at this ‘seascape scale’. In addition, backscattering 

data along with bathymetry at meso-scale provide a basis for integrating seabed samples 

and biological information from which habitat may be interpreted (Kenny et al., 2003). 

Standards and protocols for habitat mapping are starting to emerge at international level 

(see MESH EU-project - http:/ / www.searchmesh.net) and they strongly consider that 

backscattering information from multibeam data or SSS sonographs provide the crucial 

spatial and structural context for more detailed investigation which can reveal the benthic 

ecology. Therefore, marine habitat maps are usually based on a combination of wide-area 

data sets (e.g. side-scan sonar data), able to illustrate the abiotic environment, and point- or 

line-based information (e.g. photo and video data, seabed samples) providing ‘ground-

truthing’ of the substrate and biological information.  

On the Mediterranean continental shelves, the phanerogam biocenosis are well detectable 

on medium-range SSS sonographs, along with most of their physiographic attributes, that 

can be relevant to assess their health state (Figs. 9, 10, 11 and 12). 

 

 

 
 

Fig. 9. Posidonia oceanica on rocky substrate. See at the centre of the sonograph the short 

distance recorded between the tow fish and the bottom and the prominent shadows that the 

rocky outcrops create on the left channel. 
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Fig. 10. Passage from Posidonia oceanica on rocky substrate (upper part of the sonograph, 

where prominent shadows occur on both the channels) to Posidonia oceanica on matte 

(middle part of the sonograph) and to degraded matte of Posidonia oceanica with marked 

intramattes and erosive features (lower part of the sonograph, especially on the left 

channel). 

Geological attributes that can be imaged with medium-range SSS sonographs are:  

- Rocky outcrops where sub-metric fractures and other structural features can also be 

detected (Figs. 12, 13 and 14). 

 

 
 

Fig. 11. Dead and degraded matte of Posidonia oceanica, that appears nearly compact on the 

left channel and highly affected by strong erosion on the right. 
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Fig. 12. Upper limit of degraded matte of Posidonia oceanica where erosional features are 

dominant. 

 

 

 

 

 
 

Fig. 13. Rocky outcrops where the orientation of structural lineaments, which consist of 

perpendicular fractures, are clearly imaged. 
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Fig. 14. Rocky outcrops and sediment. Arrows indicate well defined areas made by coarse 

sediment with ripples.   

- Erosive features of sub-metric scales: scours, furrows etc.  

- Positive reliefs of biogenic origin (e.g. biogenic formations made by coralline algae). 

- Small scale mud volcanoes and pockmarks, methane-derived carbonate heterogeneous 

crusts and slabs, carbonate build-ups associated with seepage (Figs. 15 and 16). 

- Sedimentary structures:  small dunes in their different morphologies (barchan dunes, 

lunate dunes etc.), sediment waves, ripples, gravel/ sand bars, irregular gravel/ sand 

patches, sand/ gravel ribbons, surface lineations, obstacles and scours (comet marks) 

etc. (Fig. 13). 

 

 

Fig. 15. Small sub-circular mud volcanoes (Savini et al., 2009). See at the top the backscatter 

associated to the occurrence of methane-derived carbonate crusts.  
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Fig. 16. Hard substrata made by methane-derived carbonate build-ups. 

3.3 High frequency SSS imagery through small-range setting 
Range between a few metres and 100 m are considered.  SSS surveys conducted using a 

small-range setting are used in shallow water and provide high resolution sonographs. 

Often a high resolution setting of the SSS system is needed in a survey which aims to search 

for specific targets, such as small shipwrecks and other small-scale objects, or to monitor 

underwater pipelines. In optimal conditions, sonograph resolution can be less than 10 cm 

per pixel.  

Operating with small-scale range, the transducer has to keep a short distance from the 

seafloor (a few metres), so that its safety is not compromised by articulated topography with 

pinnacles and/ or local rocky outcrops, even if a fast recovery of the tow fish is allowed by 

the shallow water (because of the few metres of cable out).  

While habitat mapping is mainly performed through medium-range SSS surveys, a small-

range setting in a SSS survey can provide remote data useful for further habitat 

characterization. For instance, within the Mediterranean setting, meadows of Posidonia 

oceanica (which represent benthic habitat of conservation value, listed in the EC Habitats 

Directive due to its high level of biological diversity) can be imaged in detail by small-range 

sonographs, since most of their physiographic attributes and ecological descriptors (i.e. 

upper and lower depth limit of the meadow, density, bottom cover, structure of the matte, 

occurrence of intramattes and other erosive features, characterization of the substrate, 

identification of dead or highly degraded matte, human impact due to anchoring and 

fishery) are at metric and sub-metric scale and are well imaged through SSS sonographs 

acquired with small-range settings (Figs. 17, 18, 19, 20 and 21).  
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Fig. 17. Posidonia oceanica on matte.  

 

 

 

 

 

 
 

 

Fig. 18. Passage from Posidonia oceanica on matte (on the right channel) to dead/ degraded 

matte of Posidonia oceanica. 
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Fig. 19. Meadows of Cymodocea nodosa (high backscatter). 

 

 

 

 

 
 

 

Fig. 20. Prominent track left on the matte of Posidonia oceanica by anchoring operations. 
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Fig. 21. Posidonia oceanica on sediment (on the left channel, lower part), Cymodocea nodosa 

(right channel lower part) and sediment. 

 

 

Fig. 22. Amphora on the seafloor (Savini and Petrillo, 2009). Each one is 1,3m in length. 

Geological attributes that can be well imaged on small-range SSS sonographs are mostly 

related to small scale sedimentary structures (such as ripples and surface lineations at the 

centimetric scale, small comet marks etc.) and erosional bottom current related bedforms 

(e.g. small scours and furrows). However, as stated above, small-range SSS surveys are 

generally carried out to investigate/ image small targets on the seafloor (Fig. 22). 
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Fig. 22. Multiple (black arrows) on the left channel. 

3.4 Peculiar SSS images 
Here after are some peculiar situations that can occur during a side-scan sonar survey. Such 

situations occur in sonographs affected by noise that comes from the underwater 

environment (e.g. signals generated from other ships’ propellers and/ or from interference 

with other acoustic sources, artefacts created by objects or fishes in the water column) and 

particular objects/ infrastructures mapped on the seafloor. 

 

 

 
 

 

 
 

 

Fig. 23. Noise on the sonograph (black arrows) produced by interference with other acoustic 

source (in this case a single beam echosounder). 
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Fig. 24. A shoal of fish and its associated shadows, which appear separated on the 

sonograph because of the position of the shoal in the water column. 

 

 

 

 

 

 

 
 

 

Fig. 25. Noise on the sonograph that is produced by the engine of another ship. The wake of 

the ship also leaves a typical noise in the water column (central part of the sonograph). 
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Fig. 26. Meadow of Posidonia oceanica interrupted by sediment where some parts of two 

pipelines are visible.  

 

 

Fig. 27. Fish aquaculture. 

 

 

Fig. 28. Fishing net ‘at work’ on the seafloor. Note the two gears which keep open the net 

and the noise of the engine of the fishing boat (lower part on the right). 
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4. Conclusion 

This chapter aimed to provide a useful reference document representing important seafloor 

features and sediment characteristics on continental shelf in the Mediterranean setting. 

Indeed there is an exhaustive literature dealing with theoretical issues concerning SSS 

functioning and data processing (Fish and Carr, 1999; Blondel and Murton, 1997) and there 

are also some published books that can support sonograph interpretation within the oceanic 

environment (e.g. Blondel, 2009). Nevertheless a number of peculiar seafloor features of the 

Mediterranean continental shelf, often monitored in many surveys, are not so well known 

from literature, in terms of their peculiar acoustic backscattering. This chapter aimed to offer 

a reference that can help in recognising the most significant seafloor features that 

characterise the Mediterranean continental shelves on SSS sonographs. 

5. Acknowledgements 

This chapter benefited from funding through the 2000–2001 Italian MIUR programme 

‘founding for young researchers’ (ministry advise n. 1707, 22.07.1998 ), by which the author 

was coordinator of the project ‘Atlas of side-scan sonar sonographs: the acoustic response of 

the different geomorphological features that characterize the Mediterranean continental 

shelf’. The author is also grateful to captains, crew and all colleagues (among other Lidia 

Olivieri, Andrea Grazzini, Paolo Orrù and Tommaso Granata) met during the numerous 

activities carried out at sea.  

6. References 

Belderson, R.H., Kenyon, N.H., Stride, A.H. and Stubbs, A.R., (1972). Sonographs of the Sea 

Floor. Elsevier, Amsterdam, 185 p. 

Blondel, P. and Murton, B.J., (1997). Handbook of Seafloor Sonar Imagery. Chichester. John Wiley 

and Sons. 

Blondel, P., (2009). The Handbook of Side-scan Sonar. Springer Verlag 

Blondel, P., Parson, L.M. Robigou, V., (1998). “TexAn: Textural Analysis of Side-scan Sonar 

Imagery and Generic Seafloor Characterisation.”  Proceedings of Oceans '98 vol. 2: 

419-423. 

Boyle, F.A. and Chatiros, N.P., (1995). A model for acoustic backscatter from muddy 

sediments. Journal of the Acoustical Society of America ‘98(1), 525-530. 

Cochrane, G.R. and Lafferty, K.D., 2002. “Use of acoustic classification of side-scan sonar 

data for mapping benthic habitat in the Northern Channel Islands, California.”  

Continental Shelf Research 22: 683-690. 

Damuth, J.E., (1980). “Use of high frequency (3.5 - 12 kHz) echograms in the study of near 

bottom sedimentation processes in the deep sea.”  Marine Geology 38: 51-75. 

Fish, J.P. and Carr, H.A., (1990). Sound underwater images. A guide to the generation and 

interpretation of side-scan sonar data.  Orleans (Lower Cape Publishing), 188 p. 

Fleming, B.W., (1976). “Side Scan Sonar:  A Practical Guide,”  International Hydrographic 

Review, Vol.1 III, No. 1 (January 1976). 

Flood, R.D., (1980). “Deep-sea sedimentary morphology: modeling and interpretation of 

echo-sounding profiles.”  Mar. Geol., 38: 77--92. 

www.intechopen.com



 
Sonar Systems 

 

322 

Goff, J.A., Olson, H.C., Duncan, C.S., 2000. “Correlation of side-scan backscatter intensity 

with grain size distribution of shelf sediments, New Jersey margin.”  Geo Mar. Lett. 

20, 43–49. 

Holland, C. W., Hollett R. and Troiano L., (2000). “Measurement technique for bottom 

scattering in shallow water,”  J. Acoust. Soc. Am. 108, 997–1011. 

Huvenne, V.A.I., Blondel, Ph., Henriet, J.-P., 2002. “Textural analyses of side-scan sonar 

imagery from two mound provinces in the Porcupine Seabight.”  Mar. Geol. 189, 

323–341. 

Jackson, D.R. and Briggs K.B., (1992). “High frequency bottom backscattering: roughness 

versus sediment volume backscattering.”  J. Acous Soc. Am. 92: 962-977. 

Jones E.J.W., (1999). Marine Geophysics. Wiley. 

Kenny, AJ, Cato, I, Desprez, M, Fader, G, Schuttenhelm, R.T.E. and Side, J., (2003). “An 

overview of seabed-mapping technologies in the context of marine habitat 

classification.”  ICES Journal of Marine Science 60:411–418. 

Lo Iacono, C., Gràcia, E., Diez, S., Bozzano, G., Moreno, X., Dañobeitia, J. and Alonso, B., 

(2008). “Seafloor characterization and backscatter variability of the Almería Margin 

(Alboran Sea, SW Mediterranean) based on high-resolution acoustic data.”  Marine 

Geology 250 (2008) 1–18. 

McQuillin, R. and Ardus, D.A., (1977). Exploring the geology of shelf seas. Graham & Trotman  

(London), 234 p. 

Medwin, H. and Blue, J. E., (2005). Sounds in the sea: from ocean acoustics to acoustical 

oceanography. Cambridge University Press. 

Medwin, H. and Clay, C. S., (1998). Fundamentals of acoustical oceanography. Applications of 

modern acoustics. Academic Press 

Morang, A., Larson, R. and Gorman, L., (1997). “Monitoring the Coastal Environment, Part 

III, Geophysical and Research Methods.”  Journal of Coastal Research, 13, 1064-1085. 

Savini, A. (2004). “Metodologie di analisi di prospezioni geofisiche in ambiente marino e 

loro implementazione in applicazioni S.I.T.” . PhD Thesis, Milano-Bicocca 

University. 

Savini A., Malinverno E., Etiope G., Tessarolo C., Corselli C. (2009). “Shallow seep-related 

seafloor features along the Malta Plateau (Sicily channel -Mediterranean Sea): 

Morphologies and geo-environmental control of their distribution” . Marine and 

Petroleum Geology 26, 1831-1848. 

Savini A., Petrillo M. (2009). “Seascapes of war: investigations with marine geophysics” . 

Europe’s Deadly Century – Perspectives on 20th century conflict heritage. Edited by Neil 

Forbes, Robin Page and Guillermo Pèrez. Published by English Heritage. 

www.intechopen.com



Sonar Systems

Edited by Prof. Nikolai Kolev

ISBN 978-953-307-345-3

Hard cover, 322 pages

Publisher InTech

Published online 12, September, 2011

Published in print edition September, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

The book is an edited collection of research articles covering the current state of sonar systems, the signal

processing methods and their applications prepared by experts in the field. The first section is dedicated to the

theory and applications of innovative synthetic aperture, interferometric, multistatic sonars and modeling and

simulation. Special section in the book is dedicated to sonar signal processing methods covering: passive

sonar array beamforming, direction of arrival estimation, signal detection and classification using DEMON and

LOFAR principles, adaptive matched field signal processing. The image processing techniques include: image

denoising, detection and classification of artificial mine like objects and application of hidden Markov model

and artificial neural networks for signal classification. The biology applications include the analysis of biosonar

capabilities and underwater sound influence on human hearing. The marine science applications include fish

species target strength modeling, identification and discrimination from bottom scattering and pelagic biomass

neural network estimation methods. Marine geology has place in the book with geomorphological parameters

estimation from side scan sonar images. The book will be interesting not only for specialists in the area but

also for readers as a guide in sonar systems principles of operation, signal processing methods and marine

applications.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Alessandra Savini (2011). Side-Scan Sonar as a Tool for Seafloor Imagery: Examples from the Mediterranean

Continental Margin, Sonar Systems, Prof. Nikolai Kolev (Ed.), ISBN: 978-953-307-345-3, InTech, Available

from: http://www.intechopen.com/books/sonar-systems/side-scan-sonar-as-a-tool-for-seafloor-imagery-

examples-from-the-mediterranean-continental-margin



© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


