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Abstract

We present a general theorem capturing conditions
required for the termination of abstract reduction
systems. We show that our theorem generalises an-
other similar general theorem about termination of
such systems. We apply our theorem to give interest-
ing proofs of termination for typed combinatory logic.
Thus, our method can handle most path-orderings in
the literature as well as the reducibility method typ-
ically used for typed combinators. Finally we show
how our theorem can be used to prove termination
for incrementally defined rewrite systems, including
an incremental general path ordering. All proofs have
been formally machine-checked in Isabelle/HOL.
Keywords: rewriting, termination, well-founded or-
dering, strong normalisation

1 Introduction

We address the general problem of termination of
rewriting which can be informally posed as follows.
Assume that we have a fixed set of “objects” de-
fined according to some formal syntax. Suppose we
are given a binary relation ρ on these objects, where
(t, s) ∈ ρ expresses that object s may be transformed
into object t. Let us call such a transformation a re-
duction. Consider repeatedly reducing an object in
any way possible. We are interested to know whether
such repeated reduction necesarily terminates – for-
mally, whether or not there is an infinite sequence
t = t0, t1, . . ., where each (ti+1, ti) ∈ ρ. If there is
not, we say that t is strongly normalising: t ∈ SN.
The difficulty of the problem arises from the totally
general notion of “reduction”.

In the common special case of a term rewriting
system (TRS), an object is a term of some first-order
language, and the reduction relation is described by
a set of “rewrite rules” li → ri, where li and ri are
terms containing variables for which terms may be
substituted. Here, rewriting is also usually monotonic
[4], or closed under context [15], in that if C[ ], a
term with a “hole”, is the context, and l reduces to r,
then C[l] reduces to C[r]. There are several general
methods capturing termination of such term rewriting
systems [2, 10, 6].
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Recently, Jean Goubault-Larrecq [14] has proved
termination results for the more general setting of
an abstract reduction system (ARS) where objects
need not have a term structure and so there is no
monotonicity assumption or subterm relation. Where
proofs for TRSs involve the subterm relation, he uses
an arbitrary well-founded relation C in a similar way.
His Theorem 1 is the result of “chasing generaliza-
tions and simplifications” of earlier work and “sub-
sumes . . . most path-orderings of the literature” [14].

While the theorems from [6] and [14] use remark-
ably similar ideas, it was frustrating to see that none
actually subsumed the other, even though [6] applies
to TRSs and [14] applies to ARSs. Indeed, there
is something in common between the two results: a
more general theorem that subsumes both.

We first present this more general theorem and its
proof in §2. Then, in §3, we show that it generalises
[14, Theorem 1] and [6, Theorem 2], and we discuss its
application to constricting derivations. In §4, we show
how to use our new theorem to obtain two different
proofs of strong normalisation for well-typed combi-
nator terms. In these cases, although the objects have
a term structure, our proofs use the ARS setting and
show the well-foundedness of larger, non-monotonic,
relations. The combinator case suggests that our the-
orem properly generalises [14, Theorem 1]. Thus, our
theorem handles most path-orderings in the literature
and the reducibility method typically used for typed
combinators.

In the longer paper [7] we apply our theorem to
the general path ordering of Dershowitz & Hoot [10],
and adapt our theorem to show strong normalisation
for the simply-typed λ-calculus. We also use our tech-
niques to give a different proof of Goubault-Larrecq’s
much more complicated Theorem 2 [14]. His the-
orem generalises [14, Theorem 1], handles the re-
ducibility argument, and encompasses explicit reason-
ing about substitutions for handling the simply-typed
λ-calculus.

Commonly, a rewrite system can be defined by
taking a base system, known to be terminating, and
adding new function symbols and rules to it. We show
how our theorem can be used to prove termination in
certain such cases, for example, where the new sym-
bols and rules are those of the examples in §3.3 to §3.5
of [6]. A more complex variant of the result covers the
example in [6, §3.6].

Our proofs were formalised and machine-checked
in the theorem prover Isabelle/HOL: see [8], directo-
ries snabs,snlc. This was particularly valuable for
§5, where our initial paper proofs turned out to be
wrong, as the choice of �′

2 was particularly difficult
to get right. Further, the possible instantiation of a
variable by a term headed by a symbol in either F0 or
F1 complicated matters: see the discussion following
[12, Proposition 1]. Also in §4.1 the Isabelle proof
confirmed the validity of the rather tricky argument



for the soundness of the mutually recursive definitions
of SN , ρ and τ .

1.1 Notation, Terminology, Definitions and
Basic Lemmas

We assume a set U : in a TRS this would be the set of
terms, but in the ARS setting we just call them “ob-
jects”. For an irreflexive binary relation ρ, we will
write (r, t) ∈ ρ, (r, t) ∈ <ρ, r <ρ t or t >ρ r inter-
changeably. We prefer >ρ over the more traditional
→ρ because the latter is typically used in TRSs, our
setting is more abstract than TRSs, and when we deal
with TRSs we need to carefully distinguish between a
relation and its closure under contexts. For a symbol
that suggests a direction such as <, C or � we will
write (r, t) ∈ C, (t, r) ∈ B, r C t or t B r interchange-
ably. We say r is strongly normalising, or is ∈ SN,
(with respect to ρ) if there is no infinite descending
sequence r = r0 >ρ r1 >ρ r2 >ρ . . . of objects, and
ρ is well-founded (or Noetherian) if every r ∈ SN.
We write ≤ρ or ρ=, <+

ρ or ρ+, and <∗
ρ or ρ∗ for the

reflexive closure, the transitive closure and the reflex-
ive transitive closure, respectively, of <ρ. We write
σ ◦ ρ for the relational composition of relations σ and
ρ: that is, (r, s) ∈ σ ◦ ρ if there exists t such that
(r, t) ∈ ρ and (t, s) ∈ σ.

In our formal treatment in Isabelle/HOL we used
the following inductive definition for the set SN of
strongly normalising objects, and we proved, in the
HOL logic, which is classical and contains the Ax-
iom of Choice, that this definition is equivalent to the
standard definition given above.

Definition 1 (Strongly Normalising – HOL)
For a reduction relation ρ, the set SN of strongly
normalising objects is the (unique) smallest set of
objects such that: if every object t to which s reduces
is in SN then s ∈ SN.

Our previous work [6], on term rewriting systems,
dealt with the well-founded-ness of the closure under
context of a relation called ρ. In contrast, we are
dealing here with an abstract reduction system, usu-
ally calling the reduction relation ρ. So concepts such
as “strongly normalising”, “reduction”, etc, relate to
ρ, and not, even when discussing structured terms,
to the closure of ρ under context. Furthermore, in
the ARS setting, we use an arbitrary relation where
we used the immediate subterm relation in the TRS
setting.

In [6] we defined the set ISN of “inductively
strongly normalising” terms as the set of terms that
are in SN if their immediate subterms are in SN [6,
§2.2]. Clearly, SN ⊆ ISN. We now define gindy as
a generalised notion of “inductively” for an arbitrary
relation σ in place of the immediate subterm relation
isubt. Use of gindy enables us to express the princi-
ple of well-founded induction succinctly: it says that
if every object is in gindy σ S, and σ is well-founded,
then every object is in S.

Definition 2 (gindy) For a relation σ and set S, an
object t ∈ gindy σ S iff:
if ∀u. (u, t) ∈ σ ⇒ u ∈ S, then t ∈ S.

The notion of well-foundedness is generalised to
that of a particular object being accessible, or in the
well-founded part, of a binary relation: the construc-
tive definition is that s is in the well-founded part of a
relation < if there is no infinite downward chain start-
ing from s. This is generalised to the notion that s
bars S in < if every infinite downward chain, starting
from s, contains a member of S. See [14] for a more
detailed discussion of this. We now generalise bars to

a function gbars where the members of a downward
chain, until it meets S, must be in Q.

The inductive definition of gbars is:

Definition 3 (gbars) For sets of objects Q and S,
and relation σ, gbars σ Q S is the (unique) smallest
set such that:

(a) S ⊆ gbars σ Q S

(b) if t ∈ Q and ∀u. (u, t) ∈ σ ⇒ u ∈ gbars σ Q S,
then t ∈ gbars σ Q S.

The next lemma gives another characterisation of
gbars which is provably equivalent in classical logic
using the Axiom of Choice: t ∈ gbars σ Q S iff every
downward σ-chain starting from t is within Q until it
hits S or it terminates.

Lemma 1 (gbars-alternative) For sets of objects
Q and S, and relation σ, object t ∈ gbars σ Q S
iff: for every downward σ-chain t = t0 >σ t1 >σ

t2 >σ . . ., either the chain is finite and all ti ∈ Q,
or for some member tn of the chain, both tn ∈ S and
{t0, t1, t2, . . . , tn−1} ⊆ Q.

Definition 4 records how gbars generalises the no-
tions of “S bars s in σ” and of “s is accessible in σ, or
s is in the well-founded part of σ” as defined in [14].

Definition 4 (wfp, bars) (a) s ∈ bars σ S iff
s ∈ gbars σ U S (“S bars s in σ”)

(b) s ∈ wfp σ iff s ∈ bars σ ∅ (“s accessible in σ ”).

Thus SN = wfp ρ and ISN = gindy isubt SN.
Now from Lemma 1 we get the following character-
isation of bars, which was given as a definition in
[14]: s ∈ bars σ S if every infinite decreasing σ-
sequence s0 >σ s1 >σ s2 >σ . . . meets S, ie, for some
k, sk ∈ S.

Our Lemma 3 below generalises [6, Lemma 2]. It
relies on the gbars-induction principle, which is anal-
ogous to the principles of well-founded induction, and
of bars-induction (see [14, Proposition 1]). It is gen-
erated automatically by the Isabelle theorem prover
from the inductive definition of gbars above. We
write P s to mean that object s satisfies property P .

Proposition 2 (gbars-induction) For sets Q and
S, and any property P, if

(a) for every s ∈ S, we have P s, and

(b) for every s ∈ Q, if ∀t. (t, s) ∈ σ ⇒ P t, then P s

then every s ∈ gbars σ Q S satisfies P.

Lemma 3

(a) S = gbars σ (gindy σ S) S

(b) Q ⊆ gindy σ (gbars σ Q S)

Proof.

(a) ⊆: this is trivial, from Definition 3(a), by letting
Q be gindy σ S.

⊇: Let P s = s ∈ S. We use Proposition 2 with
Q = gindy σ S. Condition (a) of Proposition 2
holds trivially, and condition (b) is given by Def-
inition 2.

(b) Follows directly from Definitions 2 and 3(b). 2

Lemma 4

(a) if all objects are in gindy σ S, then bars σ S =
S, whence, if σ is well-founded, then every object
is in S, and



(b) bars σ (wfp σ) = wfp σ

Proof.

(a) As U = gindy σ S, this follows from Lemma 3(a)
and Definition 4(a). If σ is well-founded, then
U = wfp σ = bars σ ∅ ⊆ bars σ S.

(b) follows as every object is in gindy σ (wfp σ),
which follows from Lemma 3(b).

2 The Termination Theorem

Given a reduction relation ρ, our general termina-
tion result requires relations C and � which satisfy
certain properties. These relations play a role sim-
ilar to the relations C and � in [14], and, where
convenient, we express our conditions so as to en-
able easy comparisons with [14]. Most commonly,
the relation C is instantiated to the immediate sub-
term relation, and � is often some sort of approxi-
mation to the rewrite relation itself. The most gen-
eral version of the properties that C and � must
satisfy is Condition 1(a) below, but in practice we
often use the simpler and stronger conditions (b) to
(e). (Even weaker conditions than 1(a) are possible,
since we could for example suppose that s also sat-
isfies ∀u � s. u ∈ gindy C SN: see the proof of of
Lemma 6 below).

Condition 1

(a) If ∀s′ C s. s′ ∈ SN, then
s ∈ bars ρ (gbars C {u | u � s} SN)

(b) For all (t, s) ∈ ρ, if ∀s′ C s. s′ ∈ SN, then
t ∈ gbars C {u | u � s} SN

(c) For all (t, s) ∈ ρ,
t ∈ gbars C {u | u � s} {v | (v, s) ∈ (C ◦ ρ)}

(d) C is well-founded and, for all (t, s) ∈ ρ,
if ∀s′ C s. s′ ∈ SN, then, for all t′ C

∗ t,
either t′ ∈ SN or t′ � s

(e) C is well-founded and, for all (t, s) ∈ ρ and
for all t′ C

∗ t, either (t′, s) ∈ (C ◦ ρ∗) or t′ � s.

Lemma 5 Each of Conditions 1(b) to (e) implies
Condition 1(a) for all s.

Proof. It is easy to see that Condition 1(b) implies
Condition 1(a) for all s.

To show that Condition 1(d) implies Condi-
tion 1(b), assume (d) holds. Then, as C is well-
founded, there is no infinite descending C-chain.
Any descending C-chain from t is contained in
{t′ | t′ � s} ∪ SN. A fortiori, members of such a chain
are contained in {t′ | t′ � s} until the chain reaches a
member of SN. That is, t ∈ gbars C {u | u � s} SN,
and so (b) holds.

To show that Condition 1(e) implies Condi-
tion 1(d), and likewise, that Condition 1(c) implies
Condition 1(b), assume that ∀s′ C s. s′ ∈ SN. Then,
if (t′, s) ∈ (C ◦ ρ∗) because t′ <∗

ρ s′ C s, then we have
s′ ∈ SN and so t′ ∈ SN. Note that in Condition 1(c)
we could have (C ◦ ρ∗) in place of (C ◦ ρ). 2

Our key lemma, Lemma 6 below, corresponds to
[6, Lemma 3], but is considerably simpler. We thank
an unnamed referee for pointing out that our proof
and that of [6, Lemma 3] resembles the proof by
Buchholz [5] of the well-foundedness of the lexico-
graphic path ordering, although it was obtained in-
dependently.

Lemma 6 If object s satisfies Condition 1(a), then
s ∈ gindy� (gindy C SN).

Proof. Given s, assume that ρ, C and � satisfy
Condition 1(a) and that

(a) ∀u � s. u ∈ gindy C SN.
We then need to show s ∈ gindy C SN, so we assume

(b) ∀s′ C s. s′ ∈ SN
and we show that s ∈ SN. By Lemma 4(b), it suffices
to show s ∈ bars ρ SN.

The antecedent of Condition 1(a)
holds by assumption (b), and so
s ∈ bars ρ (gbars C {u | u � s} SN). As bars
is monotonic in its second argument, it is enough
to show gbars C {u | u � s} SN ⊆ SN. As
{u | u � s} ⊆ gindy C SN by assumption (a),
and as gbars is monotonic in its second argu-
ment, we have gbars C {u | u � s} SN ⊆
gbars C (gindy C SN) SN = SN, by Lemma 3(a).

So we have s ∈ SN. Thus, discharging assumptions
(b) and then (a), we have s ∈ gindy C SN, and then
s ∈ gindy� (gindy C SN). 2

We now identify the conditions that guarantee
that every object is in SN.

Theorem 7 Relation ρ is well-founded if Condi-
tion 1(a) holds for all s and

(a) every object is in bars� (gindy C SN), and

(b) every object is in bars C SN.

Proof. If ρ and � satisfy Condition 1(a), then
every s ∈ gindy � (gindy C SN) by Lemma 6.
Then, for any u, if u ∈ bars � (gindy C SN) then
Lemma 4(a) gives u ∈ gindy C SN. Thus every
u ∈ gindy C SN. Then, for any v, if v ∈ bars C SN
then Lemma 4(a) gives v ∈ SN. Thus every v ∈ SN:
that is, ρ is well-founded. 2

If Condition 1(b) holds, then it also holds if we
augment ρ to contain C. Thus, for fixed C, Theorem 7
does not provide a universal method of proving ter-
mination because it is possible that ρ is well-founded
but ρ ∪ C is not.

However, if ρ is well-founded and we can choose C

so that C ⊆ ρ, then Theorem 7 can be applied triv-
ially. Let � = C = ρ+, which is well-founded. Then
even Condition 1(e) applies. Clearly also, conditions
(a) and (b) of Theorem 7 apply as � and C are well-
founded. That is, Theorem 7 is, trivially, a universal
result for proving termination (as are several other
orderings in the literature).

3 Generalising Previous Results

3.1 Generalising Goubault-Larrecq’s General
Theorem for ARSs

We show that Theorem 1 of Goubault-Larrecq [14],
which itself generalizes many results in the literature,
is a special case of our Theorem 7. Note that [14] uses
< where we use ρ. We first require two lemmas.

Lemma 8 Given set S and object s, suppose for all
t that, if (t, s) ∈ ρ, then

(a) t ∈ S, or

(b) s � t and, for every u C t,
either (u, s) ∈ ρ or u ∈ S.

Assume C is well-founded. Then (t, s) ∈ ρ implies
t ∈ gbars C {x | x � s} S.

Proof. Let (t, s) ∈ ρ. We prove this result for t by
well-founded induction on C, so assume that, for all
v C t, if (v, s) ∈ ρ then v ∈ gbars C {x | x � s} S.

We consider the two cases (a) and (b) as above.
Firstly, if t ∈ S, then t ∈ gbars C {x | x � s} S by
Definition 3(a). Secondly, if (b) holds, we show that



t ∈ gbars C {x | x � s} S using Definition 3(b). We
have t � s, and for any u C t, there are again two
cases. In the first case, (u, s) ∈ ρ and so, by the induc-
tive hypothesis, u ∈ gbars C {x | x � s} S. In the
second case, u ∈ S and so u ∈ gbars C {x | x � s} S
by Definition 3(a). 2

Lemma 9 Suppose that, whenever (t, s) ∈ ρ, either

(a) for some object u, s B u and u ≥ρ t, or

(b) s � t and, for every u C t, s >ρ u.

Suppose also that C is well-founded. Then Condi-
tion 1(b) holds.

Proof. We use Lemma 8 with S =
{v | ∃x. s B x and x ≥ρ v}. To show Condition 1(b),
let (t, s) ∈ ρ, and suppose that ∀s′ C s. s′ ∈ SN.
By Lemma 8, t ∈ gbars C {x | x � s} S. We show
S ⊆ SN. Let s B x and x ≥ρ v. Then x ∈ SN = wfp ρ
and so v ∈ SN. Thus, by the obvious monotonicity of
gbars, t ∈ gbars C {x | x � s} SN, as required for
Condition 1(b). 2

Corollary 10 Theorem 1 of [14] holds.

Proof. Theorem 1 of [14] says: if Property 1 and
conditions (iii) and (iv) (as given in [14]) hold, then
ρ is well-founded.

Condition (iv) of [14] is just condition (a) of our
Theorem 7 because SN of [14] is gindy C SN, and if
some u C s 6∈ SN , then s ∈ SN . Thus the require-
ment that “if every u C s is in SN” in the statement
of Theorem 1 of [14] is redundant, although its coun-
terpart is needed in the statement of Theorem 2 of
[14].

Condition (iii) of [14] says that C is well-founded.
Then, for any object v and set S of objects,
v ∈ bars C S, and so condition (b) of Theorem 7 fol-
lows.

Property 1 of [14] says that for (t, s) ∈ ρ, either
(a) or (b) of Lemma 9 holds. Finally, Lemma 9 shows
that if C is well-founded, as ensured by condition
(iii) of [14], then Property 1 implies Condition 1(b),
whence Condition 1(a) holds.

Thus all the conditions of Theorem 7 hold, so ρ is
well-founded. 2

We explore the extent to which, conversely, The-
orem 1 of Goubault-Larrecq [14] implies our Theo-
rem 7. We discuss in detail only whether our Condi-
tions 1(a) to (e) imply Property 1 of [14]. First we
note a sort of converse to Lemma 8: if (t, s) ∈ ρ ⇔
t ∈ gbars C {x | x � s} S then, by the definition of
gbars, (a) or (b) of Lemma 8 hold, even after deleting
“or u ∈ S” from (b).

Suppose Condition 1(c) holds: that is, with
S = {v | (v, s) ∈ (C ◦ ρ)}, we have (t, s) ∈ ρ ⇒
t ∈ gbars C {x | x � s} S. Since gbars is monotonic
in its third argument and S is monotonic in ρ, we can
enlarge ρ so that Condition 1(c) holds as an equiva-
lence, giving (a) and (b) of Lemma 9 (i.e. Property 1
of [14]).

That is, [14, Theorem 1] can be used to prove
a weaker version of our Theorem 1 in which Con-
dition 1(c), rather than Condition 1(a), is assumed,
and it is assumed that C is well-founded. On the
other hand, in Sections 4.1 and 4.2, the proofs of ter-
mination use Theorem 7, and, in particular, use Con-
dition 1(b). The difference between Condition 1(b)
and Condition 1(c) is crucial to these proofs, which
shows that [14, Theorem 1] is a special case of our
Theorem 7.

3.2 Generalising our Previous Theorem for
TRSs

We now apply Theorem 7 to the special case of a
TRS on terms of a first-order language T (Σ, V ) (see
[3, §3.1]), thereby showing that our main result from
[6] is a special case of Theorem 7. We consider a bi-
nary relation σ, which is the set of substitutional in-
stances of a set of rewrite rules, and so is closed under
substitutions. However σ itself is typically not mono-
tonic, ie, compatible with Σ-contexts (see [3, Defini-
tion 3.1.9]). So we define ctxt σ to be the “closure
under contexts” of σ: that is, where C[ ] is a context,
and (r, l) ∈ σ, then (C[r], C[l]) ∈ ctxt σ. Likewise
we define pctxt (“proper context”): for (r, l) ∈ σ, if
r and l are proper subterms of C[r] and C[l], then
(C[r], C[l]) ∈ pctxt σ.

In [6] we dealt with the termination of such rewrite
relations. In discussing that work we will use “σ”
for the relation there called “ρ”, which is the set of
substitutional instances of the rewrite rules. Then
the rewrite relation is ctxt σ, which here we will call
ρ. So SN = wfp ρ = wfp (ctxt σ). The relation C of
the previous sections will now be interpreted as the
immediate subterm relation.

Recall that in [6] we used a relation
<dt = <cut ∪ <sn1, where <cut was chosen by
the user, but <sn1 was defined to be the set of those
reductions where a strongly normalising immediate
subterm is reduced [6, Definition 3]. Then we apply
Theorem 7 by letting � be the relation <+

dt, which
is well-founded if and only if <dt is so. Also let �′

be <cut, so � = �′ ∪ <sn1. We now reproduce
Theorem 2 of [6] in our current notation, as Condi-
tion 2(a). Condition 2(b) implies Condition 2(a), is
more generally useful, and will be used in §5.

Condition 2

(a) For all (t, s) ∈ σ, if ∀s′ C
+ s. s′ ∈ SN

then, for all t′ C
∗ t, either t′ ∈ SN or t′ � s.

(b) For all (t, s) ∈ σ, and t′ C
∗ t,

either (t′, s) ∈ C ◦ (ρ ∪ C)∗ or t′ �′ s.

Theorem 11 If σ satisfies Condition 2(a), � con-
tains <sn1 and � is well-founded, then every term is
strongly normalising [6].

Proof. We apply Theorem 7 to this situation.
Since C is well-founded and we assume � is well-
founded, conditions (a) and (b) of Theorem 7 are sat-
isfied. It remains only to check that Condition 1(a)
holds. In fact we can show that the stronger Condi-
tion 1(d) holds.

Consider (t, s) ∈ ρ, and assume that ∀s′ C s.
s′ ∈ SN. As ρ = ctxt σ is closed under context, it
follows that any subterm of a strongly normalising
term is strongly normalising, so we can assume that
∀s′ C

+ s. s′ ∈ SN. For the case (t, s) ∈ σ, Condi-
tion 2(a) then implies that for t′ C

∗ t, either t′ ∈ SN
or t′ � s, and so Condition 1(d) holds in this case.

We also need to consider the case (t, s) ∈ ρ \ σ:
that is, where a proper subterm of s is reduced, using
σ, to the corresponding proper subterm of t. Consider
any subterm t′ of t. We show that either t′ ∈ SN or
t′ <sn1 s, whence t′ � s.

If t′ = t, then t′ <sn1 s by definition of <sn1. If
t′ is a proper subterm of t, then if there is a corre-
sponding subterm s′ of s such that either t′ = s′ or
(t′, s′) ∈ ctxt σ, then s′ and t′ are in SN. Otherwise,
there is a proper subterm s′ of s, where s′ is reduced
to t′′, so (t′′, s′) ∈ ctxt σ, and t′ is a subterm of t′′.
Then s′, t′′ and t′ are all in SN. So Condition 1(d)
holds for this case also. 2



3.3 Constricting Derivations

For a rewrite system on a first-order language (where
the reduction relation is closed under context), a
“constricting derivation” has been defined as an infi-
nite reduction sequence where each reduction occurs
at a subterm t whose proper subterms are all strongly
normalising [9].

For a rewrite relation ρ = ctxt σ, we define a con-
stricting reduction by: (t, s) ∈ constrict σ iff (t, s) ∈ σ
and the proper subterms of s are in wfp ρ. As before,
C is the immediate subterm relation, and <sn1 is de-
fined as in §3.2.

The following results are easily proved by methods
similar to those of [11].

Lemma 12 For all binary relations σ and τ :

(a) σ ◦ τ is well-founded if and only if τ ◦ σ is well-
founded

(b) if τ is well-founded then wfp (τ ∗◦σ) = wfp (σ∪τ)

(c) if τ is well-founded and τ ◦ σ ⊆ σ ◦ τ ∗, then
wfp (σ ∪ τ) = wfp σ.

The following theorem encapsulates mostly known
results, for example Lemma 1 of Hirokawa & Middel-
dorp [15] resembles: “if (4) then (7)”, and Proposi-
tion 1 of Borralleras, Ferreira & Rubio [4] is: “if (7)
then (6)”.

Theorem 13 The following are equivalent, where
ρ = ctxt σ:

(constrict σ ◦ C
∗) ∪ <sn1 is well-founded (1)

constrict σ ◦ C
∗ ◦ <∗

sn1 is well-founded (2)

C
∗ ◦ <∗

sn1 ◦ constrict σ is well-founded (3)

<∗

sn1 ◦ constrict σ ◦ C
∗ is well-founded (4)

ρ ◦ C
∗ is well-founded (5)

ρ ∪ C is well-founded (6)

ρ is well-founded (7)

ρ+ is well-founded (8)

ρ+∪ C is well-founded (9)

Proof. (3) ⇒ (7): If t0 is not in SN = wfp ρ, then
let t′0 be a minimal subterm of t0 which is not in SN—
so the proper subterms of t′0 are in SN. Consider any
infinite sequence of reductions from t′0 — these can-
not all be reductions of proper subterms as the latter
are in SN, so find t′′0 and t1 in this infinite sequence
such that (t′′0 , t′0) ∈ (ctxt σ \σ)∗ and (t1, t

′′
0) ∈ σ. Now

all proper subterms of t′0, of t′′0 and of all terms be-
tween them in the reduction sequence are in SN. So
(t1, t0) ∈ C

∗ ◦ <∗
sn1 ◦ constrict σ, and as t1 6∈ SN, a

(C∗ ◦ <∗
sn1 ◦ constrict σ)-sequence can be continued.

Similar proofs are in the literature, eg, [2, Theorem 6],
[15, Lemma 1].

(2) ⇔ (3) ⇔ (4): these follow from Lemma 12(a).
(1) ⇔ (4) : and (5) ⇔ (6) : follows from

Lemma 12(b), since <sn1 is well-founded.
(7) ⇒ (6) : (and (8) ⇒ (9) is similar) : follows from

Lemma 12(c), as C ◦ ρ ⊆ ρ ◦ C, as ρ is monotonic.
(6) ⇒ (7) : trivial, as ρ ⊆ ρ ∪ C

(9) ⇒ (4) : similarly trivial,
as <∗

sn1 ◦ constrict σ ⊆ ρ+

(8) ⇔ (7) is a standard result
(6) ⇒ all others : since every other relation men-

tioned is contained in (ρ ∪ C)+. 2

We now link Theorem 13 with Theorem 11, by
some simple proofs. Note that Condition 2(a) in §3.2
simply says: if (t′, s) ∈ constrict σ ◦ C

∗ then t′ ∈ SN
or t′ � s.

Let τ = (constrict σ ◦ C
∗) ∪ <sn1. We show SN =

wfp ρ ⊆ wfp τ . Since τ ⊆ (ρ ∪ C)+, so wfp (ρ ∪ C) ⊆
wfp τ . By Lemma 12(c), wfp ρ = wfp (ρ ∪ C).

Then, we can use Theorem 11 to prove (1) implies
(7). Let � = τ . Then Condition 2 holds trivially,
� ⊇ <sn1 and � is well-founded, which is just (1)
of Theorem 13. Hence, by Theorem 11, ρ is well-
founded.

The converse is also easy to prove, giving an al-
ternative proof of Theorem 11. Assume (1) ⇒ (7);
we will prove Theorem 11. Suppose the assumptions
of Theorem 11 hold, and we want to show its con-
clusion, (7). We show (1), ie, that τ is well-founded.
Let (t, s) ∈ τ . Then, if (t, s) ∈ <sn1, then t � s.
Otherwise, (t, s) ∈ constrict σ ◦ C

∗ and so t ∈ SN or
t � s by Condition 2.

Now SN ⊆ wfp τ , as shown above, so (t, s) ∈ τ
implies t ∈ wfp τ or t � s, where � is well-founded.
Thus any τ -descending chain either terminates or hits
a member of wfp τ : that is, every s ∈ bars τ (wfp τ).
So, by Lemma 4(b), every s ∈ wfp τ , as required.

4 Application to Typed Combinators

In [14] Goubault-Larrecq concludes that “Theorem 1
seems to be insufficient to show that every simply-
typed λ-term terminates”. He therefore takes notions
like “reducibility” and “the substitution of terms
for variables” from the classical strong normalisation
proof of the simply-typed λ-calculus [13] and gener-
alises them to obtain his Theorem 2 for termination
of higher-order path orderings.

As the λ-calculus can be imitated by using the
combinators S, K, I a related problem is to prove
the strong normalisation for well-typed combinator
terms. This result follows easily from the strong nor-
malisation of β-reduction. But to prove the converse,
that strong normalisation of β-reduction follows from
that of well-typed combinator terms, is not so easy:
one needs a translation from λ-terms to combinator
terms that preserves reducibility, such as of Akama
[1].

We now describe two ways to use our Theorem 7 to
prove strong normalisation of well-typed combinator
terms. These proofs resemble classic “reducibility”
arguments, but do not handle substitution of terms
for variables. By Theorem 2.2 of Akama [1], this is
enough to show strong normalisation of β-reduction.

Thus, the full power of the much more complex
Theorem 2 of [14] is not necessary for these tasks.
However, we have been unable to prove termination
of typed combinators using our [6, Theorem 2] as sug-
gested by an anonymous referee. Also, although we
could prove strong normalisation of the simply-typed
λ-calculus by adapting the proof of Theorem 7, we
could not prove it as a corollary of Theorem 7.

4.1 Reduction of Typed Combinator Expres-
sions

Of the usual combinators, the problematic ones are S
f g x = f x (g x) and W f x = f x x, since their right-
hand-sides duplicate x. Thus, in the untyped setting,
these do not satisfy strong normalisation: for exam-
ple, (SII)(SII) −→+ (SII)(SII), (WI)(WI) −→+

(WI)(WI), and WWW −→ WWW .
In the typed setting, we can use Theorem 7

to prove strong normalisation for combinators like
S, I, K, B, C, W , but we must actually add extra rules
to do so. Note that some rules are only applied to the
whole term, whereas others can also be applied to any
subterm. We use α, β, γ, . . . for types, and the nota-
tion < on types for the transitive relation given by:



α < (α → β) and β < (α → β). Let tyof t denote the
type of t, and let t <ty s mean tyof t < tyof s.

We show in detail how to handle only the S combi-
nator, but many other combinators like I, K, B, C, W
can be dealt with similarly, and the proof holds for the
single system containing all these combinators. We
define the relations σ and τ (as inductively defined
sets) by rules, as shown below for the combinator S.
Then let ρ = ctxt σ ∪ τ . Note that the extra rules
(11), (12) and (13) are added only because the proof
uses them: for clearly, if ρ ⊇ ρ′, and ρ terminates,
then so does ρ′. These rules are motivated by the
relation C

◦ of [14, §5]:

Sfgx >σ fx(gx) (10)

Sfg >τ fx(gx) if x ∈ SN (11)

Sf >τ fx(gx) if g, x ∈ SN (12)

S >τ fx(gx) if f, g, x ∈ SN (13)

with types S : (α → β → γ) → (α → β) → α → γ,
f : α→β→γ, g : α→β, x : α.

Note that “SN ” means with respect to ρ: that is,
τ and ρ (but not σ) are being defined, indirectly, in
terms of themselves. However the rule (10) preserves
the type of a term: so, when it is applied to a subterm,
the whole term remains well-typed. The rules for τ
change a well-typed term into a well-typed term of
<-smaller type. Further, where a rule for reducing
a term s depends on another term s′ being in SN ,
then s′ <ty s. For example, in rule (12), we have
Sf : (α→β)→α→γ, where g and x have <-smaller
types, g : α→β and x : γ.

That is, for s : α, the set {t | (t, s) ∈ ρ}
depends on σ and on {t | (t, s) ∈ τ}, which
depends on {s′ ∈ SN | tyof s′ < α}. For given
β < α, the set {s′ ∈ SN | s′ : β} depends on
{(x, s′′) ∈ ρ | tyof s′ ≤ β}. This ensures a consistent
definition, as for C

◦ in [14]. In effect, whether
(t, s) ∈ ρ, (t, s) ∈ τ and u ∈ SN are defined induc-
tively on the types of s and of u.

We say t <sn1 s if (t, s) ∈ ctxt σ via a reduction in
an immediate subterm which is itself in wfp (ctxt σ):
that is, where t and s differ only in corresponding
immediate subterms t′ and s′ with (t′, s′) ∈ ctxt σ and
s′ ∈ wfp (ctxt σ). (Note that the immediate subterms
of f x y are f x and y).

Lemma 14 Let � = <ty ∪ <sn1, and let C be the
immediate subterm relation. Then Condition 1(b)
holds.

Proof. Let (t, s) ∈ ρ and assume ∀s′ C s. s′ ∈ SN.
If (t, s) ∈ ρ via rule (11) (where s = Sfg), we have
g ∈ SN, so (t, Sf) ∈ ρ by rule (12). As Sf C s, we
have Sf ∈ SN, so t ∈ SN ⊆ gbars C {u | u � s} SN.
Similar arguments hold where (t, s) ∈ σ ⊆ ρ by rule
(10), and where (t, s) ∈ τ ⊆ ρ via rule (12).

If (t, s) ∈ τ ⊆ ρ via rule (13), then we see that
the subterms f, g and x of t are in SN, while the
subterms fx : β → γ, gx : β and t = fx(gx) : γ are of
<-smaller type than S. Thus any C-descending chain
from t consists of terms in {u | u � s} until reaching
a term in SN. That is, t ∈ gbars C {u | u � s} SN.

Finally, in the case where (t, s) ∈ pctxt σ by
rule (10), we have t′ C t and s′ C s such that
(t′, s′) ∈ ctxt σ. Since s′ ∈ SN ⊆ wfp (ctxt σ), we have
t <sn1 s and t � s. Now consider any t′′ C t. Either
t′′ = t′ and (t′, s′) ∈ ctxt σ as just discussed, in which
case s′ ∈ SN and so t′ ∈ SN, or t′′ is an immediate
subterm of s not affected by the reduction from s to
t, whence t′′ ∈ SN.

Therefore t ∈ gbars C {u | u � s} SN. 2

Theorem 15 Every term is strongly normalising.

Proof. We use Theorem 7. Apart from Lemma 14,
we need conditions (a) and (b) of Theorem 7. Con-
dition (b) holds as C is well-founded. Finally, to
show condition (a), we show that � is well-founded.
Clearly the “smaller type” relation < is well-founded,
and it is easy to show that <sn1 is well-founded.
Then, clearly, <ty ◦ <sn1 ⊆ <ty, and so, by [6,
Lemma 1], <ty ∪ <sn1 is well-founded. 2

Our rules (11), (12) and (13) were suggested by the
definition of C

◦ given just below Remark 13 in [14].
As in [14], therefore, there is a resemblance between
our proof and the classic reducibility argument: we
have, for example, that for S f g to be in SN, it is
necessary that for all x ∈ SN, S f g x ∈ SN, which
resembles the condition for reducibility in [13, §6.1].
Likewise, reducibility and our SN are both defined by
induction on the type.

4.2 A Second Proof for Typed Combinator
Expressions

We now present another way of using Theorem 7 to
prove the same result. This proof was suggested by a
presentation of the classic reducibility argument given
us by an unnamed referee. It is of independent inter-
est since, unlike the proof in §4.1, it uses a relation
C which is distinct from the usual immediate sub-
term relation. We define C and the reduction relation
ρ. Again, it is understood that terms are well-typed.
Combinators other than S could be included also.

Ni C MN1 . . .Ni . . . Nn for 1 ≤ i ≤ n (14)

M >ρ MN if N ∈ SN (15)

Sfgxy1 . . . yn >σ fx(gx)y1 . . . yn (16)

σ ⊆ ρ (17)

(x′

i, xi) ∈ ctxt σ ⇒

fx1 . . . xi . . . xn >ρ fx1 . . . x′

i . . . xn

(18)

Note that rules (16) to (18) together give
ctxt σ ⊆ ρ. These definitions are sound as before,
since again, a reduction preserves type or gives a re-
sult of <-smaller type, and reduction from s is defined
involving SN terms of <-smaller type. Note that, by
rule (15), if M, N ∈ SN then MN ∈ SN.

For this proof we define fx1 . . . xi . . . xn >sn1

fx1 . . . x′

i . . . xn where (x′

i, xi) ∈ ctxt σ and
xi ∈ wfp (ctxt σ). That is, as before, t <sn1 s if
(t, s) ∈ ctxt σ by means of reduction in a “C-subterm”
which is itself in wfp (ctxt σ).

Also as before, let � = <ty ∪ <sn1.

Theorem 16 Every term is strongly normalising.

Proof. We first show that Condition 1(b) holds.
Let (t, s) ∈ ρ and assume that ∀u � s. u ∈ gindy C

SN, and ∀v C s. v ∈ SN. If (t, s) ∈ ρ via rule (16),
we have f, g, x and each yi ∈ SN, so the combination
fx(gx)y1 . . . yn ∈ SN.

If (t, s) = (MN, M) ∈ ρ via rule (15), then t <ty s,
so t � s, and, for K C MN , either K = N which is
in SN, or K C M and so K ∈ SN.

Finally, where (t, s) ∈ ρ via rule (18), the argu-
ment is similar to that before: t <sn1 s, and for y C t,
there is x C s such that y ≤ρ x, so y ∈ SN.

That is, in each case, t ∈ gbars C {u | u � s} SN,
so Condition 1(b) holds.

From Condition 1(b), we prove that every term is
in SN as in Theorem 15. 2



5 Incremental Proofs of Termination

A rewrite system can be defined by taking the union
of two terminating systems. Obviously, it would be
desirable to be able to reduce a proof of termination
of such a system into two smaller proofs of termina-
tion of smaller systems. This is possible under cer-
tain conditions (see, eg, [12]), but not in general. We
show how Theorem 2 of [6], as described in §3.2, can
be used to prove termination incrementally in certain
cases. The assumptions we require of the component
systems are mentioned where they first become rele-
vant, and all appear in Theorem 21.

Let R0 be a set of rewrite rules, in a first-order lan-
guage, where the function symbols appearing in the
rules are from the set F0. Note, however, that the
variables appearing in those rules may be replaced by
any term (which may contain function symbols out-
side F0). The set of substitution instances of the rules
in R0 is the relation σ0, with corresponding rewrite
relation ρ0 = ctxt σ0.

We consider a rewrite system ρ0 which has been
proved terminating by any method, with only the ex-
tra condition that the rules R0 be right-linear : that
is, no variable appears more than once on the right-
hand side of a rule. Thus we define the R0-property,
(in which (b) and (d) are obviously necessary for any
terminating system), and assume throughout that R0

satisfies it. The R0-property is important for the
lemma which follows.

Definition 5 (R0-property) A rule satisfies the
R0-property if

(a) its function symbols are in the set F0

(b) its left-hand side is not a variable

(c) its right-hand side variables are not duplicated

(d) its right-hand side variables also appear on the
left-hand side

Lemma 17 Let σ be the set of substitution instances
of a set of rules satisfying the R0-property. Then

(a) For f 6∈ F0 and (t, s) ∈ σ,
if t′ = f(t) C

∗ t then t′ C
+ s.

(b) Let τ be a relation such that for (t, f(t)) ∈ τ ,
f 6∈ F0. Then σ ◦ pctxt τ ⊆ (pctxt τ)∗ ◦ σ.

We then consider a second rewrite system ρ1 =
ctxt σ1 whose “defined symbols” are from a set of
new symbols F1, where F0 ∩ F1 = ∅. That is, for
(t, s) ∈ σ1, s is of the form f(s), for some f ∈ F1

and some sequence s of terms. The system ρ1 is as-
sumed to have been proved terminating using The-
orem 11 above (ie, using Theorem 2 of [6]): that is,
by defining a relation �′

1 such that �1 = �′
1 ∪ <sn1

is well-founded, where <sn1 is defined in terms of ρ1

only.
In many examples of the use of Theorem 11, the

argument went as follows. Firstly, we let <sn2 be the
set of those reductions where a strongly normalising
proper subterm is reduced, so <sn1 ⊆ <sn2, and <sn2

is also necessarily well-founded. Secondly, using <sn2

in place of <sn1, we prove that �′ ∪ <sn2 is well-
founded by proving that �′ is well-founded and then
using [11] to prove that the union is well-founded,
often by proving that �′ ◦ <sn2 ⊆ <sn2

∗ ◦ �′ (see
Theorem 1 and Lemma 1 of [6]).

We will use this proof method. The key
point is to define a suitable relation �′: we will
use �′ = �′

0 ∪ �′
1, where �′

0 is a suitable rela-
tion which we derive from R0. To help prove
�′ ◦ <sn2 ⊆ <sn2

∗ ◦ �′ we will assume �′
1 satisfies

the �′
1-property :

Definition 6 (�′
1-property) A relation �′

1 sat-
isfies the �′

1-property if, for any relation σ,
�′

1 ◦ pctxt σ ⊆ (pctxt σ)∗ ◦ �′
1.

In fact, the �′
1-property could be weakened, to

apply only to certain choices of σ, and to match (d)
instead of (a) of [6, Lemma 1], and Theorem 21 still
holds. Details will be in [7]. The example in [6, §3.6]
satisfies only the weaker condition.

To define �′
0 we first define C0 and ctxt0, and then

a set of rules R�0:

Definition 7 (C0) t C0 f(. . . , t, . . .) if f ∈ F0.

Definition 8 (ctxt0) For (t, s) ∈ σ, if the subterms
of C[x] which are super-terms of x have head symbols
in F0 then (C[t], C[s]) ∈ ctxt0 σ.

Definition 9 (R�0) (r′0, l0) ∈ R�0 iff it satisfies
the R0-property and there exists r0 such that r′0 C

∗
0 r0

and r′0 is not a variable, and (r0, l0) ∈ ctxt0 R0.

Then let �′
0 be the set of substitution instances

of the rules in R�0. Clearly �′
0 ⊆ (ρ0 ∪ C)+ so �′

0
is well-founded.

We now can define �′ = �′
0 ∪ �′

1. If we
assume that for t �′

1 f(t), f ∈ F1, and that
�′

1 is well-founded, then �′ is well-founded as
�′

0 ◦ �′
1 = ∅. Then define � = �′ ∪ <sn2.

Since <sn2 is well-founded ([6, Theorem 1]), to show
that � is well-founded it would be enough to show
�′ ◦ <sn2 ⊆ <sn2

∗ ◦ �′. We cannot do this, but
we can choose a suitable subset <′

sn2 of <sn2 such
that � = �′ ∪ <′

sn2 and we prove that � is well-
founded in two steps.

We define τ1: (t, f(t)) ∈ τ1 iff f 6∈ F0. Recall that
SN means the set of strongly normalising terms, ie
SN = wfp (ctxt ρ). We define ρSN : (t, s) ∈ ρSN iff
s ∈ SN . Thus <sn2 = pctxt (σ ∩ ρSN ). Then the
required relation <′

sn2 is given in the following lemma,
whose proof is detailed but tedious, and which has
been proved in Isabelle ([8], file hier.ML), as have all
these results.

Lemma 18 Let

<′

sn2 = ctxt (τ1 ∩ pctxt (σ0 ∩ ρSN ))∪ pctxt (σ1 ∩ ρSN )

Let R0 satisfy the R0-property. Then
<′

sn2 ⊆ <sn2 ⊆ �′
0 ∪ <′

sn2.

Lemma 19 Assume hypotheses (a), (b) and (d) of
Theorem 21 below. Then

(a) �′
1 ∪ <sn2 is well-founded; so �′

1 ∪ <′
sn2 is

well-founded.

(b) �′
0 ◦ �′

1 = ∅ and �′
0 ◦ <′

sn2 ⊆ <′
sn2

∗ ◦ �′
0.

(c) �′
0 ∪ (�′

1 ∪ <′
sn2), that is, �, is well-founded.

Proof.

(a) This follows from [6, Lemma 1] as �′
1 satisfies

the �′
1-property.

(b) Recall that, for f(t) �′
0 s, f ∈ F0. Then use

Lemma 17(b).

(c) As �′
0 and, by (a), �′

1 ∪ <′
sn2 are well-

founded, we can use (b) and [6, Lemma 1(a)]
to get that �′

0 ∪ (�′
1 ∪ <′

sn2) is well-
founded. Then, by Lemma 18, this is
�′

0 ∪ (�′
1 ∪ <sn2) = �′ ∪ <sn2 = �. 2

Lemma 20 If R0 satisfies the R0-property, σ0 and
�′

0 satisfy Condition 2(b).



Proof. Let (t, s) ∈ σ0, got by substituting the
rule (t0, s0) ∈ R0, and let t′ C

∗ t. If t′ C
∗
0 t, then

(t′, s) ∈ �′
0. Otherwise, there must be f 6∈ F0 and a

sequence t of terms with t′ C
∗ f(t) C

∗ t, and then,
by Lemma 17(a), t′ C

∗ f(t) C
+ s, as required. 2

Theorem 21 Assume that

(a) rules R0 satisfy the R0-property, and give a ter-
minating rewrite system ρ0,

(b) relation �′
1 is well-founded and satisfies the

�′
1-property,

(c) σ1 and �′
1 satisfy Condition 2(b),

(d) for (t, s) ∈ σ1 ∪ �′
1, s is of the form f(s),

with f 6∈ F0.

Then ρ0 ∪ ρ1 is well-founded.

Proof. From assumption (c) and Lemma 20,
it can be seen that σ0 ∪ σ1 and �′

0 ∪ �′
1 satisfy

Condition 2(b). Then, since, by Lemma 19(c),
� = �′

0 ∪ �′
1 ∪ <sn2 is well-founded, and

<sn1 ⊆ <sn2, the result follows from Theorem 11. 2

6 An Incremental Path Ordering

We now use the previous results to describe an incre-
mental generalisation of the general path ordering of
Dershowitz & Hoot [10].

The incremental path ordering <ipo (or ipo) is then
defined as below, where s = s1, . . . , sm, t = t1, . . . , tn,
and s = f(s) and t = g(t). Let Λ(ipo) (or <Λ) be an
ordering on lists of terms, derived from <ipo, satisfy-
ing certain conditions given later: the common exam-
ples for Λ are the lexicographic or multiset extensions
of <ipo. As before we have a set of rules R0 satisfy-
ing the the R0-property. Again, let σ0 be the set of
substitution instances of the rules in R0, and let the
corresponding rewrite relation ρ0 = ctxt σ0 be well-
founded. Let < be a well-founded ordering on the
function symbols.

f 6∈ F0 si ≥ipo t

s >ipo t
(19)

f = g s >Λ t f 6∈ F0 ∀i ∈ {1, . . . , n}. s >ipo ti

s >ipo t
(20)

f > g f 6∈ F0 ∀i ∈ {1, . . . , n}. s >ipo ti

s >ipo t
(21)

(t, s) ∈ σ0

s >ipo t
(22)

(t, s) ∈ pctxt ipo

s >ipo t
(23)

Rules (23) and (22) imply ρ0 = ctxt σ0 ⊆ <ipo

and that ipo is closed under contexts. In the Isabelle
formulation ipo is an inductively defined set, where
ipo is the set of all pairs whose inclusion in ipo is
established by the rules given.

Note that if F0, and so R0 and σ0 are empty, then
this reduces to the recursive path ordering. In that
case, if Λ is the lexicographic or multiset ordering,
then rule (20) implies (23). Also, in that case, the
rules themselves imply that the defined path ordering
is transitive, and this fact is used in some proofs of
well-foundedness (see, eg, [10]). But when F0, R0

and σ0 are non-empty, it does not seem clear whether
<ipo is transitive, and our proof of termination does
not depend on it.

As in [6], we define a function fwf (“from well-
founded”) which maps a binary relation σ to a binary
relation fwf σ thus: (t, s) ∈ fwf σ iff (t, s) ∈ σ and
s ∈ wfp σ.

We now list the conditions on Λ required at some
point in the proof:

(a) Λ is a monotonic function

(b) if (s′i, si) ∈ τ then
((s1, . . . , s

′

i, . . . sm), (s1, . . . , si, . . . sm) ∈ Λ(τ)

(c) if σ is well-founded then Λ(σ) is well-founded

(d) if all si are in wfp τ and if (t, s) ∈ Λ(τ), then
(t, s) ∈ Λ(fwf τ)

In practice, condition (d) means that the depen-
dence of Λ(σ) upon σ is only as follows: whether
(t, s) ∈ Λ(σ) depends solely upon σ-comparisons be-
tween the si and the tj . The lexicographic and multi-
set extensions of an ordering satisfy these conditions.

The proof of termination consists mostly of com-
bining the proof of Theorem 21 above with ideas from
the proof of the termination of the recursive path or-
dering in [6, §3.7]. We omit the details, but note that
it has been proved using the Isabelle theorem prover,
see [8], in snabs/hpodef.{thy,ML}.

Theorem 22 Assume that

(a) rules R0 satisfy the R0-property, and give a ter-
minating rewrite system ρ0 = ctxt σ0,

(b) the relation < on the function symbols (see rule
(21)) is well-founded, and

(c) the ordering extension function Λ satisfies the
conditions listed above

Then <ipo is well-founded.

7 Observations and Conclusion

We have proved a theorem about termination of re-
duction rules which generalises the previous quite
general theorems, in [6] and the first theorem in [14].

We use our main theorem to prove the termination
of the reduction of well-typed combinator expressions.
One of our proofs takes advantage of the abstract set-
ting, using a relation C which is not the usual imme-
diate subterm relation.

The picture that emerges is the following.
Goubault-Larrecq’s Theorem 1 [14] can handle ARSs
but cannot handle reducibility arguments like those
required for combinators or the simply-typed λ-
calculus. Our [6, Theorem 2] handles TRSs but also
cannot handle such reducibility arguments. Our new
Theorem 7 handles both TRSs and some reducibil-
ity arguments, but had to be be modified to reason
indirectly about substitutions for the simply-typed λ-
calculus. An important goal is to find the exact rela-
tionship between [14, Theorem 2] and our Theorem 7.

Finally, we show how our main theorem can be
used to prove termination of a rewrite system defined
incrementally. We showed in [6] that our main theo-
rem strictly subsumes the termination of the recursive
path ordering. Since [12] contains a very general set
of results which are nonetheless based on the recursive
path ordering, neither it nor the work in §5 subsume
each other. A goal of further work is to explore the
relationship between their results and the work in §6.
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