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Abstract: A recently introduced cognition-driven formulation of space mapping (SM) is an efficient method for equal-ripple
optimisation of microwave filters. Feature frequency parameters and ripple height parameters are utilised. The technique
requires the assumption that the initial number of feature parameters is correct, and uses an equally divided passband
specification as a preliminary target. The present study proposes an enhanced technique which can correct the number of
feature frequency parameters, thus it can work well even if the filter response of the initial point has an incorrect number of
feature frequency parameters. Additionally, the enhanced technique incorporates filter design knowledge of the Chebyshev filter
function into cognition-driven SM. The authors propose to use the feature frequency parameters of the Chebyshev filter function
response curve to obtain the target for cognition-driven SM. A new trust region mechanism handles new parameters in the
proposed process of correcting the number of feature frequency parameters and guarantees convergence. The technique is
suitable for the design of filters with equal-ripple responses. It is illustrated by two microwave filter examples.

1 Introduction
Space mapping (SM) is nowadays an important methodology to
address computational challenges in microwave design
optimisation, such as electromagnetic (EM) optimisation [1, 2].
The SM concept takes advantage of the computational efficiency of
coarse models and the accuracy of fine models [1]. Coarse models
are typically empirical functions or equivalent circuits, which are
computationally efficient but the accuracy is low. Fine models can
be provided by an EM simulator, which is accurate, but
computationally intensive. SM establishes a mathematical link
between the coarse and fine models and directs the bulk of the
central processing unit-intensive computations to the coarse models
while preserving the accuracy of the fine models [2]. Recent
progress has focused on several areas, such as aggressive SM [2], a
cognition driven formulation of SM [3], portable SM for efficient
modelling [4], output SM [5], tuning SM [6], zero-pole SM [7],
parallel SM [8] and dynamic neuro-SM [9].

A further development in SM is to address the situation where
equivalent circuit coarse models are not available. In [10], to build
a coarse model for waveguide filters, a small number of accessible
modes in the method of moments are considered to obtain a faster
simulation at the expense of solution accuracy. In [11, 12], coarse
mesh EM simulations are used as coarse models. Sensitivity
information from EM simulations has been used to increase the
effectiveness of SM with EM-based coarse models [12].

Several other recent works have investigated the possible
feature parameters in model responses. Zeros and poles of filter
transfer functions are used as feature parameters for optimisation
and filter tuning in [7, 13]. In [14, 15], the feature parameters of
filter responses are used for design optimisation and statistical
analysis of microwave structures. In [16], the response features are
utilised to develop variable-fidelity feature-based modelling. The
cognition-driven formulation of SM in [3] uses two sets of
intermediate feature space parameters to increase the optimisation
efficiency and the ability to avoid being trapped in local minima.
This technique also addresses the challenge of SM when explicit
equivalent circuit coarse models are not available. It assumes that
the number of feature frequency parameters is correct, and uses an
equally divided passband specification as a preliminary target to

simplify the formulation. This technique in [3] can address most of
the cases, where engineers can obtain a Chebyshev response with a
correct number of feature frequency parameters at the initial
design. However, in some situations, it is not easy to determine the
proper EM geometry to achieve the ideal Chebyshev response
before optimisation. In these situations, the initial design may not
be close to the optimal solution, and the number of feature
frequency parameters of the starting point may even be incorrect.

The present study is a major advance over [3]. We propose an
enhanced cognition-driven SM technique that can work well even
if the number of feature frequency parameters is not correct. Our
proposed enhanced cognition-driven SM can correct the number of
feature frequency parameters so that the cognition-driven SM in [3]
can still be applied. Furthermore, in filter design, the feature
frequency parameters of the optimal solution are not uniformly
distributed. The proposed technique incorporates filter design
knowledge of the Chebyshev filter function into our cognition-
driven SM to further increase the efficiency and effectiveness of
optimisation. We propose to use the feature frequency parameters
of the Chebyshev filter function response curve to obtain the target
for our enhanced cognition-driven SM method. A new trust region
mechanism is formulated to handle new parameters in the proposed
process of correcting the number of feature frequency parameters
and to guarantee convergence.

2 Proposed algorithm to correct the number of
feature frequency parameters
2.1 Summary of the existing cognition-driven SM method [3]

For an equal-ripple bandpass filter, the filter response curve (e.g.
|S11| versus frequency) has several minima which are referred to as
feature frequency parameters. Let f represent a vector of such
feature frequency parameters. The maximum values of |S11| (in dB)
between these feature frequency points are also important features
of the response curve and are represented by ripple height
parameters. We use vector t to represent them.

Let x represent the physical/geometrical design variables. The
cognition-driven SM optimisation method has two stages. In the
first stage, we perform SM between x (i.e. the original optimisation
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variables) and the feature frequency parameters f. The mapping
from design variables to feature frequency parameters is used to
move all the feature frequency parameters into the design

specification passband by changing the design variables according
to a uniformly distributed target as follows:

fd

= f L f L + f H − f L
M − 1 ⋯ f L + f H − f L

M − 1 (M − 2) f H
T
,

(1)

where fd is the desired set of feature frequency parameters in the
first stage. M represents the number of poles of the filter. f L and f H
denote the lower and higher frequency edges of the filter passband,
respectively. In the second stage, the mapping from feature
frequency parameters f to ripple height parameters t is obtained.
Using the mappings from x space to f space and from f space to t
space, our method can minimise the variance of all the ripple
height parameters by changing the design variables. In (1), the
method requires the assumption that the number of feature
frequency parameters should be equal to the number of poles M.

2.2 Proposed method to find the ambiguous feature

For the cognition-driven SM optimisation method, a major
remaining challenge is when the number of feature frequency
parameters at the initial point is not equal to the number of poles,
as shown in Fig. 1a. The correct number of feature frequency
parameters for a four-pole waveguide filter response should be
four, while the response curve shown in Fig. 1a has only three.
This will give the target defined in (1) incomplete information,
which will make it difficult for the cognition-driven SM [3] to
proceed in the first stage. Therefore, we propose a new method to
address this situation. 

In the optimised filter design, feature frequency parameters
should be spaced apart, and the S-parameter response curve at each
feature frequency should behave as a sharp valley. Before such a
solution is found, some feature frequency parameters may be close
to each other to show only one minimum in the response curve
[13]. Two or more feature frequency parameters may combine to
produce only one valley in the filter response. Furthermore, based
on empirical observation we can find that the valley at that
minimum is smooth rather than sharp. Following our definition of
feature frequency parameters, we will still consider this minimum
as a single feature frequency parameter (even though it actually
represents one or more feature frequency parameters). In this study,
we call such a feature an ambiguous feature.

In the proposed technique, we first identify the ambiguous
feature frequency and then use derivative information of the
response curve to guide the correction of the number of feature
frequency parameters iteratively. Since this new process cannot be
guaranteed to converge by the trust region method used in the
previous technique [3], we further propose to add a new trust
region mechanism. This new trust region method is formulated to
address the new requirement of processing the ambiguous feature
in the proposed enhanced method.

Let x(k) be the current solution of x in the kth iteration, where k
represents the iteration number in the optimisation process. We
generate multiple sample points with a star distribution around x(k)

in the kth iteration. We perturb x(k) twice along each dimension,
once towards the positive direction and once towards the negative
direction. In this way, we find 2N sample points, where N is the
number of design variables. Let R(xi, ω) denote the response
corresponding to a vector of design variables xi at frequency ω and
the ith point in the star distribution, i = 1, 2, …, 2N + 1. We
perform EM simulations at all the 2N + 1 data points to obtain the
responses R(xi, ω) at xi, using 2N + 1 processors in parallel [8].
Fig. 1c shows typical response curves of 2N + 1 points generated
with star distribution. The algorithm uses parallel computation to
perform the 2N + 1 EM simulations simultaneously, therefore the
total computation time for the 2N + 1 EM simulations is similar to
(or only incrementally more than) that of a single EM simulation.

We can obtain the feature frequency parameters f (k) at x(k) as
follows:

Fig. 1  Four-pole waveguide filter
(a) Initial point of a four-pole waveguide filter with an incorrect number of feature
frequency parameters. The correct number of feature frequency parameters for the
four-pole waveguide filter response should be four, while this response curve has only
three, (b) Detailed information near one feature frequency. We calculate the left slope
of feature frequency f m using the S-parameters at frequency samples f m, ( f m − Δ f ),
( f m − 2Δ f ), and ( f m − 3Δ f ), (c) 2N + 1 response curves generated with the star
distribution in parallel, (d) Detailed information near the ambiguous feature (Point A).
Point B is located on the response curve where the S-parameter is −1 dB. Point C is
located on the response curve where S-parameter is at a maximum between two
feature frequency parameters
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f (k) = f 1 f 2 ⋯ f M′
T (2)

where M′ represents the present number of feature frequency
parameters in the current iteration. If M′ is not equal to M, we
should correct the number of feature frequency parameters by
changing the values of design variables x such that M′ becomes
equal to M. To find the ambiguous feature, here we introduce a new
concept which defines the sharpness of the feature frequency
parameters. Let V f m be defined as the sharpness parameter of a
feature frequency f m, where f m represents the mth feature
frequency parameter for m = 1, 2, …, M′. Let Δ f  be defined as the
frequency step in the simulated response curve. We obtain three
closest frequency samples ( f m − Δ f ), ( f m − 2Δ f ), and ( f m − 3Δ f )
on the left side of feature frequency f m, which are shown in
Fig. 1b. Let v be defined as a frequency vector which contains
those four frequency samples, i.e.
v = f m ( f m − Δ f ) ( f m − 2Δ f ) ( f m − 3Δ f ) T. Let u be
defined as a vector which contains the S-parameters of those four
frequency samples in v. We use a linear fit method to find a linear
function

u = α + βv, (3)

where α and β represent the coefficients of the linear function
which can be analytically solved.

Let β f m
l  and β f m

r  be defined as the left slope and right slope of
the feature frequency parameter f m, respectively. The left slope β f m

l

of a feature frequency parameter f m is determined by

β f m
l = β (4)

Similarly, we can obtain the right slope β f m
r  of the feature frequency

parameter f m, using three closest frequency samples on the right
side of feature frequency parameter f m.

Here we define the sharpness parameter V f m of a feature
frequency parameter f m as

V f m = β f m
l + β f m

r , ∀m = 1, 2, …, M′ . (5)

We can find the ambiguous feature frequency f a, which has the
lowest sharpness parameter value among that of all the feature
frequency parameters

V f a = min {V f 1, V f 2, …, V f M′} . (6)

2.3 Proposed method to split the ambiguous feature
according to the derivative information of the response curve

After finding the ambiguous feature, we try to obtain derivative
information around it to split it into multiple feature frequency
parameters by adjusting the values of the design variables. Here we
distinguish between two types of curves near the ambiguous
feature frequency, which are curve AB and curve AC shown in
Fig. 1d. Point A represents the ambiguous feature point, where the
ambiguous feature frequency f a is obtained by (6). Point B is
located on the response curve where the S-parameter is −1 dB.
Point C is located on the response curve where the S-parameter is
at maximum between two feature frequency parameters. Let f b and
f c be the frequencies at point B and point C, respectively.

In reality, there are three different cases for the location of the
ambiguous feature. In the first case, the ambiguous feature is the
smallest among all the feature frequency parameters. Second, the
ambiguous feature is located between other feature frequency
parameters. In the third case, the ambiguous feature is the largest
among all the feature frequency parameters. The curve types near
the ambiguous feature in the first case are curve BA and AC, which
are shown in Fig. 1d. The curve types near the ambiguous feature

in the second case are curve CA and AC. The curve types in the
third case will be curve CA and AB.

We further formulate a quantitative description of the response
curves near the ambiguous feature. Let βL and βR be defined as the
slopes of curve BA and curve AC. For the example shown in
Fig. 1d, we divide the frequency range between A and B of the
response curve into six equal parts. We pick three frequency points
f a − (( f a − f b)/6) , f a − (( f a − f b)/3) and f a − (( f a − f b)/2)

that are close to the ambiguous feature frequency on curve BA. We
also obtain the S-parameters at those three frequency points and f a.
Then the slope βL of curve BA can be obtained by the linear fit
method (3) and (4). Similarly, we obtain three more frequency
points f a + (( f c − f a)/6) , f a + (( f c − f a)/3)  and
f a + (( f c − f a)/2)  that are close to the ambiguous feature

frequency on curve AC. The slope βR of the curve AC on the right
side of the ambiguous feature can be obtained.

The basic idea for splitting the ambiguous feature frequency is
to adjust design variables x to increase the absolute value of βL and
βR. As shown in Fig. 1d, when the design variables change, the
slopes βL and βR vary. We want to build a mapping from the slopes
βL and βR to the design variables x. Let J1 represent the mapping
matrix from slopes βL and βR to the design parameters x. Using the
2N + 1 EM data, we can obtain J1 as follows:

J1 = ∂[βL βR]
∂x

T
(7)

Let βL
(k) and βR

(k) represent the slopes βL and βR in the kth iteration.
Once the mapping J1 is built, we can increase the absolute values
of the slopes by changing the design variables x(k) in the kth
iteration, so that the ambiguous feature will be split. Here we
define an error function as

E1(s) = g([J1
(k)s]1, 1, 2βL

(k)) + g([J1
(k)s]2, 1, 2βR

(k)), (8)

where s is the prospective change of design variables x in the
optimisation process, and function g with two real inputs p and q is
defined as

g(p, q) = p − q , if p ⩽ q
0, else (9)

and J1
(k) is the mapping matrix J1 in the kth iteration. By minimising

E1 in (8), we aim to increase the absolute values of the slopes βL
(k)

and βR
(k). In our practice, we set our goal such that this increase is

by a factor of at least 2, as implied in (8).
At the same time, we want to fix the locations of the non-

ambiguous feature frequency parameters to prevent them from
moving together to form another ambiguous feature. Therefore, we
also consider the mapping from the non-ambiguous feature
frequency parameters to the design variables. Let J2 represent the
mapping matrix from the non-ambiguous feature frequency
parameters to the design parameters x. Using 2N + 1 EM data, we
can calculate J2 as follows:

J2 = ∂ f ′T

∂x

T
, (10)

where f ′ represents a vector of the non-ambiguous feature
frequency parameters.

To keep the locations of the non-ambiguous feature frequency
parameters fixed, we define a new error function as

E2(s) = ∥ J2
(k)s ∥, (11)
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where J2
(k) is the mapping matrix J2 in the kth iteration. E2 aims at

fixing the locations of non-ambiguous feature frequency
parameters.

Subsequently, we can solve for the change s(k) in the kth
iteration by

s(k) = arg min
∥ s ∥ ⩽ δ(k)

(E1(s) + λE2(s)), (12)

where δ(k) is the trust radius and s(k) is the prospective change of
design variables x in the kth iteration. λ is a weighting factor,
which is used to provide a balance between the importance of
fixing the locations of the feature frequency parameters and
increasing the values of the slopes βL and βR.

2.4 Trust region method for splitting the ambiguous feature

The trust region method described in the previous cognition-driven
SM method [3] does not work here, because of the new procedure
of changing the number of feature frequency parameters. Here we
define a new specific trust region method to guarantee a consistent
increase in the slopes so that the ambiguous feature can be split.

Once s(k) is determined, we perform 2N + 1 EM simulations
using the star distribution in parallel around the new centre
(x(k) + s(k)); subsequently, we can obtain f x(k) + s(k) , which
represents the feature frequency parameters at (x(k) + s(k)). The
stopping criterion is that the number of feature frequency
parameters increases, and this means the ambiguous feature is split.

If the number of feature frequency parameters remains the
same, we calculate the slopes βL and βR at (x(k) + s(k)). For
convenience, we let βL

s  and βR
s  represent the βL and βR at

(x(k) + s(k)).
We calculate the adjustment index r for the trust radius

according to the changes of slopes at (x(k) + s(k))

r = U(βL
(k), βR

(k)) − U(βL
s , βR

s )
U(βL

(k), βR
(k)) − U(βL

(k) + [J1
(k)s(k)]1, 1, βR

(k) + [J1
(k)s(k)]2, 1)

, (13)

where U is the objective function with two inputs z1 and z2 defined
as

U(z1, z2) = g(z1, 2βL
(k)) + g(z2, 2βR

(k)) . (14)

If the number of feature frequency parameters remains the same,
and the following condition

U(βL
s , βR

s ) ⩽ U(βL
(k), βR

(k)) (15)

is satisfied, we accept the step s(k) and update the design variables
as

x(k + 1) = x(k) + s(k) (16)

At the same time, we should update the radius of the trust region
using the following equation [17]:

δ(k + 1) =
0.618∥ s(k) ∥, if r < 0.1,
min 1.214δ(k), Δ∗ , if r > 0.8,
∥ s(k) ∥, otherwise,

(17)

where Δ∗ is the maximum value of the trust radius.
If (15) is not satisfied, x(k) will be kept unchanged, and a new

s(k) is calculated by solving (12) with the updated trust radius
δ(k) = δ(k + 1). Once the ambiguous feature is split (i.e. the number of
feature frequency parameters increases), the algorithm stops. To
make our proposed method more robust, we terminate the

algorithm if one of the following conditions is satisfied:
∥ x(k + 1) − x(k) ∥ < 10−2 or δ(k + 1) < 10−3 [18].

2.5 Discussion

The process from (2) to (17) splits one ambiguous feature. After
the process is finished, if the number of the feature frequency
parameters is still not equal to the number of poles M, the process
from (2)–(17) should be repeated until we obtain the correct
number of feature frequency parameters.

In this study, our proposed method can determine the
ambiguous feature parameters using (3)–(6), when two overlapping
poles of the transfer function are relatively far from the imaginary
frequency axis. When two poles are in the complex plane and close
to the frequency axis, the sharpness parameter value of ambiguous
feature parameter may be comparable with that of non-ambiguous
feature parameters. In this situation, the method followed in this
study may not be effective. This may be a direction of future
research.

There are various types of filters with different transfer
functions, such as bandpass, lowpass or highpass filters with
Chebyshev, Elliptic, Butterworth, or Chained transfer functions. In
this study, we focus on the challenges for designing bandpass
filters with Chebyshev and Elliptic transfer functions. Designing
other types of filters, where preserving precise locations for
transmission zeros is important, is equally important and a heavy
task. The technique followed in this study may not be effective.
This is a possible direction for future research.

3 Chebyshev filter response target for the first
stage of enhanced cognition-driven SM
Another improvement of the cognition-driven SM method is to
incorporate more specific filter design knowledge into the
formation to further enhance optimisation.

In the cognition-driven SM technique [3], the passband
specified for the filter is divided into (M − 1) equal parts and the
desired feature frequency parameters in the first stage are
uniformly distributed. This equally divided target for the first stage
simplifies the formulation. However, the feature frequency
parameters of an optimal filter solution do not follow a uniform
distribution unless the number of feature frequency parameters is
equal to 3.

In this study, we use the Chebyshev filter equation [19] to
model the real filter response and propose to use the feature
frequency parameters of the Chebyshev filter response as the target
feature frequency parameters for the first stage of cognition-driven
SM.

We can obtain the Chebyshev filter transfer function using the
order number M and design specifications. Later we find the
feature frequency parameters of this Chebyshev filter response by
solving

|H(jω) | = 1 (18)

A comparison between the uniformly distributed target and that
obtained by the Chebyshev function is shown in Figs. 2b and 3b.
Fig. 4 shows the flowchart of our enhanced cognition-driven SM
technique. 

4 Examples
4.1 Optimisation of a four-pole waveguide filter

The first example under consideration is a four-pole waveguide
filter [10]. The tuning elements are penetrating posts of square
cross-section placed at the centre of each cavity and each coupling
window, as shown in Fig. 2a. h1, h2 and h3 are the heights of the
posts in the coupling windows, and hc1, hc2 are the heights of the
posts in the resonant cavities. The design variables are
x = [h1 h2 h3 hc1 hc2]T.

In our work, the EM evaluation is performed by the ANSYS
HFSS EM simulator using the fast simulation feature. The desired
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filter response has been chosen to be standard four-pole Chebyshev
curve of 300-MHz bandwidth, |S11 | ⩽ − 23 dB, and centred at 11 
GHz.

There are two different cases for the number of feature
frequency parameters of the filter response at the starting point. In
Case I, we use a starting point with the correct number of feature
frequency parameters, i.e., M′ = M = 4. We use both the existing
cognition-driven SM and our new enhanced technique to optimise
this filter. For comparison, we use coarse and fine mesh SM and
direct EM optimisation to optimise this filter. The comparison
results are shown in Table 1. From the table, we can find both the
existing cognition-driven SM method and the proposed enhanced
technique work well. Since the feature frequency parameters of the
Chebyshev filter response are used as the target in Stage 1 of our
proposed technique, the result in Stage 1 of our proposed technique
produces a better starting point for Stage 2, shown in Fig. 2b.
However, both the direct EM optimisation method and coarse and
fine mesh SM are trapped in a local minimum. 

In Case II, the number of feature frequency parameters at the
starting point is incorrect. The starting point is
x(0) = [3.030 4.670 4.304 3.490 3.018]T (all values in mm).
The response curve of the starting point has only three feature
frequency parameters as shown in Fig. 5a. This incorrect number

of feature frequency parameters will give the target defined in (1)
incomplete information, which will make it difficult for the
existing cognition-driven SM [3] to proceed in the first stage.
Therefore, our proposed technique is needed. At the beginning of
the optimisation, our algorithm can find that the first feature
frequency parameter is the ambiguous feature. The sharpness
parameters of those three feature frequency points are 8.831,
4.926 × 104 and 9.578 × 104, respectively. We can find that the
sharpness parameter of the ambiguous feature is obviously smaller
than that of non-ambiguous feature frequency parameters. After
finding the ambiguous feature, we use our technique to split the
ambiguous feature. Using our proposed technique, the solution
with four feature frequency parameters is obtained after one
iteration (8 min). The responses of the initial point and the first
iteration are shown in Fig. 5a. From the figure, we can find that our
algorithm can split the ambiguous feature while the locations of
non-ambiguous feature frequency parameters are almost
unchanged. 

For comparison purposes, we use implicit coarse and fine mesh
SM and direct EM optimisation to optimise this filter until the

Fig. 2  Figures for Example 1
(a) Structure of the four-pole waveguide filter with design variables
x = [h1 h2 h3 hc1 hc2]T and the implicit coarse and fine mesh SM parameters w1,
w2 and w3, (b) Results in Stage 1 of the existing cognition-driven SM method and our
proposed technique for the four-pole waveguide filter in Case I. Round dots (∙)
represent the target obtained by the Chebyshev function in the proposed technique,
and the triangles (Δ) represent the uniformly distributed target in the existing
cognition-driven SM method, (c) Feature space objective functions for the four-pole
waveguide filter example in Case II. In Stage 1, the objective function of f represents
the error between the feature frequency parameters and the target. In Stage 2, the
objective function represents the variance of ripple height parameters t

 

Fig. 3  Figures for Example 2
(a) Structure of the iris coupled cavity filter with design variables
x = [W1 W2 W3 W4 Hc1 Hc2 Hc3]T and the implicit coarse and fine mesh
SM variables h1, h2, h3 and h4, (b) Results in Stage 1 of the existing cognition-driven
SM method and our proposed technique for the iris coupled cavity filter in Case I.
Round dots (∙) represent the target obtained by the Chebyshev function and triangles
(Δ) represent the uniformly distributed target in the existing cognition-driven SM
method. The result in Stage 1 of our proposed enhanced technique produces a much
better starting point for Stage 2, (c) Feature space objective functions for the iris
coupled cavity filter examples. In Stage 1, the objective function of f represents the
error between the feature frequency parameters and the target. In Stage 2, the objective
function represents the variance of ripple height parameters t
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ambiguous feature is split. Fig. 5b shows that implicit coarse and
fine mesh SM splits the ambiguous feature in one iteration, and
takes more than 2 h in order to finish one SM iteration. The
computation time is mostly spent on coarse mesh EM
optimisations. Fig. 5c shows that direct EM optimisation achieves
our goal to split the ambiguous feature into six iterations and that it
takes nearly half an hour. We can find that our enhanced cognition-
driven SM technique can quickly split the ambiguous feature to

produce a good result with the correct number of feature frequency
parameters.

After obtaining a solution with the correct number of feature
frequency parameters, we use our enhanced technique to continue
the optimisation. We can obtain the Chebyshev filter transfer
function with the order number 4 and design specifications using
the cheby1 function in Matlab. The feature frequency parameters
of the Chebyshev filter response are obtained using (18) and then
used as the target at Stage 1 of our proposed technique. The
optimal solution x(7) = [3.407 4.083 3.571 3.295 2.978]T

(all values in mm) is obtained after seven iterations, which include
four iterations in Stage 1 and three iterations in Stage 2. Fig. 6a
shows the result of Stage 1. The final result of our proposed
method is shown in Fig. 6b. All the feature space objective
functions [3] are shown in Fig. 2c. 

For comparison purposes, we use implicit coarse and fine mesh
SM to optimise this filter with the same starting point and the same
specifications as those shown in Fig. 5a. The result is shown in
Fig. 6c. The direct EM optimisation is also performed for
additional comparison and the result shown in Fig. 6d. The results
in Fig. 6 and Table 2 show that both implicit coarse and fine mesh
SM and direct EM optimisation fall into local minima. The existing
cognition-driven SM method cannot work well when the number of
feature frequency parameters is not correct at the initial point. Our
enhanced method can solve the initial point with an incorrect
number of feature frequency parameters and achieves a better
result within less time. 

4.2 Optimisation of an iris coupled cavity filter

Consider the iris coupled cavity microwave bandpass filter shown
in Fig. 3a [3]. The heights of the big cylinders Hc1, Hc2, and Hc3

positioned at the cavity centres are responsible for tuning the
frequencies in the cavity. The required coupling bandwidths are
accomplished via the iris widths W1, W2, W3, and W4 for a pre-

Fig. 4  Flowchart of the enhanced cognition-driven SM technique
 

Table 1 Comparisons of four optimisation methods for the
four-pole waveguide filter example with correct number of
feature frequency parameters at the initial filter in Case I
Optimisation
method

Direct EM
optimisation

(existing
technique)

Coarse/
fine mesh

SM
(existing

technique)

Cognition-
driven SM
(existing

technique)

Enhanced
cognition

SM
(proposed
technique)

no. of
iterations

660 4 8 7

fine model
evaluation
time

660 × 4 min 5 × 4 min (9 + 6a) × 6 
min

(8 + 6a) × 6 
min

training time — 3 × 1 h 8 × 1 min 7 × 1 min
design
optimisation
time

— 4 × 1 h 8 × 1 min 7 × 1 min

total time 44 h 7 h 20 min 1 h 46 min 1 h 40 min
final value of
objective
function

25.42 (being
trapped in

local
minimum)

98.21 (being
trapped in

local
minimum)

 − 0.06  − 0.02

aThe number of EM simulations, which are not accepted during the trust region
adjustment.
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tuning. The design variables are
x = [W1 W2 W3 W4 Hc1 Hc2 Hc3]T.

We provide the design specifications |S11 | ⩽ − 20 dB in the
frequency range 703–713 MHz, and |S21 | ⩽ − 10 dB in the
frequency ranges 690–701 and 715–720 MHz.

There are two different cases for the number of feature
frequency parameters at the starting point. In Case I, we use a
starting point with the correct number of feature frequency
parameters, i.e. M′ = M = 6. We use both the existing cognition-
driven SM and our proposed enhanced technique to optimise this
filter. For comparison, we also use coarse and fine mesh SM and
direct EM optimisation to optimise this filter. The comparison
results are shown in Table 3. From the table, we find that both the
existing cognition-driven SM method and the proposed enhanced
technique work well. Since the feature frequency parameters of the
Chebyshev filter response are used as the target at Stage 1 of our
proposed technique, the result in Stage 1 of our proposed enhanced
technique produces a better starting point for Stage 2, shown in
Fig. 3b. However, both direct EM optimisation and coarse and fine
mesh SM are trapped in local minima. 

In Case II, the number of feature frequency parameters at the
starting point is incorrect. The starting point is

Fig. 5  Different methods to split the ambiguous feature for the four-pole
waveguide filter in Case II
(a) Our enhanced cognition-driven SM method takes one iteration (8 min), (b) Implicit
coarse and fine mesh SM takes one iteration (2 h 4 min), (c) Direct EM optimisation
takes six iterations (28 min)

 

Fig. 6  Comparison of the results for three different optimisation methods
for the four-pole waveguide filter with an incorrect number of feature
frequency parameters at the starting point in Case II
(a) Using our enhanced cognition-driven SM method, all of the feature frequency
parameters move to the passband according to the target obtained by the Chebyshev
filter function after the first stage, (b) Using our enhanced cognition-driven SM
method, a good equal-ripple response is obtained after seven iterations, and our
method can avoid being trapped in a local minimum, (c) Using the implicit coarse and
fine mesh SM method, the optimisation process falls into a local minimum, (d) Using
direct EM optimisation, the optimisation process falls into a local minimum

 

88 IET Microw. Antennas Propag., 2018, Vol. 12 Iss. 1, pp. 82-91
This is an open access article published by the IET under the Creative Commons Attribution -NonCommercial License

(http://creativecommons.org/licenses/by-nc/3.0/)



x(0) =
[113.410 56.322 53.416 58.406 43.645 49.885 50.126]T

(all values in mm). The response curve of this starting point has
only five feature frequency parameters as shown in Fig. 7a. This
incorrect number of feature frequency parameters will give the
target defined in (1) incomplete information, which makes it
difficult for the existing cognition-driven SM [3] to proceed in the
first stage. Therefore, our proposed technique is needed. Our
algorithm can firstly find that the second feature frequency
parameter is the ambiguous feature. The sharpness parameters of
the five feature frequency points are 1449.950, 0.512, 1590.920,
1505.244, and 1172.158, respectively. We can find that the
sharpness parameter of the ambiguous feature (the second one) is
obviously smaller than that of non-ambiguous feature frequency

parameters. After finding the ambiguous feature, we use our
technique to split the ambiguous feature. The number of feature
frequency parameters is increased from five to six after splitting
the ambiguous feature using one iteration (42 min). The responses
of the initial point and the first iteration are shown in Fig. 7a. From
the figure, we can find that our algorithm can split the ambiguous
feature while the locations of non-ambiguous feature frequency
parameters are almost unchanged. 

For comparison purposes, we use implicit coarse and fine mesh
SM and direct EM optimisation to optimise this filter until the
ambiguous feature is split. Fig. 7b shows that the implicit coarse
and fine mesh SM method can split the ambiguous feature into one
SM iteration, and takes more than 10 h to finish one SM iteration.
The computation time is mostly spent on coarse mesh EM
optimisations. Fig. 7c shows that direct EM optimisation achieves
our goal to split the ambiguous feature into six iterations and that
takes nearly 3 h. We can find that our enhanced technique uses the
shortest time to split the ambiguous feature to produce a good
result with the correct number of feature frequency parameters.

After obtaining the solution with enough feature frequency
parameters, we use our enhanced technique to continue the

Table 2 Comparisons of four optimisation methods for the
four-pole waveguide filter example with incorrect number of
feature frequency parameters at the initial filter in Case II
Optimisation
method

Direct EM
optimisation

(existing
technique)

Coarse/
fine mesh

SM
(existing

technique)

Cognition-
driven SM
(existing

technique)

Enhanced
cognition

SM
(proposed
technique)

no. of
iterations

600 3 — 1a + 7

fine model
evaluation
time

600 × 4 min 4 × 4 min — (1a + 8 + 6b) 
× 6 min

training time — 2 × 1 h — 8 × 1 min
design
optimisation
time

— 4 × 1 h — 8 × 1 min

total time 40 h 5 h 16 min — 1 h 46 min
final value of
objective
function

152.15 (being
trapped in

local
minimum)

28.27 (being
trapped in

local
minimum)

cannot work
wellc

−0.02

aThe iteration to split the ambiguous feature.
bThe number of EM simulations, which are not accepted during the trust region

adjustment.
cThe existing cognition-driven SM cannot proceed because of the incorrect

number of feature frequency parameters.
 

Table 3 Comparisons of four optimisation methods for the
iris coupled cavity filter example with correct number of
feature frequency parameters at the initial filter in Case I
Optimisation
method

Direct EM
optimisation

(existing
technique)

Coarse/
fine mesh

SM
(existing

technique)

Cognition-
driven SM
(existing

technique)

Enhanced
cognition

SM
(proposed
technique)

no. of
iterations

300 3 12 9

fine model
evaluation
time

300 × 30 min 4 × 30 min (13 + 3a) × 
40 min

(10 + 2a) × 
40 min

training time — 2 × 5 h 12 × 1 min 9 × 1 min
design
optimisation
time

— 3 × 4 h 12 × 1 min 9 × 1 min

total time 150 h 24 h 11 h 8.5 h
final value of
objective
function

239.77 (being
trapped in

local
minimum)

232.61
(being

trapped in
local

minimum)

−0.17 −0.04

aThe number of EM simulations, which are not accepted during the trust region
adjustment.

 

Fig. 7  Different methods to split the ambiguous feature for the iris coupled
cavity filter in Case II
(a) Our enhanced cognition SM method takes one iteration (42 min), (b) Implicit
coarse and fine mesh SM takes one iteration (10 h), (c) Direct EM optimisation takes
six iterations (3 h)
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optimisation. The optimal solution
x(9) =
[120.068 52.409 45.445 48.550 41.715 50.143 50.351]T

(all values in mm) is obtained after nine iterations, which include
seven iterations in Stage 1 and two iterations in Stage 2. Fig. 8a
shows the final result for Stage 1. We can find that after Stage 1 the
result is very close to an equal-ripple Chebyshev filter response.
Obviously, the Chebyshev target for Stage 1 is much better than the
previous uniformly distributed target. The final result of our
enhanced technique is shown in Fig. 8b. All the feature space
objective functions [3] are shown in Fig. 3c. 

For comparison purposes, we use implicit coarse and fine mesh
SM and the direct EM optimisation to optimise this filter with the
same initial point and the same specifications as those shown in
Fig. 7a. The results are shown in Figs. 8c and d. The results in
Fig. 8 and Table 4 show that both implicit coarse and fine mesh
SM and the direct EM optimisation fall into local minima. Our
enhanced method can solve the initial point with an incorrect
number of feature frequency parameters, increase the optimisation
efficiency and find a better result within less time. 

5 Conclusion
Our cognition-driven formation of SM is an effective method for
equal-ripple optimisation of microwave filters. This technique
increases the optimisation efficiency and has the ability to avoid
being trapped in a local minimum. The existing cognition-driven
SM assumes that the number of feature parameters is correct, and
uses an equally divided passband specification as the target in the
first stage. This study proposes an enhanced technique which can
run successfully even if the number of feature frequency
parameters is incorrect in the initial design. Additionally, our
proposed technique incorporates filter design knowledge of the
Chebyshev filter function into cognition-driven SM. To obtain the
target for the first stage, we use feature frequency parameters of the
Chebyshev filter function response curve to replace the equally
divided passband specifications. With this new target, our
enhanced cognition-driven SM can obtain a good result in the first
stage and give a better starting point for the second stage. Our
enhanced cognition-driven SM method can increase the
optimisation efficiency and has the ability to avoid being trapped in
a local minimum over the existing coarse and fine mesh SM and

Fig. 8  Comparison of the results for three different optimisation methods
for the iris coupled cavity filter example with an incorrect number of
feature frequency parameters at the initial filter in Case II
(a) Using our enhanced cognition-driven SM method, all of the feature frequency
parameters move to the passband according to the target obtained by the Chebyshev
filter function after the first stage, (b) Using our enhanced cognition-driven SM
method, a good equal-ripple response is obtained after nine iterations, and our method
can avoid being trapped in a local minimum, (c) Using the implicit coarse and fine
mesh SM, the optimisation process falls into a local minimum, (d) Using the direct
EM optimisation, the optimisation process falls into a local minimum

 

Table 4 Comparisons of four optimisation methods for the
iris coupled cavity filter example with incorrect number of
feature frequency parameters at the initial filter in Case II
Optimisation
method

Direct EM
optimisation

(existing
technique)

Coarse/
fine mesh

SM
(existing

technique)

Cognition-
driven SM
(existing

technique)

Enhanced
cognition

SM
(proposed
technique)

no. of
iterations

200 3 — 1a + 9

fine model
evaluation
time

200 × 30 min 4 × 30 min — (1a + 9 + 7b) 
× 40 min

training time — 2 × 5 h — 10 × 1 min
design
optimisation
time

— 3 × 4 h — 10 × 1 min

total time 100 h 22 h 16 min — 12 h
final value of
objective
function

151.60 (being
trapped in

local
minimum)

114.82
(being

trapped in
local

minimum)

can't work
wellc

−0.11

aThe iteration to split the ambiguous feature.
bThe number of EM simulations, which are not accepted the during trust region

adjustment.
cThe existing cognition-driven SM cannot proceed because of the incorrect

number of feature frequency parameters.
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direct EM optimisation methods. This enhanced technique is well
suited to the EM-based design of Chebyshev- and elliptic-type
filters and is more robust than the previous cognition-driven SM
method.
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