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RESEARCH

One of the most important aspects in any experiment in  
agricultural  research is the proper choice of the experi-

mental design and analysis model (Casler, 2015; Piepho et 
al., 2015). Well-designed experiments are based on the three 
principles proposed by R.A. Fisher (1935): randomization, repli-
cation, and local control. After Fisher, agricultural research has 
been based on these three principles that seek to control local 
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ABSTRACT
One of the most critical aspects of agricultural 
experimentation is the proper choice of experi-
mental design to control field heterogeneity, 
especially for large experiments. However, even 
with complex experimental designs, spatial 
variability may not be properly controlled if it 
occurs at scales smaller than blocks. Therefore, 
modeling spatial variability can be beneficial, 
and some studies even propose spatial modeling 
instead of experimental design. Our goal was 
to evaluate the effects of experimental design, 
spatial modeling, and a combination of both 
under real field conditions using GIS and simu-
lating experiments. Yield data from cultivars 
was simulated using real spatial variability from 
a large uniformity trial of 100 independent loca-
tions and different sizes of experiments for four 
experimental designs: completely random-
ized design (CRD), randomized complete block 
design (RCBD), a-lattice incomplete block 
design (ALPHA), and partially replicated design 
(PREP). Each realization was analyzed using 
different levels of spatial correction. Models 
were compared by precision, accuracy, and the 
recovery of superior genotypes. For moderate 
and large experiment sizes, ALPHA was the 
best experimental design in terms of precision 
and accuracy. In most situations, models that 
included spatial correlation were better than 
models with no spatial correlation, but they did 
not outperformed better experimental designs. 
Therefore, spatial modeling is not a substitute 
for good experimental design.
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variation, assuming independence between experimental 
units, and using replications to estimate experimental 
error and increase precision of mean estimates. On the 
other hand, spatial variation in environmental and soil 
factors is common under field conditions, so spatial 
autocorrelation is generally present in field experiments 
(Legendre, 1993; Grondona et al., 1996). Therefore, 
experiments can be designed to have local control of this 
spatial variability.

In agriculture, the most commonly used experimental 
designs are the completely randomized design (CRD) and 
the randomized complete block design (RCBD) (Piepho 
et al., 2015). In some cases, blocking is an effective way 
to control experimental error (Cochran and Cox, 1957; 
Casler, 2015), but it is not enough in agricultural situ-
ations where field heterogeneity and/or the size of the 
experiment is large (Brownie et al., 1993). Furthermore, 
designs including blocks without considering the real 
spatial variation among experimental units can strongly 
decrease the success of an experiment (Casler, 2015).

Some designs such as a-lattice incomplete block 
(ALPHA) experimental designs (Patterson and Williams, 
1976) or row–column designs (Williams et al., 2006) were 
specifically created to control field heterogeneity in situ-
ations where a large number of treatments are evaluated, 
as well as other complex treatment structures (Williams et 
al., 2002). These designs are therefore better suited for a 
large number of treatments where spatial variability is high 
(Müller et al., 2010). However, they are not always used 
due to their complexity and practical difficulties, or simply 
because researchers are not used to choosing them (Casler, 
2015). In cultivar evaluation trials, where the number of 
treatments is always high and there is an increasing need to 
distinguish cultivars by smaller differences in terms of yield 
(Casler and Undersander, 2000), better experimental designs 
and analysis models are needed to control spatial variation.

Spatial variability often occurs gradually, and some-
times it is not captured well enough by the experimental 
design (Grondona and Cressie, 1991). Even with strong 
local control, as in incomplete block designs, spatial vari-
ability may not be properly controlled if it occurs at smaller 
scales than the size of the sub-blocks (Grondona et al., 1996). 
Explicitly accounting for spatial variability can be achieved 
in various ways such as with different structures of correla-
tion of the R matrix, trend analysis, or a combinations of 
both (Brownie et al., 1993; Casler and Undersander, 2000). 
Additionally, one- or two-dimensional spatial analysis 
can be implemented according to natural field heteroge-
neity (Gleeson and Cullis, 1987; Cullis and Gleeson, 1991; 
Gilmour et al., 1997; Qiao et al., 2000).

Whether it is better to control with experimental 
design or spatial analysis models is often debated. Müller et 
al. (2010) found that in barley (Hordeum vulgare L.) and sugar 
beet (Beta vulgaris L.) trials, the baseline model, which only 

includes a block and a replicate effect, showed the best fit 
according to Akaike information criterion for most cases. 
Spatial analyses were not necessarily better than the RCBD 
in all possible circumstances, particularly in cases where the 
spatial structure of the studied variable cannot be accurately 
characterized (Kravchenko et al., 2006). Uniformity trials 
have been conducted to determine the optimal experi-
mental design in many cases. These trials were expensive to 
carry out, and complex designs were not evaluated (Koch 
and Rigney, 1951). Studies that compare different designs 
and analysis models using the same database with real field 
spatial variability have not been reported to our knowl-
edge. Our goal was to evaluate the effect of experimental 
design, spatial modeling, and a combination of both under 
real field conditions using GIS information and simulating 
experiments. One of the questions of interest was whether 
spatial modeling can substitute for experimental design, or 
whether its advantage is marginal compared with a proper 
experimental design.

MATERIALS AND METHODS
General Approach
Yield data from cultivars were simulated using real field vari-
ability, genotypic effects, and a number of experimental designs 
in different locations within a large field. Each realization was 
analyzed using a series of models with different levels of correc-
tion for spatial variability. Evaluation criteria for comparing 
designs and analysis models included precision, accuracy, and 
the recovery of superior genotypes.

Wheat Yield Data and Spatial Variability from 
Yield Monitors
A field of ?64 ha was sown with the wheat (Triticum aestivum 
L.) cultivar ‘Nogal’ (USDA-ARS, 1992) on 20 June 2008 at a 
density of 120 kg ha−1 of seed. The field was harvested in rectan-
gular plots of ?15-m ´ 5-m area to obtain 1445 yield plots (kg 
ha−1). Each plot has geographic coordinates X (east–west) and 
Y (north–south) and elevation (m). An empiric variogram was 
calculated with the values from the yield monitor and a Matern 
variogram (k = 1) was fitted. Due to the original inclination of 
the plots with respect to the X and Y coordinates, kriged values 
were used as the baseline field heterogeneity. Yield maps were 
created using the ‘sp’ package (Pebesma and Bivand, 2005) of R 
statistical software (R Core Team, 2016).

Genotypic Effects
Three experiment sizes were evaluated: (i) small size with 
45 experimental units, (ii) moderate size with 150 experi-
mental units, and (iii) large size with 600 experimental units. 
For the small experiment size, 15 genotypic effects for the 
simulation process were obtained from yield mean data of 15 
wheat cultivars from the National Cultivar Trial Networks 
from 3-yr evaluation trials (2007–2009) (INIA, 2017). For 
moderate and large experiment size, genotypic effects (Gi) 
were simulated from a Gaussian distribution, assuming that 
Gi ? N(0, s2

G ), where s2
G  was the genotypic variance of 
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A PREP design where repeated genotypes were random-
ized in a RCBD design with three replications was used. The 
model used for the PREP was:

Yij = m + Gi + bj + eij

where Yij is the observed yield of the ith genotype and jth repli-
cation. The model for Gi was Gi = gi + ti, where gi is the effect of 
the ith nonreplicated genotypic effect with i = 1, …, ng (where 
ng is the number of nonreplicated genotypes), and ti is the ith 
replicated genotypic effect (test line) with i = ng + 1, …, ng + nc 
(where nc is the number of replicated genotypes).

In the case that the number of experimental units was fixed 
(PREPn), 20% of the genotypes were replicated, whereas the 
remaining genotypes were unreplicated. In the case that the 
number of genotypes was fixed (PREPg), 15% of the genotypes 
were replicated, containing either 70 or 280 plots for moderate 
and large experiment size respectively (47% of the number of 
plots in the CRD, RCBD, and ALPHA designs).

Locations
One hundred randomly selected locations within the field were 
used to conduct all simulations. The selected location was used 
as the upper left corner of each experimental design, and the 
shape was always rectangular with longer east–west dimension 
for all locations to follow the direction of smallest variance. 
The shape of all locations was the same for a given experi-
mental size. For each experimental size, the same experimental 
units were used for all experimental designs, except for PREPg, 
where fewer experimental units were used. Each location was 
characterized by their yield SD (YSD), expressed as tons per 
hectare. For each experimental size, the mean YSD of all 100 
locations was calculated. Locations were then classified as either 
with high or low variability (Fig. 1) according to this criterion: 
locations with YSD lower than the mean YSD were considered 
as low-variability locations, and those with greater YSD than 
the mean YSD were considered as high-variability locations. 
Results are reported as averages for all high- and low-variability 
locations for each experimental size.

Simulation Procedure
Yield was obtained for each plot according to the procedure 
below. First, treatments were assigned to plots according to one 
of the three experimental designs described above. Second, 
yield of each plot was obtained using the equation:

Yij = Gi + eij + d ij

where Yij is the yield plot data simulated corresponding to the 
ith cultivar and the jth replication, Gi is the ith genotypic effect 
corresponding to the randomly assigned treatment to the plot, eij 
is the field experimental error that represents the spatial hetero-
geneity of the field and was obtained from the yield monitor, 
and d ij is a repeatability error. To avoid using a deterministic 
model, the d ij values were assumed as independent random 
variables with d ij ? N(0, s2

r ), where s2
r  is a random noise or 

repeatability. We conducted the simulations using two values 
for s2

r  . First, we used a value of s2
r  = 0.07 that represents 5% 

of the total field heterogeneity and a yield heritability of ?0.5 
when a simple experimental design is used. The second value, 
s2

r  = 0.2, targeted a lower yield heritability.

the 15 genotypes obtained from the National Cultivar Trial 
Network. For moderate size, 50 genotypic effects were simu-
lated for CRD, RCBD, and ALPHA designs, whereas 200 
genotypic effects were simulated for large-size experiments. 
We used two strategies for partially replicated experimental 
(PREP) designs: (i) fixing the number of experimental units 
(i.e., 150 and 600 experimental units for the moderate and 
large size respectively) so that 108 and 428 genotypic effects 
were evaluated and simulated for the medium and large 
experiment size, respectively; or (ii) fixing the number of 
genotypes evaluated. Therefore, 50 and 200 genotypes were 
evaluated and simulated for the moderate and large experi-
ment sizes, respectively, using fewer experimental units than 
the other experimental designs (i.e., 70 experimental units for 
the medium-size experiment instead of 150, and 280 experi-
mental units for the large-size experiment instead of 600), as 
described below.

Experimental Designs
The genotypes (treatments) were assigned to experimental 
units (plots of ?15-m ´ 5-m area) in one of four experimental 
designs: CRD, RCBD, ALPHA, and PREP.

The model used for the CRD experimental design with 
three replications was:

Yij = m + Gi + eij

where Yij is the observed yield for the ith genotype in the jth 
replicate, m is the overall mean, Gi is the ith genotypic effect, 
and eij are the residual errors associated with the observation 
Yij, eij ? N(0, es2 ), where es2  is the error variance, and the 
covariance COV(eij, eij ¢) was modeled according to the spatial 
corrections described below.

The model used for the RCBD with three replications was:

Yij = m + Gi + bj + eij

where Yij is the observed yield for the ith genotype in the jth 
block, and bj is the jth block effect. The blocks were considered 
fixed effects and were located in the east–west direction.

An ALPHA design with three complete replications 
and a number of incomplete blocks or sub-block was used. 
The number of experimental units per incomplete block was 
three for the small size, five for the moderate size, and five 
[ALPHA(s = 5)] or ten [ALPHA(s = 10)] for the large experiment 
size. The model used for the ALPHA experiment with three 
full replicates was:

Yij = m + Gi + bj + gk( j) + eijk

where Yijk is the observed yield for the ith genotype, jth 
replication, and kth incomplete block, b j is the jth complete 
replication effect, and gk( j) is the kth incomplete block effect 
nested on jth replication, and eijk are the residual errors asso-
ciated with the observation Yijk, eijk ? N(0, es2 ), and the 
covariance COV(eijk, eijk ¢) was modeled according to the 
spatial corrections described below. Incomplete blocks were 
considered random factors nested in each complete replica-
tion, assuming gk( j) ? N(0, s2

s ), where s2
s  is the variance 

of the sub-blocks. Complete replications were located in the 
east–west direction, as in the RCBD design, and incomplete 
blocks were orthogonal to the complete replications.
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For each experimental design and location, 1000 simula-
tions were run, performing an independent randomization for 
each simulation. The ‘agricolae’ package (de Mendiburu, 2012) 
of R (R Core Team, 2016) was used for experimental design 
randomization. The simulations and statistical analysis of the 
data were performed with the ‘nlme’ package (Pinheiro et al., 
2013) and personal code of R (R Core Team, 2016).

Analysis Models
Each vector of phenotypic yield was analyzed according to the 
following three models: 

1. No spatial correction (NSC), where experimental errors 
are assumed independent (uncorrelated), eijk ? N(0, es2 ), 
where COV(eij, eij ¢) = 0 ∀ eij ¹ eij ¢.

2. A spatially correlated error model with one-dimensional 
autoregressive process [AR(1)], eijk ? N(0, es2 ), where 
COV(eij, eij ¢) = es2 rk. The correlation function corre-
sponding to an autoregressive model of order 1 decreases 
in absolute value with every unit of distance within 
columns: h(k, r) = rk, k = 0, 1, ..., where r is the correla-
tion parameter to be estimated, and k is the distance unit 
between rows (i.e., the direction of maximum variance in 
our uniformity trial).

3. Spatially correlated error model with two-dimensional 
exponential spatial correlation structure [EXP(2)] , eijk ? 
N(0, es2 ), where COV(eij, eij ¢) was modeled according to 
an isotropic exponential model. With d being the range, 
the correlation between two observations at r distance 
was exp(−r/d). The EXP(2) model was fitted for rows and 
columns with and without a nugget variance.

Estimation Method and Evaluation Criteria 
for Model Comparison
The residual maximum likelihood method was used to estimate 
parameters. Models were compared by precision and accuracy 
statistics and by their ability to recover superior genotypes. For 
all statistics, we calculated the mean and the SD over the 1000 
realizations of the simulation for each experiment size, type of 
location, experimental design, and spatial correction.

The SE of the difference between cultivar means (SED) 
was used as a precision statistic to compare models. The lower 
the value, the better the precision.

The recovery of the best genotypes (Best_Gen), the 
Pearson’s correlation coefficient between true and estimated 
genotypic effects (COR), and the mean square error of predic-
tion (MSEP) were used as an accuracy statistic to compare 
models. The Best_Gen was calculated as the proportion of times 
15% of the true superior genotypes were recovered. The MSEP 
was calculated according to Gauch et al. (2003) as follows:

MSEP = S(Xn − Yn)2/N

where Xn and Yn are the model-based and true genotypic values, 
and N is the number of genotypes, where summation is over n 
= 1, 2, …, N.

RESULTS
The experimental designs and spatial correction models 
performed similarly for the small experiment size in both 
low- and high-variability locations, and with low and 
high yield heritability (Supplemental Tables S1 and S2).

For moderate experiment size in high-variability condi-
tions, the ALPHA design had the best performance for most 
statistics (Table 1), although RCBD with AR(1) performed 
similar to the ALPHA with NSC. For CRD and RCBD, 
only the AR(1) model was better than the NSC (Table 1). 
Therefore, there is some performance compensation by 

Fig. 1. Wheat yield map (tons ha−1), according to east–west oriented coordinates (Y coordinates) and north–south oriented coordinates 
(X coordinates). Darker colors indicate higher yield values. Localization of the experimental units for two contrasting locations and three 
experimental design sizes are shown: for small experiment size (15 genotypes), light violet lines represent high-variability location and dark 
violet lines represent for low-variability ones; for moderate experiment size (50 genotypes), light orange lines represent high-variability 
locations and dark orange lines represent low-variability ones; for large experiment size (200 genotypes), light blue lines represent high-
variability locations and dark blue lines represent low-variability locations. Two locations out of 100 field locations that were evaluated for 
each experimental design size are shown.
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all other experimental designs, especially when it was 
combined with AR(1) or EXP(2) using either 5 or 10 
experimental units per incomplete block (Table 2, Fig. 2). 
The AR(1) spatial correction improved model perfor-
mance of CRD and RCBD but did not outperform 
experimental design in general (Table 2), although RCBD 
with AR(1) obtained similar values to ALPHA(s = 10) with 
no spatial correction (Fig. 2). For this size of experiment, 
the performance of the PREPg was closer to the simple 
designs for most of the statistics (Table 2).

For large experiment size with low variability, the 
differences among experimental designs and spatial 
corrections were small, although larger than for moderate 
size designs. The ALPHA(s = 10) experimental design with 
some spatial correction (Table 2, Fig. 2) obtained the best 

spatial modeling, in the case of AR(1). The PREP had a 
poor performance over all designs, and spatial corrections 
did not improve the performance. Even with PREPn with 
the same number of experimental units as the others exper-
imental designs, performance was poorer.

For moderate experiment size with low variability, no 
differences in the performance of experimental design or 
spatial corrections were found among CRD, RCBD, and 
ALPHA for most statistics (Table 1). The PREP design 
in these circumstances underperformed for all statistics in 
both cases (PREPg and PREPn, Table 1).

For large experiment size under high variability, the 
results were similar to those of the moderate size, but 
the advantages of a more complex experimental design 
were more noticeable. The ALPHA design outperformed 

Table 1. Mean and SD (in parentheses) of the recovery of 15% of superior genotypes (Best_Gen), the SE for mean differences 
(SED), the Pearson’s correlation coefficient between observed and estimated genotypic effects (COR), and the mean square 
error of prediction (MSEP), for four experimental designs and three spatial corrections in two types of field locations (high 
and low spatial heterogeneity). This table shows results for the moderate experiment size (50 genotypes) and high heritability.

Variability YSD† Locations Design‡ Model§ Best_Gen SED COR MSEP
tons ha−1 no. tons ha−1 tons ha−1

High 0.80 46 CRD NSC 0.45 (0.15) 0.49 (0.02) 0.63 (0.08) 0.25 (0.04)

CRD AR(1) 0.49 (0.15) 0.38 (0.03) 0.68 (0.07) 0.18 (0.03)

CRD EXP(2) 0.45 (0.15) 0.49 (0.02) 0.64 (0.07) 0.29 (0.06)

RCBD NSC 0.46 (0.15) 0.47 (0.02) 0.65 (0.07) 0.32 (0.04)

RCBD AR(1) 0.52 (0.15) 0.33 (0.03) 0.72 (0.06) 0.24 (0.03)

RCBD EXP(2) 0.46 (0.15) 0.47 (0.02) 0.65 (0.07) 0.34 (0.06)

ALPHA NSC 0.55 (0.14) 0.36 (0.02) 0.75 (0.05) 0.21 (0.03)

ALPHA AR(1) 0.64 (0.13) 0.29 (0.01) 0.85 (0.04) 0.16 (0.03)

ALPHA EXP(2) 0.64 (0.13) 0.29 (0.01) 0.85 (0.04) 0.16 (0.03)

PREPg NSC 0.38 (0.15) 0.60 (0.10) 0.53 (0.10) 0.52 (0.16)

PREPg AR(1) 0.39 (0.15) 0.56 (0.09) 0.55 (0.10) 0.49 (0.18)

PREPg EXP(2) 0.40 (0.15) 0.57 (0.09) 0.56 (0.10) 0.47 (0.15)

PREPn NSC 0.25 (0.14) 0.62 (0.07) 0.48 (0.07) 0.54 (0.09)

PREPn AR(1) 0.26 (0.14) 0.58 (0.06) 0.50 (0.07) 0.49 (0.10)

PREPn EXP(2) 0.26 (0.14) 0.58 (0.06) 0.51 (0.07) 0.48 (0.09)

Low 0.25 53 CRD NSC 0.68 (0.13) 0.21 (0.01) 0.88 (0.03) 0.05 (0.01)

CRD AR(1) 0.68 (0.13) 0.21 (0.01) 0.88 (0.03) 0.05 (0.01)

CRD EXP(2) 0.69 (0.13) 0.21 (0.01) 0.88 (0.02) 0.05 (0.01)

RCBD NSC 0.69 (0.12) 0.20 (0.01) 0.89 (0.02) 0.06 (0.01)

RCBD AR(1) 0.69 (0.13) 0.19 (0.01) 0.89 (0.02) 0.06 (0.01)

RCBD EXP(2) 0.69 (0.12) 0.21 (0.27) 0.89 (0.02) 0.06 (0.01)

ALPHA NSC 0.70 (0.12) 0.19 (0.01) 0.90 (0.02) 0.06 (0.01)

ALPHA AR(1) 0.71 (0.12) 0.18 (0.01) 0.90 (0.02) 0.06 (0.01)

ALPHA EXP(2) 0.71 (0.12) 0.18 (0.01) 0.90 (0.02) 0.06 (0.01)

PREPg NSC 0.56 (0.14) 0.30 (0.05) 0.76 (0.05) 0.13 (0.04)

PREPg AR(1) 0.55 (0.14) 0.29 (0.05) 0.75 (0.06) 0.14 (0.04)

PREPg EXP(2) 0.56 (0.14) 0.29 (0.05) 0.76 (0.05) 0.13 (0.04)

PREPn NSC 0.45 (0.15) 0.31 (0.04) 0.73 (0.04) 0.13 (0.02)

PREPn AR(1) 0.45 (0.15) 0.30 (0.04) 0.73 (0.04) 0.13 (0.03)

PREPn EXP(2) 0.46 (0.15) 0.30 (0.04) 0.74 (0.04) 0.13 (0.02)

† YSD, yield SD.

‡ CRD, completely randomized design; RCBD, randomized complete block design; ALPHA, incomplete blocks and a-lattice design; PREPg, partially replicated design with 
50 genotypes (this experiment preserved the number of genotypes and thus used fewer experimental units); PREPn, partially replicated design with 108 genotypes (this 
experiment preserved the number of experimental units and thus evaluated more genotypes).

§ NSC, no spatial correction model; AR(1), spatial correlated error model with one-dimensional autoregressive process; EXP(2), spatial correlated error model with two-
dimensional exponential spatial correlation structure without a nugget variance.
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results. The PREP design had no advantages in these 
conditions either.

Similar relative performance of experimental designs 
and spatial corrections was observed when a low heri-
tability was simulated for both, medium (Supplemental 
Table S3) and large experiment sizes (Supplemental 
Table S4). In both cases, all the experiments and spatial 
corrections performed poorer than with high heritability.

The use of a nugget variance in the EXP(2) spatial 
correction increased the mean and the variability in the 
mean square error estimation of the CRD and RCBD 
experiments and did not improve any other statistic of any 

experimental design (data not shown); therefore, it is not 
further discussed.

DISCUSSION
Experiment size and field heterogeneity clearly affected 
the performance of the experimental designs and spatial 
correction. With large experiment sizes under high-vari-
ability conditions, the choice of the experimental design 
is essential to obtain good results in terms of precision and 
accuracy in the estimation of genotypic effects.

The ALPHA design had the best performance across 
design and spatial correction. This design has been shown 

Table 2. Mean and SD (in parentheses) of the recovery of 15% of superior genotypes (Best_Gen), the SE for mean differences 
(SED), the Pearson’s correlation coefficient between observed and estimated genotypic effects (COR), and the mean square 
error of prediction (MSEP) for four experimental designs and three spatial corrections  in two types of field locations (high and 
low spatial heterogeneity). This table shows results for the large experiment size (200 genotypes) and high heritability.

Variability YSD† Locations Design‡ Model§ Best_Gen SED COR MSEP
tons ha−1 no. tons ha−1 tons ha−1

High 1.10 58 CRD NSC 0.40 (0.07) 0.66 (0.01) 0.51 (0.05) 0.43 (0.04)
CRD AR(1) 0.45 (0.07) 0.43 (0.02) 0.60 (0.04) 0.27 (0.02)
CRD EXP(2) 0.40 (0.07) 0.65 (0.01) 0.51 (0.05) 0.43 (0.04)

RCBD NSC 0.40 (0.07) 0.64 (0.01) 0.52 (0.05) 0.52 (0.04)
RCBD AR(1) 0.50 (0.07) 0.36 (0.02) 0.67 (0.03) 0.31 (0.02)
RCBD EXP(2) 0.40 (0.07) 0.64 (0.01) 0.52 (0.05) 0.52 (0.04)

ALPHA(s = 5) NSC 0.52 (0.07) 0.35 (0.01) 0.71 (0.03) 0.23 (0.02)
ALPHA(s = 5) AR(1) 0.60 (0.07) 0.28 (0.01) 0.80 (0.03) 0.18 (0.02)
ALPHA(s = 5) EXP(2) 0.60 (0.07) 0.28 (0.01) 0.80 (0.03) 0.18 (0.02)
ALPHA(s = 10) NSC 0.47 (0.07) 0.49 (0.01) 0.63 (0.04) 0.35 (0.02)
ALPHA(s = 10) AR(1) 0.68 (0.06) 0.27 (0.01) 0.87 (0.02) 0.19 (0.02)
ALPHA(s = 10) EXP(2) 0.68 (0.06) 0.27 (0.01) 0.87 (0.02) 0.19 (0.02)

PREPg NSC 0.39 (0.07) 0.76 (0.06) 0.46 (0.05) 0.65 (0.07)
PREPg AR(1) 0.44 (0.07) 0.59 (0.04) 0.57 (0.05) 0.36 (0.07)
PREPg EXP(2) 0.44 (0.07) 0.59 (0.04) 0.57 (0.05) 0.36 (0.07)
PREPn NSC 0.26 (0.07) 0.81 (0.04) 0.40 (0.04) 0.80 (0.06)
PREP n AR(1) 0.31 (0.07) 0.60 (0.02) 0.52 (0.04) 0.47 (0.06)
PREP n EXP(2) 0.31 (0.07) 0.60 (0.02) 0.52 (0.04) 0.47 (0.06)

Low 0.46 35 CRD NSC 0.63 (0.06) 0.31 (0.01) 0.78 (0.02) 0.10 (0.01)
CRD AR(1) 0.63 (0.06) 0.28 (0.01) 0.79 (0.02) 0.10 (0.01)
CRD EXP(2) 0.63 (0.06) 0.30 (0.01) 0.79 (0.02) 0.10 (0.01)

RCBD NSC 0.63 (0.06) 0.30 (0.01) 0.79 (0.02) 0.11 (0.01)
RCBD AR(1) 0.63 (0.06) 0.27 (0.01) 0.80 (0.02) 0.10 (0.01)
RCBD EXP(2) 0.63 (0.06) 0.30 (0.01) 0.79 (0.02) 0.11 (0.01)

ALPHA(s = 5) NSC 0.64 (0.06) 0.24 (0.01) 0.83 (0.02) 0.07 (0.01)
ALPHA(s = 5) AR(1) 0.66 (0.06) 0.21 (0.01) 0.85 (0.02) 0.06 (0.01)
ALPHA(s = 5) EXP(2) 0.66 (0.06) 0.21 (0.01) 0.85 (0.02) 0.06 (0.01)
ALPHA(s = 10) NSC 0.66 (0.06) 0.27 (0.01) 0.83 (0.02) 0.09 (0.01)
ALPHA(s = 10) AR(1) 0.71 (0.06) 0.20 (0.01) 0.88 (0.01) 0.05 (0.01)
ALPHA(s = 10) EXP(2) 0.71 (0.06) 0.20 (0.01) 0.88 (0.01) 0.05 (0.01)

PREPg NSC 0.55 (0.07) 0.41 (0.04) 0.68 (0.03) 0.20 (0.02)
PREPg AR(1) 0.56 (07) 0.37 (0.03) 0.71 (0.04) 0.17 (0.03)
PREPg EXP(2) 0.56 (0.07) 0.37 (0.03) 0.71 (0.04) 0.17 (0.03)
PREPn NSC 0.45 (0.07) 0.44 (0.03) 0.63 (0.03) 0.22 (0.02)
PREP n AR(1) 0.46 (0.07) 0.38 (0.02) 0.66 (0.03) 0.18 (0.02)
PREP n EXP(2) 0.46 (0.07) 0.38 (0.02) 0.66 (0.03) 0.18 (0.02)

† YSD, yield SD.

‡ CRD, completely randomized design; RCBD, randomized complete block design; ALPHA(s = 5), incomplete blocks and a-lattice design with a block size of 5; ALPHA(s = 10), 
incomplete blocks and a-lattice design with a block size of 10; PREPg, partially replicated design with 200 genotypes (this experiment preserved the number of genotypes 
and thus used fewer experimental units); PREPn, partially replicated design with 428 genotypes (this experiment preserved the number of experimental units and thus 
evaluated more genotypes).

§ NSC, no spatial correction model; AR(1), spatial correlated error model with one-dimensional autoregressive process; EXP(2), spatial correlated error model with two-
dimensional exponential spatial correlation structure without a nugget variance.
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as superior to RCBD (Masood et al., 2008; Gonçalves et 
al., 2010) due to stronger local control. The experimental 
units’ layout and blocking orientation in our study might 
have favored CRD designs over all other experimental 
designs, with RCBD being the most unfavorable design. 
Experimental designs that exerted some local control on 
the spatial variability, like ALPHA or row–column designs 
(Müller et al., 2010; Sripathi et al., 2017), generally increase 
the power of the ANOVA (Legendre et al., 2004). Addi-
tionally, we found that the ALPHA design was the best in 
its ability to recover superior genotypes in terms of yield 
and the accuracy measured by the correlation between 
true and expected genotypic effects. Although we expect 
unbiased estimations in all models due to the random-
ization process (Fisher, 1935), we expect models taking 
into account the underlying variability in the field to be 
more efficient (Lehmann and Casella, 1998). The larger 
variability not controlled with some experimental designs 
possibly induced more noise in the estimation of the geno-
typic effect, and therefore smaller values of Best_Gen 

and COR were obtained. The low efficiency of simpler 
designs in controlling field heterogeneity should reduce 
the accuracy in recovering superior genotypes. Stroup et 
al. (1994) suggested that the presence of spatial correlation 
in the data inflates the estimation of experimental error 
and could lead to inaccurate estimates of treatment means 
using classical RCBD analysis.

Even with low field heterogeneity present, the 
ALPHA design was slightly better when a large number 
of genotypes are used, mainly with some spatial correc-
tion. The efficiency of an experimental design depends on 
its complexity, and it is regulated by experiment size and 
the nature of the spatial variability. The larger the number 
of treatments, the smaller the efficiency of simpler designs 
in general (Casler, 2015).

Model performance improves when combining well-
designed experiments with spatial adjustments (Gilmour 
et al., 1997; Qiao et al., 2000; Williams et al., 2006), 
suggesting that both, design information and spatial 
modeling should be considered. We found that under high 

Fig. 2. Recovery of the best genotypes (Best_Gen), Pearson’s correlation coefficient between true and estimated genotypic effects 
(COR), and the SE of the difference between cultivar means (SED) for six experimental designs: completely randomized design (CRD), 
randomized complete block design (RCBD) incomplete blocks and a-lattice design with block size of 5 (ALPHA_5), incomplete blocks 
and a-lattice design with block size of 10 (ALPHA_10), partially replicated design with 200 genotypes (PREPg, this experiment preserved 
the number of genotypes and thus used fewer experimental units), and a partially replicated design with 428 genotypes (PREPn, this 
experiment preserved the number of experimental units and thus evaluated more genotypes). Each experimental design was analyzed 
with three spatial models: no spatial correction model (NSC), spatial correlated error model with one-dimensional autoregressive process 
[AR(1)], spatial correlated error model with two-dimensional exponential spatial correlation structure [EXP(2)], in high- (left) and low-
variability (right) locations.
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field heterogeneity, spatial models improved the perfor-
mance of all experimental designs. On the other hand, 
spatial modeling did not outperform experimental design 
in any of our situations. Therefore, spatial modeling 
should be considered as a supplemental strategy rather 
than an alternative to experimental design, as was also 
suggested by Richter and Kroschewski (2012) and Piepho 
et al. (2015). Under high field variability, CRD or RCBD 
with spatial corrections were similar to ALPHA without 
spatial correction for precision.

One approach that was beyond the scope of this paper 
but is worth mentioning is the use of spatial designs. Our 
paper focused on answering the question as to whether 
spatial analysis can be a substitute for a good classical 
experimental design, and we found that there is no 
good substitute for a well-planned experimental design. 
However, we did not evaluate the use of a priori spatial 
information in the optimization of classical experimental 
designs, which have been called spatial designs (Williams 
et al., 2006). There is a growing interest in the litera-
ture for these spatial designs (Piepho and Williams, 2010; 
Williams and Piepho, 2013; Piepho et al., 2016). However, 
one of the most challenging aspects of this approach is 
demonstrating the validity of the restrictions in the 
randomization and the presence of error variance bias in 
these designs (Williams and Piepho, 2018). Furthermore, 
even if soil spatial variation was previously well character-
ized and experiments are designed accordingly, there is 
still variation that cannot be predicted a priori (Cooper 
et al., 2014), making it even more challenging to produce 
good randomizations.

The best spatial model seems to be, most likely, case 
specific (Cullis and Gleeson, 1991; Richter and Kros-
chewski, 2012; Moehring et al., 2014). We found that the 
spatial correlation structure modeled with AR(1) seemed to 
be more suitable to describe the spatial pattern present in 
our uniformity trial, where the strongest spatial variability 
gradient was given in the direction of the columns (Fig. 1). 
We used the direction of maximum spatial variability 
known a priori to model the AR(1) process. This could 
theoretically favor the AR(1) model. However, because in 
the absence of prior information on spatial variability it is 
a common practice to evaluate the spatial processes in both 
directions, we do not believe our results are biased. The 
exponential structure in two dimensions gave the same 
weights to spatial variability in rows and columns that did 
not correspond with the pattern observed in the field at 
most of the locations. However, a two-dimensional AR(1) 
process was better than a one-dimensional one in several 
studies (Cullis and Gleeson, 1991; Moehring et al., 2014) 
because it does not assume isotropy. One of the limita-
tions of our study is that only an isotropic spatial correction 
model was considered. Given that our uniformity trial had 
higher variability in the north–south direction than in 

the east–west direction, an anisotropic model might have 
provided better spatial control. In that situation, an AR(1) 
´ AR(1) model might outperform the AR(1) and EXP(2) 
models (Moehring et al., 2014).

Because of the nature of PREP, a choice between 
fixing the number of treatments (and therefore having 
fewer experimental units) or fixing the number of experi-
mental units (and having more treatments) had to be 
made. We evaluated both strategies. First, we compared 
all experimental designs for a fixed set of treatments; 
therefore, PREPg used fewer experimental units and was 
at a disadvantage compared with the other designs. Under 
these circumstances, PREPg did not perform as well as 
the other experimental designs. With a moderate size of 
experiment, it was the worst design. However, under large 
experiment sizes, the differences with simpler designs 
were smaller, while PREPg used fewer resources. Second, 
we evaluated the performance of the PREP experimental 
designs, fixing the resources by using the same number 
of experimental units and therefore evaluating a larger 
number of treatments (PREPn). This situation was not 
better in terms of precision and accuracy than the PREPg. 
Other studies did find that for a fixed experiment size, 
PREP designs are efficient and can outperform replicated 
designs in multiple-environment experiments (Cullis et 
al., 2006, Moehring et al., 2014). It can be expected that 
in PREP designs, some precision and accuracy are sacri-
ficed because there are fewer replications. Endelman et 
al. (2014) pointed out that in preliminary yield trials in 
multiple locations, allocating additional plots per entry 
increases accuracy. What we are not considering in this 
work is the impact of evaluating larger population sizes 
with more genotypes. In our PREPn, 428 genotypes were 
evaluated, vs. the 200 that other designs evaluated using 
the same number of experimental units. Moehring et al. 
(2014) found that an augmented design outperformed 
replicated and classical augmented designs in terms of 
prediction accuracy, providing a better sample of the 
genotype ´ environment interaction. Another important 
consideration is the allocation of repeated plots. There 
are different ways in which this can be accomplished, 
mainly by increasing the number of repeated genotypes, 
or increasing the number of replications. However, the 
most important decision to make is the total number of 
repeated plots used and not the number of repeated geno-
types, because that number determines the total degrees 
of freedom that affect design performance (Clarke and 
Stefanova, 2011). Optimizing this might slightly improve 
the performance of our PREP. The use of larger popula-
tion sizes would have other advantages not reflected in our 
study, such as larger population sizes for genomic studies 
(i.e., mapping or genomic selection). Larger population 
sizes would result in larger selection intensities that could 
increase the selection response in breeding populations.
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Trait heritability did not change the conclusions of 
this work (Supplemental Tables S2–S4). The relative 
performance of the experimental designs and spatial 
correction models was the same regardless of the herita-
bility. The experiments and spatial models all performed 
more poorly with lower heritability. Therefore, we believe 
that our conclusions can be generalized to a large number 
of situations.

In summary, under high field heterogeneity and with 
a large number of treatments, spatial modeling without 
local control does not outperform local control with 
proper experimental designs. Once you have chosen the 
proper experimental design, spatial modeling can further 
improve its performance, as also seen in Qiao et al. (2000). 
This is especially the case in moderate- to large-sized 
experiments and under both high and low field variability. 
Spatial patterns using precision agriculture technology 
could therefore be used to better design experiments and 
to find an adequate spatial correction for each experiment 
(Cooper et al., 2014).
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