
Abstract
This research investigates the relationship between socioeco-
nomic status and remotely sensed vegetation intensity in
residential land in the Denver, Colorado metropolitan area.
Land-cover data derived from aerial photography and nor-
malized difference vegetation index data (NDVI) derived from
Landsat ETM� imagery were integrated with U.S. Bureau
of the Census tract-level data and analyzed using choropleth
mapping and multivariate statistics. Association rule mining,
a data mining technique, is used to explore nonlinear rela-
tionships among variables. Results indicate that higher veg-
etation intensity is associated with socioeconomic advantage
in both sparsely populated, large lot suburban developments,
as well as in older, urban neighborhoods. This pattern likely
reflects residents’ ability to pay for the cost of maintaining
high vegetation intensity, suburban lawn ecosystem vegeta-
tion in a semi-arid grassland environment. Additionally,
residential choices may be limited by a home price structure
that is closely related to the concentration of vegetation in
the residential landscaping.

Introduction
Investigating the relationship between socioeconomic and
ecological characteristics in urban regions is important for
two reasons. First, as the world’s population continues to
concentrate in cities, there is an increasing recognition that
understanding the interaction among socioeconomic and
ecological processes in urban areas is a key to predicting
the impact of urban growth on the global environment
(Grimm et al., 2000). Second, from a local urban planning
policy perspective, understanding socioeconomic-ecological
relationships can inform sustainable growth management
plans. This is particularly true in cases where urban growth
is straining the capacity of resources such as water and
energy, as well as in areas where there is concern about the
impact of urban sprawl on people’s quality of life (e.g., air
quality, access to parks, and open space).

Remote sensing has been widely used for monitoring
urban areas, as remotely sensed imagery can provide spa-
tially and temporally continuous data on urban land-cover
(Mesev, 2003). Most urban remote sensing research has
focused on capturing the extent, growth, composition, and
morphological characteristics of cities (Jensen and Cowen,
1999; Karathanassi et al., 2000; Civco et al., 2002; Herold
et al., 2003; Rashed et al. 2003). Remote sensing has also
been used in urban ecological analysis for characterizing
urban vegetation (Small, 2001; Wilson et al., 2003). Recently,
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remotely sensed imagery has been applied to a number
of social science applications, from modeling population
distribution (Yuan et al., 1997; Sutton et al., 2001) and the
environmental characteristics of population concentrations
(Pozzi and Small, 2002) to the spatial analysis of crime
(Chen et al., 2004) and demography (Weeks et al., 2000).

The objective of the present research is to investigate the
relationship between socioeconomic status and remotely
sensed vegetation intensity in the Denver, Colorado metropol-
itan area (Figure 1). This area, which also includes the cities
of Boulder and Longmont, is the most densely populated
portion of the Front Range urban corridor that extends along
the interface of the Rocky Mountains and Great Plains. This
semi-arid grassland region has undergone extensive urban
growth over the past twenty-five years (Riebsame et al., 1997).
The rapid pace of urban development has made urban sprawl
a major public issue in the region, particularly regarding the
formation of policies on water resource management, open
space preservation, and maintaining quality-of-life.

The research methods used here include choropleth
mapping and univariate and multivariate statistics, as well
as the data mining technique association rule mining. Asso-
ciation rule mining can identify relevant relationships among
variables that may not be captured by conventional analyti-
cal approaches. This technique was initially developed for
business applications but is shown here to be useful for the
analysis of urban ecology using socioeconomic data and
remotely sensed imagery.

Linking Socioeconomic and Remotely Sensed Data
Interest in applying remotely sensed data to socioeconomic
analyses has expanded as recognition of the utility of remote
sensing for identifying the landscape effects of socioeconomic
processes has grown (Liverman et al., 1998; Fox et al., 2003).
Much of this research has focused on linking census- and
survey-based socioeconomic data to remotely sensed land-use
or land-use change data, particularly for modeling the drivers
of deforestation in rural areas (Pfaff, 1999; Walsh et al., 1999;
Geoghegan et al., 2001). Many of these studies have employed
multivariate statistics to model land-cover change using
household- and census unit-level data. Seto and Kaufmann
(2003) extend this approach for econometric modeling of
rural to urban land conversion, as indicated by Landsat TM
imagery, in the area surrounding Hong Kong, China.
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Other researchers integrating socioeconomic and remotely
sensed data for urban analysis have focused on linking
indicators of socioeconomic status with vegetation character
as captured by normalized difference vegetation index
(NDVI) data (Lo and Faber, 1997). Healthy vegetation tends
to reflect strongly in the near infrared wavelengths (NIR) and
relatively weakly in the visible wavelengths (VIS) (Tucker,
1979). The NDVI accounts for this by calculating a ratio of
the two bands as (NIR � VIS)/(NIR � VIS). The NDVI can be
considered a general measure of vegetation intensity, or
greenness, and is a function of a host of vegetation character-
istics, including density, health, and fractional cover, as well
as other characteristics such as soil moisture, and has also
been used to indicate net primary production and climate
(Bannari et al., 1995; Carlson and Ripley, 1997). Vegetation
indices, most prominently NDVI, have been widely used for
analysis of vegetation and vegetation change from global to
regional scales (Carlson et al., 1994; Myneni et al., 1998).

Of particular relevance to the present research is the
work of Lo and Faber (1997), who use principle component
analysis to investigate the relationship of Landsat TM-
derived NDVI and surface temperature with a series of U.S.
Bureau of the Census socioeconomic variables such as
population density and median home value for Athens-
Clarke County, Georgia. These authors found that higher
NDVI values were associated with socioeconomic advantage
(e.g., wealth and higher educational attainment) and low
population density, and that NDVI can provide a quality of
life measure incorporating both socioeconomic and bio-
physical characteristics. In a longitudinal study of socioe-
conomic and remotely sensed vegetation change in Detroit,
Michigan from 1975 to 1992, Ryznar and Wagner (2001)
found that vegetation intensity increased most dramatically
in poor neighborhoods where population decreased, i.e.,
neighborhood abandonment occurred. Changes in income
and racial composition, however, were not related to change
in vegetation intensity in this study. Because Ryznar and
Wagner (2001) do not report the association of vegetation
intensity with socioeconomic character for a single moment

in time, their results cannot be directly compared with
those of Lo and Faber (1997) as to why the two studies
suggest a somewhat opposite relationship between socioe-
conomic character and vegetation intensity. It should be
noted, however, that the two study regions are quite dif-
ferent; one focuses on a major Midwest U.S. industrial city
undergoing rapid depopulation in the urban core (Ryznar
and Wagner, 2001) while the other focuses on a small,
university-oriented town in the Southeast U.S. undergoing
moderate growth (Lo and Faber, 1997).

Data Sources and Preprocessing
Socioeconomic and housing characteristics data for 2000 were
acquired from the U.S. Bureau of the Census at the tract level.
In order to focus on socioeconomic-vegetation relationships
in residential areas, the study region is restricted to tracts in
urban, suburban, and exurban areas; the foothills and moun-
tains are excluded, as are large, non-residential developed
areas such as the airport and military installations. Two
other tracts within the study region are also excluded, one
of which has zero population within it and the other is
occupied by the University of Colorado in Boulder. This latter
tract was excluded because, although students do reside
within its boundaries, it is an extreme outlier in its combina-
tion of socioeconomic, housing, and vegetation characteristics.
There are 399 tracts in the study region.

Vegetation intensity data were derived from imagery
acquired by the Enhanced Thematic Mapper Plus (ETM�)
sensor carried aboard the Landsat 7 satellite. This 27 July
1999 cloud-free ETM� image was orthorectified and processed
to derive a NDVI image (Figure 2). Land-cover data were
acquired from the U.S. Geological Survey (USGS) Front Range
Infrastructure Resources Project (FRIRP) (Figure 2). These data
encode 1996 and 1997 land-cover in vector polygon format
as manually digitized from digital orthophotographic quad-
rangles (DOQs) and ancillary data such as wetlands inventory
(Stier, 1999). Land-cover is attributed according to a five-
stage hierarchical classification (Anderson et al., 1976). Note
that although the data are referred to as land cover data,
they are classified according to a mixture of cover types
(e.g., vegetated) as well as uses (e.g., commercial). Raster
elevation data were acquired from the USGS at a 30-meter
horizontal resolution. Vector data on the locations of limited
and unlimited access primary roads were acquired from
the Environmental Systems Research Institute (ESRI) streets
database.

These data were then processed within a geographic
information system (GIS) to derive a set of secondary vari-
ables used in the analysis. The elevation data were used to
derive a 30 m resolution raster data layer encoding percent
slope. The transportation data were used to derive two 30 m
resolution raster data layers encoding the distance from each
grid cell to the nearest limited and unlimited access primary
roads, respectively. The land-cover data layer was used to
extract residential land, as distinguished from areas that
are not developed (e.g., water, vegetated) or are developed
but not residential (e.g., industrial), as well as land classi-
fied as commercial/light industry (one class) or mixed urban
(Figure 2). The mixed urban classification includes both
commercial/light industry and residential land-uses, as one
might find in an urban downtown area.

A 30 m resolution raster data layer describing the den-
sity of residential land was also generated. Note that this
data layer does not describe population density, but the
concentration of residential land-use. The residential density
data were generated by converting the residential land-cover
data to raster format, creating a second empty raster, count-
ing the number of residential cells within a 1 km radius
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Figure 1. The Denver, Colorado area study region.
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of the centroid of each grid cell in the empty raster, and
assigning the sum to that empty raster grid cell. A residen-
tial density data layer grid cell with a relatively low value
indicates a low degree of residential concentration while a
high value indicates a high degree of residential concentra-
tion. This methodology was also used to generate a 30 m
resolution raster layer of density of land classified as com-
mercial/light industry or mixed urban.

The purpose of generating the land-cover density layers
is to describe the regional land-cover character of the tract.
While it is possible to simply calculate the percentage of each
tract occupied by a particular land-cover, this approach would
not take into account the fact that a tract may be adjacent to a
large area of a particular land-cover but not itself be occupied
by that land-cover. For example, in urban areas, where tracts
are small, it is certainly possible that a largely residential tract
may be located nearby, or even surrounded by, a heavily
industrialized area. The methodology of calculating land-cover
density for each tract, as described above, would capture
this characteristic, while the simple calculation of the percent-
age of the tract occupied by a certain land-cover would not.
Admittedly, the 1 km bandwidth used to generate the land-use
density surface is somewhat arbitrary, but is used here as a
coarse indicator of proximity.

In order to facilitate statistical analysis, the land-cover,
environmental, and NDVI data were used to develop a set of
variables aggregated to a single spatial unit, the census tract.
This approach of aggregating remotely sensed to the spatial
units at which aggregated socioeconomic data are available
mirrors that of a number of other studies (Lo and Faber, 1997;
Seto and Kaufmann, 2003). One of the tract-level variables
captures vegetation intensity as indicated by NDVI values. The
other variables, referred to as explanatory variables, indicate
socioeconomic and environmental characteristics that may be
related to vegetation intensity. These variables are calculated

by summarizing each variable for the residential and mixed
urban land within each tract. For example, tract-level mean
elevation was calculated as the mean of all the elevation data
grid cells falling within the residential and mixed urban land
of each tract. Aggregating data only for the residential and
mixed urban land within each tract facilitates finding socioe-
conomic-vegetation intensity relationships, which may be
obscured if NDVI values from commercial or other land where
people do not reside are included. This preprocessing resulted
in the following variables:

• Vegetation Intensity Mean NDVI
• Mean Elevation Mean elevation in meters
• Mean Slope Mean slope in percent
• Distance to Limited Mean distance in meters to the

nearest limited access highway
• Distance to Unlimited Mean distance in meters to the

nearest unlimited access highway
• Residential Density Mean density of residential land

in number of grid cells
• Commercial Density Mean density of commercial/light

industry/mixed urban land in
number of grid cells

• Population Density Persons/km2 (total population/area
of residential land)

• Median Income Median yearly household income
in U.S. dollars

• Percent Minority Percent of population who do
not self-identify as white,
non-Hispanic

• Educational Attainment Percent of population over the
age of 25 with a high school
diploma or equivalency

• Number of Rooms Median number of rooms per
housing unit

• Home Year Median year housing unit was built
• Home Value: Median value of owner-occupied

housing unit (USD)
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Figure 2. NDVI (a) and land-cover data (b) used in the analysis, clipped to the study region. Lighter
gray in the NDVI image indicates higher vegetation intensity.
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purchasing behavior are mined. An illustrative example of
a rule using supermarket data is “if bagels are purchased
then cream cheese is also purchased,” where the purchase
of a bagel is the antecedent and the purchase of cream
cheese is the consequent. Association rule mining has also
been adapted for spatial data where a spatial relationship is
encoded in the antecedent or consequent (Koperski and Han,
1995; Mennis and Liu, 2005). GIS is used in the present
research to integrate a variety of data sources (e.g., census
and imagery) to mine the spatial coincidence of explanatory
and vegetation intensity variable values.

Association rule mining can generate an enormous
number of rules from even moderately sized data sets. There
has thus been considerable research on extracting interesting
rules from rule-sets generated from association rule mining.
The term interesting does not have a formal definition, but
is often used in the association rule mining literature to
connote those rules that are of interest to an analyst, as
opposed to those rules that would be considered trivial
or obvious (Tan et al., 2002). Researchers have developed
a number of approaches to extracting interesting rules,
including rule templates and metrics. The rule template
approach allows the analyst to specify which variables or
cases can appear in the antecedent and/or consequent of a
rule (Fu and Han, 1995). Rule metrics, of which many have
been developed, are measurements of various aspects of rule
quality (Tan et al., 2002).

The rule metrics used in the present research include
support, confidence, and lift. Support is the percentage of all
transactions in which the antecedent occurs. Confidence
is the percentage of antecedent transactions in which the
consequent occurs (i.e., its meaning is not equivalent to that
of statistical confidence). Lift indicates how much more often
than expected the consequent occurs when paired with the
antecedent than one would expect if the antecedent and
consequent were not related. As an example, consider the
bagel and cream cheese rule above. Say there are 100 total
transactions, with 10 transactions containing the purchase of
a bagel and 20 transactions containing the purchase of cream
cheese. Of those 20 cream cheese purchases, eight were
accompanied by a bagel purchase. The support is .10 (10 bagel
purchases/100 transactions). The confidence is .80 (8 cream
cheese purchases/10 bagel purchases). The lift is 4.0 (.80
confidence/(20 cream cheese purchases/100 transactions)).

For the purpose of association rule mining in the pres-
ent research, each tract is considered a transaction in the
database. The antecedent is a set of predicates composed
of tract attributes, such as population density or distance
to limited. Because association rule mining works with
categorical, not numeric data, each of the tract-level vari-
ables was transformed into ordinal data using a five-class
quantile classification prior to the rule mining. In order
to extract interesting rules, a template is used in which
generated rules are restricted to those with vegetation inten-
sity values ranking in the highest and lowest twentieth
percentile in the consequent. Likewise, rule antecedents
are restricted to combinations of the explanatory variables
with values ranking in the highest and lowest twentieth
percentile. Note that this template generates rules which
identifies associations which concern the extreme values
of the variables, thus potentially capturing nonlinear rela-
tionships among socioeconomic character and vegetation
intensity, or relationships that occur only in a subset of the
data in tracts with the highest or lowest variable values.
Such relationships would not be captured by the multivari-
ate regression because of the assumption of linearity in the
relationships.

Rules are also restricted to those with a lift greater
than 2.0 and a support greater than 2.0 percent. While
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TABLE 1. DESCRIPTIVE STATISTICS FOR TRACT-LEVEL VARIABLES

AND CORRELATION WITH VEGETATION INTENSITY

Variable Minimum Maximum Mean St. Dev. Corr.

Vegetation �0.12 0.36 0.19 0.06
Intensity

Mean 1,506 1,817 1,636 50 0.26***
Elevation

Mean Slope 0.2 6.2 1.8 0.96 0.06
Distance to 270 26,237 4,947 5,566 0.14***

Limited
Distance to 192 5,921 1,185 1,075 �0.02

Unlimited
Residential 202 2,995 1,915 566 0.28***

Density
Commercial 10 2,191 404 359 �0.21***

Density
Population 322 19,810 3,861 2,134 �0.40***

Density
Median 7,411 112,596 49,126 17,540 0.27***

Income
Percent 3 95 33 23 �0.32***

Minority
Educational 37 99 83 14 0.30***

Attainment
Number 2.0 9.0 5.5 1.4 0.28***

of Rooms
Home Year 1939 1997 1968 15 �0.14***
Home Value 9,999 495,600 174,563 70,116 0.32***

*** � significance � 0.005.

Table 1 presents descriptive statistics for these variables.
Figure 3 presents choropleth maps of a select set of these
variables. Note that even though the maps assign a grayscale
value to entire tracts for display purposes, the data are in
fact calculated only for the residential and mixed urban area
of each tract.

Analytical Methods
As a first step, NDVI is summarized by land-cover to investi-
gate whether there are indeed differences in vegetation
intensity among different land-covers. The variables are
then entered into a series of analyses to explore the rela-
tionship between vegetation intensity and each of the
explanatory variables. First, the choropleth maps of the
variables presented in Figure 3 are visually examined.
Second, correlation is used to indicate the strength of the
relationship between each of the explanatory variables with
vegetation intensity. Because a number of the explanatory
variables are not normally distributed, Kendall’s tau-b
correlation was employed. Multivariate regression is then
used to test the explanatory power and interaction among
the explanatory variables with regards to vegetation inten-
sity. Note that two pairs of the explanatory variables are
highly correlated (Pearson r � 0.80, significance � 0.0005),
educational attainment-percent minority and number of
rooms-median income. Collinearity diagnostics, including
the Variance Inflation Factor (VIF), were used to ensure that
multi-collinearity was not problematic in any of the models.

Association rule mining is then used to explore non-
linear relationships among the explanatory variables in
predicting vegetation intensity. Association rule mining is
a data mining technique that seeks to identify rules in a
transactional database (Agrawal et al., 1993). An association
rule takes the form A : B where A (the antecedent) and
B (the consequent) are sets of predicates. Association rule
mining has conventionally been applied to business data,
such as supermarket transactions where rules regarding
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this support value may seem low, note that the probability
of two randomly distributed, quantile-classified, ordinal
variables having values that co-occur in a given tract is
4 percent (i.e., 20% * 20%). Redundant rules with identical
consequents are filtered out by identifying rules that do not
differ significantly (p � 0.05) in the confidence of the rule
given additional predicates in the antecedent (Huang and
Webb, 2004). This rule mining approach facilitates the
identification of interesting and non-redundant rules that
express which of high and low values of the explanatory
variables are associated with particularly high or low vegeta-
tion intensity. The association rule mining software Magnum

Opus (Webb, 1995; Webb and Associates Pty. Ltd., 2001)
was used for this analysis.

Results
Table 2 reports the mean and standard deviation of vege-
tation intensity, as well as the area as a percentage of the
total study region, for different land-cover types, including
the four level 1 land-covers, and selected level 2 and level
3 land-covers relevant to the research. Residential land
has a higher mean vegetation intensity, and lower stan-
dard deviation, than non-residential developed land-cover,
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Figure 3. Selected tract-level variables used in the analysis. See text for an explana-
tion of the derivation of each variable: (a) Mean NDVI, (b) Distance to Limited in
meters, (c) Educational Attainment by percentage, and (d) Mean Elevation in meters. 
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particularly as compared to land classified as commercial/
light industrial. Notably, vegetated land-cover, which
is almost exclusively herbaceous, also has a lower mean
vegetation intensity than residential land. This is true
for both native grassland and agricultural herbaceous
vegetation cover.

The choropleth maps shown in Figure 3 suggest that the
highest residential vegetation intensity values are found in
certain parts of Denver as well as in the western third of the
study region in general, particularly in areas such as Arvada
and Boulder. Socioeconomic advantage exhibits a similar,
though certainly not identical, pattern, as evidenced by the
distribution of educational attainment. Interstate highways

run east-west and north-south, respectively, throughout the
study region and cross in north Denver, so that the highest
distance to limited values are found primarily at the western
edge of the study region. Residential density, commercial
density, and population density all share broadly similar
patterns, being higher in Denver and its immediate vicinity,
as well as in Boulder and Longmont. Although, central
Denver is notable for having high population density and
commercial density, yet low residential density. Clearly,
most people in that area are living in land classified as
mixed urban rather than purely residential. Tracts with the
oldest homes are found in Denver, as well as in the old
town sections of Boulder and Longmont. Tracts with newer
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Figure 3. (Continued) Selected tract-level variables used in the analysis. See text for
an explanation of the derivation of each variable: (e) Residential Density from grid
cells, (f) Commercial Density from grid cells, (g) Population Density as people per
square kilometer, and (h) Home Year by date built.
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neighborhoods dominate the remainder of the northern half
of the study region.

The correlation results are presented in Table 1 beside
the descriptive statistics. All of the explanatory variables
are significantly correlated to mean NDVI, with the exception
of mean slope and distance to unlimited. As vegetation
intensity increases, elevation, distance to limited, residential
density, median income, educational attainment, number of
rooms, and home value all increase. Commercial density, pop-
ulation density, and home year all decrease with increasing
vegetation intensity. Vegetation intensity has the strongest
relationships with population density, percent minority, and
home value.

Results from the multivariate regression are presented
in Table 3. Because they were not significantly correlated
to vegetation intensity, mean slope and distance to unlimited
were not included in the multivariate regression. Model 1
in Table 3 shows the results for the regression of vegetation
intensity using the census-derived socioeconomic and
housing variables as independent variables (median income
was excluded in the model presented here because of multi-
collinearity). Population density, educational attainment,
and home year are highly significant, and explain 43 per-
cent of the variation in vegetation intensity. Home value is
not significant, likely because its relationship with vegeta-

tion intensity is mediated by educational attainment, with
which it has a Pearson r � 0.5 (significance � 0.0005).
Model 2 focuses on factors of development and transporta-
tion. Commercial density, residential density, and distance
to limited are all highly significant, with residential density
explaining the greatest amount of the variation in vegetation
intensity.

When the census, development and transportation, and
elevation variables are combined in one equation, as in
Model 3 in Table 3, they account for 61 percent of the
variation in vegetation intensity. All the variables that were
significant in Models 1 and 2 remain significant, with home
year contributing the greatest amount to the slope of the
regression line and the influence of residential density and
commercial density slightly reduced. Mean elevation is
highly significant in Model 3, but its contribution to the
slope of the regression line is by far the least among all
variables. The replacement of educational attainment with
percent minority, and median income with number of
rooms, as presented in Models 4 and 5, respectively, does
not significantly change the nature of relationships among
explanatory variables presented in Model 3.

One interesting result of the multivariate regression
that is not reported in Table 3 is the zero-order and partial
correlation values for each of the variables. Of note is that
for home year in Model 3, the zero-order correlation is �0.13
and the partial correlation is �0.35. This indicates that the
influence of home year in the model actually increases after
the effects of the other explanatory variables are accounted
for. For all the other variables in all the models, influence
is reduced by the effects of the other explanatory variables.
This unusual aspect of home year is explored further in the
association rule mining results.

The association rule mining resulted in over 7,900 rules
when all variable value combinations are allowed. When
the restrictions to identify interesting rules are applied,
48 rules are identified, 14 with high vegetation intensity
in the consequent and 34 with low vegetation intensity in
the consequent. Table 4 shows ten representative rules,
and their lift values, with high vegetation intensity in the
consequent. The first rule may be read as “if residential
density is high and percent minority is low then vegetation
intensity is high,” and the lift for this rule is 4.7. These
rules generally echo the results of the multivariate regression
in finding that high vegetation intensity is associated with
high residential density and socioeconomic disadvantage.
One result of interest is a comparison of rules 8 and 10.
Rule 8 shows that neighborhoods near highways that are
primarily white tend to have high vegetation intensity.
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TABLE 2. SUMMARY OF NDVI BY SELECTED LAND-COVER CLASSES

Level 1 Level 2 Level 3 % Area Mean St. Dev.

Developed 43 0.16 0.16
Residential 27 0.20 0.11
Non-Res. 16 0.09 0.21

Dev.
Com./Lt. 7 �0.02 0.12

Ind.
Mixed Urban 0.3 0.04 0.14

Vegetated 52 0.17 0.19
Woody 2 0.29 0.15
Herbaceous 50 0.17 0.19

Natural 16 0.14 0.14
Planted 34 0.18 0.21

Bare 2 0.06 0.15
Water 3 �0.09 0.21

TABLE 3. STANDARDIZED COEFFICIENTS OF MULTIVARIATE REGRESSIONS

OF VEGETATION INTENSITY

Ind. Variable Model 1 Model 2 Model 3 Model 4 Model 5

Mean 0.12*** 0.15*** 0.12***
Elevation

Distance 0.27*** 0.23*** 0.25*** 0.23***
to Limited

Residential 0.43*** 0.23*** 0.25*** 0.23***
Density

Commercial 0.33*** �0.27*** �0.29*** �0.25***
Density

Population �0.46*** �0.29*** �0.28*** �0.27***
Density

Percent �0.13***
Minority

Educational 0.42*** 0.21*** 0.20***
Attainment

Number 0.06
of Rooms

Home Year �0.35*** �0.33*** �0.30*** �0.33***
Home Value �0.01
Adjusted R2 0.43 0.45 0.61 0.60 0.61

*** � significance � 0.005.

TABLE 4. RESULTS OF ASSOCIATION RULE MINING PREDICTING HIGH

VEGETATION INTENSITY

# Slp Lim Res Pdn Inc Min Edu Yr Val Lift

1 high low 4.7
2 high low 4.4
3 high high 4.4
4 low low 4.4
5 high high 4.3
6 high high 4.0
7 high low 4.0
8 low low 3.7
9 high low 2.5

10 high high 2.1

Note: Slp � Mean Slope, Lim � Distance to Limited, Res � Residen-
tial Density, Pdn � Population Density, Inc � Median Income, Min
� Percent Minority, Edu � Educational Attainment, Yr � Home Year,
Val � Home Value.
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Interestingly, rule 10 shows that neighborhoods far from
highways that have steep slopes also have high vegetation
intensity. Thus, both high and low distance to limited value
tracts are associated with high vegetation intensity, but the
nature of this relationship is dependent on the racial and
environmental setting.

Table 5 reports ten representative rules with low vege-
tation intensity in the consequent, labeled rules 11 through
20. In agreement with the regression results, low vegetation
intensity is associated with low residential density and high
commercial density. Flat areas of low elevation are also
associated with low vegetation intensity when paired with a
high concentration of commercial land-use (rules 16, 17, and
19) or socioeconomic disadvantage (rule 11). Particularly
interesting results are found for the home year variable. Low
home year (i.e., an older neighborhood) is associated with
low vegetation intensity when that neighborhood also has
low residential density (rule 12) or high commercial density
(rule 17). However, newer neighborhoods are also associated
with low vegetation intensity when the home values in that
neighborhood are low (rule 18). These rules may be con-
trasted with those in Table 4, in which older neighborhoods
are associated with high vegetation intensity when paired
with indicators of socioeconomic advantage (rules 4 and 7)
and high residential density (rule 9).

Discussion
These results indicate that vegetation intensity in residen-
tial land is a function of a number of interrelated factors
in the Front Range of Colorado. As one would expect, a
high concentration of commercial land is associated with
low vegetation intensity, as these areas are generally urban
areas with little vegetation and large areas of impervious
surfaces (roads, rooftops). This relationship may also
reflect the low vegetation intensity in land classified as
mixed urban, which occurs almost exclusively in down-
town Denver and Boulder where it is surrounded by
commercial land. A high concentration of residential land
is associated with high vegetation intensity because of the
presence of lawn grasses and deciduous trees associated
with residential development. This suburban lawn ecosys-
tem vegetation present on residential land increases NDVI
values due to elevated biomass and photosynthetic activity
as compared to the native shortgrass prairie vegetation or
regional agricultural activity (Golubiewski and Wessman,
2006). One can speculate that extensive suburban and
exurban style developments, as captured by high residential

density values, are more likely to support suburban lawn
ecosystem vegetation than smaller, isolated residential
areas.

Lower population density is also associated with higher
vegetation intensity. This is expected given the negative
relationship of population density with vegetation fraction
in many urban areas (Pozzi and Small, 2002). However,
rule 2 indicates that the combination of sparsely populated,
yet highly residential land-use, produces particularly high
vegetation intensity. This suggests that large lot residential
development, with managed vegetation but relatively few
people, produces particularly high vegetation intensity
values. This is particularly true in wealthy, white neighbor-
hoods with high educational attainment and high home
values.

Generally, older neighborhoods also tend to have higher
vegetation intensity, likely because the managed vegetation is
more mature. However, this is only the case when accom-
panied by indicators of large lot residential development
and/or socioeconomic advantage. In fact, older residential
neighborhoods nearby high concentrations of commercial
land, or where home values are anomalously low, tend to
have particularly low vegetation intensity. Figure 4 demon-
strates the role of neighborhood age in determining vegeta-
tion intensity by mapping the results of rules 9 and 12. The
area occupied by rule 9 (high residential density, low home
year, and high vegetation intensity) is in Denver’s wealthy
Cherry Creek neighborhood, which contains many large
deciduous trees and extensive grassy yards. Nearby is the
area occupied by rule 12 (low residential density, low home
year, and low vegetation intensity), which contains some
of the oldest homes in the city on small lots adjacent to
the downtown and other commercial centers. Contrast this
pattern with the map of rules 10 and 13. The area occupied
by rule 10 (high slope, high distance to limited, and high
vegetation intensity) captures parts of Boulder and newer
residential areas being built around the towns of Lafayette
and Louisville, areas of socioeconomic advantage (i.e., see
the map of educational attainment in Figure 3). Rule 13 (low
residential density, low educational attainment, and low
vegetation intensity), on the other hand, highlights tracts
containing socioeconomically disadvantaged residents nearby
areas of either commercial/light industrial land (in the
southern tracts) or agricultural land (in the northern tracts).

These results suggest that, contrary to what one might
expect, vegetation intensity in residential areas of the Front
Range is not concentrated necessarily in older neighborhoods,
nor exclusively in the suburbs, but in either older or subur-
ban development-type neighborhoods that are also wealthy
and white. It is important to note that the present study
cannot reveal the process of causation by which this relation-
ship occurs. While there is a relatively clear causal mecha-
nism between, say, home year and vegetation intensity
(intensity increases as vegetation matures and gains in
biomass), it is unclear precisely how socioeconomic advan-
tage influences vegetation intensity, or even whether the
causal relationship acts in the opposite direction (i.e., vege-
tation intensity influences the socioeconomic status of a
neighborhood).

Certainly, however, maintaining the suburban lawn
ecosystem vegetation associated with higher vegetation
intensity in residential areas demands significant watering
and active landscape management practices (Golubiewski,
2003). Such practices are costly in the Front Range, where
chronic water scarcity and urban growth have caused water
restrictions and dramatic price increases in certain jurisdic-
tions in recent years. One can speculate that, in the Front
Range, residents transform their local residential landscape
based on their ability to pay for the creation and maintenance
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TABLE 5. RESULTS OF ASSOCIATION RULE MINING PREDICTING LOW

VEGETATION INTENSITY

# Elv Slp Lim Res Com Inc Min Edu Yr Val Lft

11 low low 4.5
12 low low 4.5
13 low low 4.5
14 low low 4.3
15 low high 4.0
16 low high high 3.9
17 low high low 3.8
18 high low 3.7
19 high low 3.6
20 low low 2.4

Note: Elv � Mean Elevation, Slp � Mean Slope, Lim � Distance to
Limited, Res � Residential Density, Com � Commercial Density, Inc
� Median Income, Min � Percent Minority, Edu � Educational
Attainment, Yr � Home Year, Val � Home Value.
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of suburban lawn ecosystem vegetation. Additionally,
residential choices may be limited by a home price structure
that is closely related to the concentration of vegetation in
the residential landscaping.

These findings are of interest to those involved in ana-
lyzing and modeling urban growth and ecology, as they
suggest that, in the Front Range, economic factors are closely
related to urban vegetation intensity, and hence, ecological
function. Conversely, previous research has shown that
proximity to preserved open space and other environmental
amenities, such as vegetation concentration, impacts property
values and residential choice (Geoghegan et al., 1997;
Walsh, 2003). This feedback among socioeconomic status,
vegetation intensity, and residential choice has ramifications
on computational modeling of urban regions, as the major-
ity of urban spatial models do not account for ecological-
socioeconomic feedbacks in a sophisticated manner (Alberti
and Waddell, 2002).

Conclusions
This research demonstrates the utility of integrating socioe-
conomic and remotely sensed imagery for investigating the
interaction of urban ecological and social systems. Associa-
tion rule mining has also been shown to be a useful tool in
this investigation. While an exploratory method, association
rule mining has the ability to capture relationships among
variables that are nonlinear and/or occur in only a subset of
the data. Such nonlinearities and data subsets may indicate
thresholds in socioeconomic or ecological variables that are
particularly important in the context of social-ecological
system dynamics. For example, these results suggest that the
influence of age of a neighborhood on vegetation intensity
differs in nature depending on the co-occurrence of the
socioeconomic character of that neighborhood. Recognizing
such nonlinearities, and the subsets of data within which

certain relationships among variables occur, can play a
key role in understanding the complex interactions among
drivers of urban ecosystem dynamics (Pickett et al., 2001;
Alberti et al., 2004).

In the analysis presented here, interesting rules were
found by setting criteria specified using a rule template
and certain rule metrics. The motivation for selecting these
criteria was to focus on identifying relationships among
variables that tend to occur at the extremes of the data
values, for instance to uncover what socioeconomic vari-
ables are associated with the very highest and lowest vege-
tation intensity values. The reasoning here is that social
interactions with vegetation would likely be most easily
detected in situations where the vegetation intensity was
particularly enhanced or suppressed by human agency. The
rule mining criteria were also used to restrict the volume
of results to a manageable level as well as to simply bound
the scope of analysis. However, it is certainly possible that
other relevant relationships in the data exist, for instance
among other subsets of the data residing in the middle
three-fifths of the range for each variable. Such relation-
ships can be investigated by relaxing the template and rule
metric criteria. Investigating patterns in the data that are
not expressed at the extreme values of the variables is a
topic for future research.

This analysis is subject to certain limitations concerning
data quality. The accuracy of the land-cover data is of
particular concern, as NDVI was only calculated for land
classified as residential or mixed urban. In urban and sub-
urban areas, where large clusters of homes occur, manual
vector digitizing of residential lands may be relatively
straightforward. But in exurban or rural lands the delin-
eation of residential versus naturally vegetated or agricul-
tural land becomes more complicated, as individual homes
are scattered across the landscape. A related issue is the
resolution of the ETM� imagery. At 30 m resolution, pixels
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Figure 4. Maps of rules 9 and 12 (a) and rules 10 and 13 (b). The maps show the tracts where
both the antecedent and consequent in each rule are true.
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likely contain a variety of land-covers, particularly in the
urban areas (Jensen and Cowen, 1999). Consequently, when
summarizing NDVI values within residential land polygons,
pixels in the NDVI image that are in reality partially occupied
by non-residential land-uses may be included. This error
may be compounded by positional and attribute errors
contained in the land-cover data, for which a minimum
mapping unit of 2.5 acres is specified. Additionally, manual
vector digitizing of land-cover necessarily involves some
level of cartographic generalization, such as the smoothing
of geometrically complex features and the determination
of crisp boundaries between naturally fuzzy categories
(Buttenfield and McMaster, 1991).

These data integration issues were mitigated to some
extent by aggregating the residential NDVI data to the tract
level, thereby reducing the effects that the error associated
with any particular pixel or land-cover polygon might
introduce. This presupposes that the positional error in the
land-cover and other data sets is random, and not highly
biased, the latter of which would be the case if the error
was due primarily to problems of, perhaps, registration.
While no formal testing on registration between the ETM�
imagery and land-cover data was done, a visual inspection
found logically consistent spatial correspondence between
the NDVI image and land-cover, tract boundary, and primary
road data. Positional differences among the NDVI and land-
cover data that could be observed did not appear to be
biased in any particular direction.

Related to the choice of tracts as the unit of analysis is
the modifiable areal unit problem (MAUP), which states that the
analysis of spatially aggregated data may be impacted by the
scale of data aggregation, as well as by the pattern of spatial
partitioning at any one scale (Openshaw, 1983; Fotheringham
and Wong, 1991). In an analysis focusing on northern Thai-
land, Walsh et al. (1999) show that the analysis of socioeco-
nomic-remotely sensed vegetation relationships is affected
by the MAUP. It is currently unknown whether the results of
the present study would persist, and if so, to what degree,
were the unit of analysis changed to the block group or to,
say, an exhaustive tessellation of 1 km square cells. Tracts
were chosen as the unit of analysis because they support the
aggregation of the NDVI and land-cover data and are a common
unit of analysis for socioeconomic analysis. The drawback
is that tracts may be spatially heterogeneous in terms of
socioeconomic status. The use of block groups instead of tracts
would likely reduce this heterogeneity, though block groups
in urban areas may be so small as to exacerbate the error
introduced by data integration, as discussed above. The use
of other spatial units, such as 1 km square cells, would neces-
sitate the areal interpolation of the socioeconomic data, intro-
ducing another source of error.

Future research will address the issue of scale by
performing the analysis at multiple scales to review the
sensitivity of the results to scale variation. In addition,
higher spatial and spectral resolution data may be used
to identify not only general vegetation intensity but also
specific types of vegetation, such as woody versus herba-
ceous vegetation types. This approach would improve the
ability to distinguish the specific vegetation types associ-
ated with socioeconomic status and development character-
istics, if any. Finally, a temporal analysis along the lines
of Ryznar and Wagner’s (2002) work would support an
analysis of the causes of the socioeconomic-vegetation
relationships found here by linking change in vegetation
intensity with the transformation of land from non-residential
to residential use. Understanding such causal relationships
can ultimately inform research on how socioeconomic and
ecological processes interact within the context of urban
growth and land-cover change.
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