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Abstract

Spatial localization is a common feature of physical systems, occur-
ring in both conservative and dissipative systems. This article reviews
the theoretical foundations of our understanding of spatial localiza-
tion in forced dissipative systems, from both a mathematical point
of view and a physics perspective. It explains the origin of the large
multiplicity of simultaneously stable spatially localized states present
in a parameter region called the pinning region and its relation to the
notion of homoclinic snaking. The localized states are described as
bound states of fronts, and the notions of front pinning, self-
pinning, and depinning are emphasized. Both one-dimensional and
two-dimensional systems are discussed, and the reasons behind the
differences in behavior between dissipative systems with conserved
and nonconserved dynamics are explained. The insights gained are
specific to forced dissipative systems and are illustrated here using
examples drawn from fluid mechanics (convection and shear flows)
and a simple model of crystallization.
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1. INTRODUCTION

Spatially localized structures are frequently observed in physical systems. Interest in such structures
dates back to thediscoveryof solitarywavesby John ScottRussell,who followed such awave for one
or two miles along the Union Canal near Edinburgh, Scotland, in 1834. Korteweg & de Vries (1)
developed an explanation of suchwaves using longwave theory, but only in 1965whenZabusky&
Kruskal (2) discovered that thesewaves retain their particle-like identity despite collision—except for
a phase shift arising from their interaction—were solitons born. Solitons are structures associated
with completely integrable partial differential equations and are therefore a property of (some)
conservative or dissipationless systems. In this review,we focus instead on solitary structures arising
in forced dissipative systems owing to spontaneous localization. Such systems are not integrable, and
the mathematics behind the presence of dissipative solitons, as they are sometimes called, is quite
different. As a result their properties are quite distinct from those associated with true solitons.

This article is devoted to explicating the basic properties of localized structures in dissipative
systems from the point of view of both basic physics and basic mathematics, and to illustrating
their properties using a variety of different systems. In particular, we emphasize the important role
played by the Swift-Hohenberg equation in developing useful intuition that can be transferred to
more complex systems. In selecting this focus, the article seeks to remain simultaneously or-
thogonal to two other applications-oriented reviews (3, 4) as well as to Reference 5. A number of
open issues concerning spontaneous localization in dissipative systems is listed in Reference 6;
many of these remain open.We do not consider spatial localization such as Anderson localization
that arises in linear inhomogeneous systems. We begin with two examples.

1.1. Solitons on the Surface of a Ferrofluid

A ferrofluid is a suspension of small magnetic dipoles held apart by a surfactant. The free surface of
this fluid undergoes a buckling instability, called the Rosensweig instability, when a uniform DC
magnetic field of sufficiently large strength is applied in a direction normal to the surface (7). This
instability results in a hexagonal array of stationary peaks. This instability is strongly subcritical,
leading to a broad region of magnetic field strengths for which a hexagonal pattern coexists stably
with the flat surface. Experiments reveal that within this region there is a subregionwheremultiple
localized states can be created (8). This can be done by bringing a bar magnet toward the surface,
pulling out a peak, and removing the barmagnet. Remarkably, in this subregion the peak remains,
and the process can therefore be repeated, pulling out more and more peaks. Figure 1a shows an
example of a structure created in this way. Note that these structures are created by suitably
tailored finite amplitude perturbations: When the perturbation is removed the system relaxes, but
an imprint of the perturbation remains. This relaxation process dissipates energy, although no
dissipation takes placewithin the localized state that remains. Thus, at everypoint in this subregion
a number of different states, consisting of one, two, three, ormore peaks, coexists with the flat and
hexagonal states, and all are simultaneously stable, as summarized in a bifurcation diagram in
Figure 1b showing the surface energyEs as a function of the applied verticalmagnetic fieldB. Thus,
multiple localized states are associated with the presence of a classic hysteresis loop between a pair
of states, one of which is homogeneous and the other structured.

1.2. Cellular Buckling in Long Structures

Hunt et al. (9) showed that when a tall structure, in their case a cylindrical shell, is loaded axially,
the buckling of the structure may be confined to the midsection. The instability sets in at a critical
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load Lc, where the unbuckled state loses stability in a strongly subcritical bifurcation, meaning that
loadsL>Lc lead to catastrophic collapse. However, forL<Lc the instability generates a sequence
of steadybuckled states, shown inFigure2a in termsof abifurcationdiagramspecifying the response
of the system (Figure 2a, horizontal axis) as a function of the load L (Figure 2a, vertical axis). The
internal stress and displacement patterns that result are both cellular (Figure 2b), but the structures
that formareweaker than theunbuckled state in the sense that theycan supportonly smaller loads. In
fact, most of these states are unstable: An infinitesimal increase in the load brings about the collapse
of the structure. However, some of these buckled states, lying on the portions of the curve with
positive slope, are stable and can again support an increasing load. If this load becomes too large,
however, no stable state is present and the structure collapses further, leading to a sequence of stable
buckled states, as indicated by the arrows in Figure 2a. These differ in the number of rows of cells or
dimples that form:Each stable section addsapair of rowsof cells, oneoneither sideof thepreexisting
cells. These solutions are organized around a special value of the load parameter L, called the
Maxwell load. The significance of this parameter value will become apparent as we proceed.

The key issues to understand are the origin of the large multiplicity of simultaneously stable
states and their persistence over a range of parameter values within the hysteresis loop. In
mathematics, this persistence is called structural stability.

1.3. Other Examples

In the above examples, dissipation allows us to reach a stable localized structure (the structures are
attractors), but dissipation ceases when the steady state is reached. Other localized structures are
characterized by a balance between energy input and energy dissipation within the structure.
Examples include cavity solitons (3, 10), DC gas discharges (4, 11), an optical light valve with
feedback (12), a number of convection systems (13, 14), shear flows (15–17), neural systems (18),
and reaction-diffusion systems (19, 20), as well as models of the processes leading to desertification
(21, 22) and the formation of crime hot spots (23). Time-dependent localized states called oscillons
present in chemical systems (24) and in vibrated granular media (25) or liquids (26) are a closely
related phenomenon. Systems with a conserved quantity exhibit distinct behavior, as discussed
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Figure 1

(a) Two-dimensional localized structures on the surface of a ferrofluid. (b) The corresponding bifurcation diagram showing the
surface energy Es as a function of the applied magnetic field B. Stable steady states with n ¼ 1, 2, . . . peaks are present at B ¼ 8.9 mT.
Adapted with permission from Reference 8.
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further below. A variety of fronts and defects in spatially periodic structures also falls into this
category: If the backgroundpattern is removedbydemodulation, the structure that is left is localized,
with its own dynamics.

Given this vast area, this review is necessarily selective. Consequently, after explaining the basic
ideas behind the ubiquitous presence of localized structures, we describe just three applications: to
different types of convection, to shear flow instability, and to a simple model of crystallization
from a supercooled liquid.

2. THEORY

In this section, we assume the system is described by a local partial differential equation in one
spatial dimension (1D) for a real variable u(x, t), ut ¼ g(u, ux, uxx, . . .), and suppose that this
equation is reversible in space, i.e., that it is equivariant with respect to R1 : x→�x, u→ u. Thus,
R1gR1 ¼ g and g(u, ux, uxx, . . .) ¼ 0 is a reversible dynamical system in space, with phase space
(u, ux, uxx, . . .) 2 R

n, whose solutions represent steady states. Owing to reversibility, n is even. Of
particular interest is the fixed point O, with coordinates u ¼ ux ¼ . . . ¼ 0. This point represents
a spatially homogeneous state, and this state must have at least one unstable and one stable
direction in space in order that a solitary wave be present with the property u → 0 as jxj → 61.
Thus, a necessary condition for the existence of solitary waves biasymptotic to the homogeneous
stateO is thatO is a hyperbolic fixed point in phase space. To determine the conditions for this to
be so,wemust examine the spatial eigenvalues ofO. For this purpose,we linearize g¼ 0 aroundO,

guð0Þuþ guxð0Þux þ guxxð0Þuxx þ . . . ¼ 0, 1:

and look for solutions of the form u } exp lx. The spatial eigenvalues l are thus given by
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Figure 2

(a) Bifurcation diagram for the buckling of an axially loaded cylinder. (b) Sample buckled states at locations
indicated in panel a. Adapted with permission from G. Lord.
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PðlÞ ¼ 0, 2:

whereP is real-valued so that PðlÞ ¼ 00P
�
l
�
¼ 0. In addition, reversibility implies that P(�l)¼ 0.

Thus, if u ¼ 0 has two negative real eigenvalues it also has two positive real eigenvalues.
Likewise, if l is a complex root of P(l) ¼ 0, then so are �l and6l, and the eigenvalues form
a quartet in the complex plane. It follows that in spatially reversible systems, P is in fact
a function of l2, and the simplest nontrivial case yields P(l)[ l4 � bl2 þ a¼ 0. Figure 3 depicts
the location of the four eigenvalues of the spatial problem in the complex plane as a function of
the coefficients a and b. Below the curve C2 [ C3, the eigenvalues lie on the axes, implying that
either their real part or their imaginary part is zero. Above this curve the eigenvalues form
a complex quartet. We focus on the transition occurring atC2. In the region labeled 4 in Figure 3,
all the eigenvalues lie on the imaginary axis, implying that the eigenmodes are purely oscillatory
in space. As a or b increases, the eigenvalues collide on the curve C2 and move into the complex
plane forming a quartet. This transition provides the key to the appearance of spatially localized
states.

When nonlinear terms are retained, the invariant subspace spanned by the unstable eigen-
vectors turns into an invariant manifold called the unstable manifold Wu(O), and the stable
eigenspace turns into the stablemanifoldWs(O). Thesemanifolds are tangent to the corresponding
eigenspaces atO, and their dimensions correspond to the numbers nu and ns of unstable and stable
eigenvalues of O, respectively. If these manifolds intersect, it is possible to find a trajectory that
leaves u ¼ 0 as x increases from �1 and returns to u ¼ 0 as x → 1, i.e., a spatially localized
solution. This is more likely if the dimensions of these manifolds are high.

a

b

C2 C3

2
4

1

3

C0

0C1

Figure 3

Roots of the equation l4 � bl2 þ a ¼ 0 in the a,b plane, showing four distinct types of behavior labeled 1–4.
Adapted from Reference 27.
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The following examples for n ¼ 4 are helpful.

n Suppose g¼ 0 has a hyperbolic fixed pointOwith nu,s(O)¼ 2. If n¼ 4 the intersection of
Wu(O) andWs(O) is generically of codimension one, i.e., we expect homoclinicsO→O
at isolated parameter values only. But in a reversible system the codimension is zero and
localized states are structurally stable.

n Suppose g¼ 0 has a pair of hyperbolic fixed pointsO andO0 fixed byR1 with nu(O)¼ 2
and ns(O0) ¼ 2. If n ¼ 4, the intersection of Wu(O) and Ws(O0) is generically of
codimension one, i.e., we expect (stationary) frontsO→O0 at isolated parameter values
only. If g is reversible we have a codimension one heteroclinic cycle O → O0 → O.

n Suppose g¼ 0 is reversible with a hyperbolic fixed pointOwith nu,s¼ 2 and a hyperbolic
periodic orbit g, both fixed byR1. Owing to the symmetryR1, the orbit g has one stable
and one unstable Floquet multiplier plus two þ1 multipliers. Its center-stable eigen-
space is therefore three dimensional, and Ws(g) is therefore also three dimensional.
Thus, the intersection betweenWu(O) andWs(g) is of codimension zero and therefore
structurally stable, i.e., frontsO→ g are robust. Moreover, if this is the case, g¼ 0 will
have a robust heteroclinic cycle O → g → O. Such cycles persist under parameter
changes and play an important role in what follows because homoclinic orbitsO→O
that pass m times around g accumulate on them as m → 1.

Note that robust cycles of this type are not possible in second-order systems (n ¼ 2).

2.1. The Paradigm: Swift-Hohenberg Equation

The expectations derived from these geometrical ideas are helpful in interpreting numerical results
obtained on specific systems. The most studied, and in many ways prototypical, system is the
Swift-Hohenberg equation, originally suggested as a description of pattern formation inRayleigh-
Bénard convection (28, 29), written here in d dimensions:

ut ¼ r u�
�
q2c þ =2

�2
uþ f ðuÞ. 3:

Here, f(u) represents a bistable nonlinearity of the form f(u)¼ b2u
2� u3; we refer to the resulting

equation as SH23. The parameters r and qc represent the bifurcation parameter and a char-
acteristic wavenumber (inverse length scale). In unbounded domains, the wavenumber qc can be
set equal to qc ¼ 1, but this is not the case on finite domains. In addition, Equation 3 has the
minimum number of spatial derivatives identified above for the presence of robust heteroclinic
cycles. As a result, we use it as a “normal form” for understanding systems exhibiting spatially
localized structures.

Equation 3 has a variational structure, i.e., it possesses a Lyapunov functional F[u(x, t)], such
that

ut ¼ � dF½u�
duðx, tÞ, 4:

where F is given by

F ¼
Z 1

�1
ddx

�
�1
2
r u2 þ 1

2

h�
q2c þ =2

�
u
i2 � Z u

0
f ðvÞdv

�
. 5:

It follows that

SH23: quadratic-cubic
Swift-Hohenberg
equation
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dF
dt

¼ �
�
∂u
∂t

	2
� 0 6:

and hence that dF/dt < 0 provided ∂u/∂t� 0 somewhere in the domain. Thus, on a finite domain
with null boundary conditions, all solutions evolve toward stationary states; on an unbounded
domain solutions in the form of steadily moving fronts are possible. In the following, we think of
the functional F[u] as the (free) energy of the system. Stable/unstable solutions correspond to local
minima/maxima of this energy. We shall see that in appropriate parameter regimes the energy
landscape described by the free energy (5) can be exceedingly complex.

2.1.1. The temporal view. The usual way to examine the stability of the state u ¼ 0 is to linearize
Equation3 about this state and look for solutions of the formu} exp(stþ iqx),wheres is the growth
rate of a perturbation with wavenumber q. The growth rate s is given by the dispersion relation

s ¼ r�
�
q2c � q2

�2
. 7:

The marginal stability curve is determined by setting s ¼ 0 and then minimizing the marginal
value r ¼ r(q) with respect to the wavenumber q. This calculation leads to the prediction rc ¼ 0
for the onset of instability and of the associated wavenumber q ¼ qc (Figure 4).

Observe that for r< 0 the condition for marginal stability, r ¼
�
q2c � q2

�2
, has no solution for

real q, but it does have a solution with q complex. In contrast, if r > 0, there is a pair of real
solutions, q ¼ q6, with q� < qc < qþ. As r decreases to zero from above, the wavenumbers q6
approach q¼ qc fromopposite directions, and at r¼ 0 they collide atq¼ qc. Thus, theminimumof
the marginal stability curve is in fact associated with the collision of two roots of the marginal
dispersion relation, i.e., a 1:1 spatial resonance (Figure 4).

σ = 0
σ > 0

σ < 0

r

rc

q– q+qc
q

r

Figure 4

The neutral stability curve and the 1:1 spatial resonance. Adapted with permission from C. Beaume.
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2.1.2. The spatial view. We can appreciate what is happening if we focus on steady states from

the outset. Steady solutions of the linear problem lie on the neutral stability curve r ¼
�
q2c þ l2

�2
,

wherel is the spatial eigenvalue of the homogeneous stateO:u¼ux¼uxx¼uxxx¼0. For r<0, the
spatial eigenvalues of O form a complex quartet (Figure 5a). At r ¼ 0 these eigenvalues collide
pairwise on the imaginary axis (Figure 5b), and for r>0 they split but remain on the imaginary axis
(Figure 5c). Thus, the temporal and spatial points of view are closely related: The onset of in-
stability in the temporal point of view is equivalent to the presence of a pair of purely imaginary
spatial eigenvalues l¼ 6iqc of double multiplicity.

It is useful to look at the transition at r ¼ 0 in a little more detail. We write r ¼ e2m, where
m ¼ O(1) and e � 1. We then find that for m < 0, the spatial eigenvalues are l¼6eð2qcÞ�1ffiffiffiffiffiffiffi�m
p

6 i
�
qc þ O

�
e2
��
, whereas for m> 0 the eigenvalues are l¼6ieð2qcÞ�1 ffiffiffiffi

m
p

6 i
�
qc þ O

�
e2
��
.

These considerations suggest that when r< 0 the solutions near u¼ 0 will be growing or decaying as
u∼ expð6e

ffiffiffiffiffiffiffi�m
p

x=2qcÞ, i.e., that the amplitudeof such solutionswill varyona long scaleX[ exwhile
their wavenumber remains close to qc. This analysis suggests that near r ¼ 0 solutions take the form

uðxÞ ¼ eu1ðx,XÞ þ e2 u2ðx,XÞ þ . . . , 8:

where

u1ðx,XÞ ¼ ZðX ; eÞeiqc x þ c.c. 9:

Normal form description of the reversible 1:1 spatial resonance (30) shows that the resulting
calculation must be taken to fifth order in e. However, the third-order truncation is already
informative (31, 32):

4 q2c Z
00 ¼ �mZþ 4q2c ajZj2Zþ OðeÞ. 10:

Inorder that theprimary instabilitybe subcritical, the coefficienta[
�
3=4q2c

��
1� 38b22=27q

4
c

�
< 0.

In the subcritical region m < 0, there are therefore two types of solutions: a constant solution,

ZðXÞ ¼
�

m

4q2c a

	1=2
eif þOðeÞ, 11:

corresponding to a periodic state,

ugðxÞ ¼
�

r
4q2c a

	1=2
cosðqc xþ fÞ þ OðrÞ, 12:

a b cr < 0 r = 0 r > 0

Figure 5

The behavior of the spatial eigenvalues l of u ¼ ux ¼ uxx ¼ uxxx ¼ 0. (a) r < 0. (b) r ¼ 0. (c) r > 0.
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and a spatially localized solution,

ZðXÞ ¼
�

m

2q2c a

	1=2
sech

�
X

ffiffiffiffiffiffiffi�m
p
2qc

	
eif þOðeÞ, 13:

corresponding to

uLðxÞ ¼ 2
�

r
2q2c a

	1=2
sech

�
x

ffiffiffiffiffiffi�r
p
2 qc

	
cosðqc xþ fÞ þ OðrÞ. 14:

For the periodic states, the spatial phase f is arbitrary; this is not so for the localized states for
which the spatial phasef is locked tof¼ 0,pwhen terms beyond all orders are retained (33, 34).
Thus, in SH23 there are two branches of localized states that bifurcate from u ¼ 0 at r ¼ 0
(hereafter,L0,p), each ofwhich is symmetricwith respect to the spatial reflectionR1. Both bifurcate
subcritically. There are no localized states when a > 0.

If the above calculation is taken to fifth order in e (31, 32), one learns one additional important
fact: the existence [under appropriate conditions (30)] of a Maxwell point at which the periodic
state g with wavenumber qc and the homogeneous state u ¼ 0 have equal energy. This point
corresponds to the presence of a heteroclinic cycle between the states represented byZ¼ 0 andZ¼
const., i.e., a pair of back-to-back fronts between the homogeneous state u ¼ 0 and the periodic
state of infinite length. The calculation also shows that homoclinic orbits toO consisting of finite
lengths of the periodic state between pairs of fronts accumulate on this heteroclinic cycle. This fact
reveals a problem: The asymptotic expansion indicates that the heteroclinic cycle is present at
a single parameter value, the Maxwell point, whereas the geometric considerations described
earlier lead to the expectation that this cycle should persist over an interval of parameter values.
The resolution is subtle and demands computations beyond all orders, i.e., the retention of ex-
ponentially small terms in the expansion parameter e (35, 36), sometimes referred to as non-
adiabatic terms (37). As noted by Pomeau (38), the phase f in Equation 14 cannot be arbitrary
since one should not be able to move the envelope arbitrarily relative to the periodic oscillation:
The envelope itself depends on position. The resulting pinning of the front to the periodic state
behind it leads to a pinning potential that prevents themotion of fronts between the u¼ 0 state and
the periodic statewithwavenumberqcunless the parameter r is changed sufficiently that the energy
difference between the two states exceeds the pinning potential. Detailed analysis of the expo-
nentially small terms in the parameter regime r ¼ Oðe4Þ, jaj ¼ Oðe2Þ reveals the presence of
multiple localized states within an exponentially thin region near theMaxwell point. These states
exhibit behavior that has been termed homoclinic snaking (39): The two branches of f ¼ 0, and
f ¼ p states (i.e., of symmetric homoclinic states L0,p) are intertwined (35, 36).

To appreciate the significance of these results, we need to examine what happens when
jaj ¼ O(1) and r decreases deeper into the subcritical region.

2.2. Snakes-and-Ladders Structure of the Pinning Region: SH23

Figure 6 shows theL2 norm kuk22 [
Z 1

�1
u2ðxÞdx of the localized statesL0,p in SH23 as a function

of the bifurcation parameter r. The L2 norm (per unit length) of the periodic state, labeled g, is
shown for comparison. The figure shows that the two branches of even-parity localized states that
bifurcate subcritically from u¼ 0 at r¼ 0 enter a shaded region—hereafter, the snaking or pinning
region—in which they undergo repeated saddle-node bifurcations as they snake across the region.
These saddle-nodes converge exponentially rapidly to a pair of r values—hereafter, r(E�) and

333www.annualreviews.org � Spatial Localization

A
nn

u.
 R

ev
. C

on
de

ns
. M

at
te

r 
Ph

ys
. 2

01
5.

6:
32

5-
35

9.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
- 

B
er

ke
le

y 
on

 0
3/

16
/1

5.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



r(Eþ)—representing the boundaries of the shaded region. The convergence is monotonic and from
the right in both cases. The lower panels show a series of profiles of uL(x) along L0,p. These reveal
that statesL0 are characterizedbyapeak in the center,whereas statesLphave adip in the center.As
one proceeds up either branch, each localized state nucleates a pair of peaks, one on either side, in
the vicinity of r¼ r(E�). These grow to the amplitude of the coexisting periodic state g by the time
one reaches the next fold on the right, at r ¼ r(Eþ), and the branch turns around to repeat the
process. Thus, as one proceeds up the intertwinedL0,p branches the localized states repeatedly add
peaks on either side while preserving their parity, each back-and-forth oscillation increasing the
width of the state by twowavelengths 2p/qc. On the real line, this process continues indefinitely as
both branches approach the periodic state g.

Figure 7a is a close-up view of Figure 6, focusing on the rung states that connect the L0,p snak-
ing branches. These states are asymmetric with respect to the reflection x → �x (Figure 7b)
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Figure 6

(a) Bifurcation diagram showing the snakes-and-ladders structure of localized states in SH23. Away from
the origin the snaking branches L0 and Lp are contained within a snaking region (shaded) between
E� and Eþ, where r(E�) � �0.3390 and r(Eþ) � �0.2593. Solid lines indicate stable states. Dotted lines
indicate unstable states. (b) Sample localized profiles uL(x): Panels i–iv lie on L0 at the 3rd–6th
saddle-nodes from the bottom; Panels v–vi lie on Lp. Parameters: b2 ¼ 1.8, qc ¼ 1. Adapted
from References 31 and 40.
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but stationary. The rungs are created in pitchfork bifurcations that break the R1 symmetry of
the L0,p states. Consequently, each rung in the figure corresponds to two states related by R1

and hence of identical L2 norm.
The stability of these states may be found by linearizing about the different states and solving

the resulting eigenvalueproblem for the temporal growth rates. It turns out that only twomodes
are of interest: the reflection-symmetric amplitude mode whose growth rate passes through zero
at every fold and the antisymmetric phase mode that triggers the bifurcation to asymmetric
states. As one follows either branch to the large L2 norm, the zeros of the amplitude and phase
modes approach each other exponentially rapidly (with the latter always on the unstable side of
the fold) implying that asymptotically the rung states bifurcate from the folds (31). In this limit,
the odd and even modes may be written in the form v(L)7 v(�L) to within terms of order e�aL,
a ¼ O(1), where v(L) is the marginal eigenfunction localized at the front at x ¼ L and 2L is the
(large) length of the localized state (41, 42). In this regime, the localized structure uL(x) can thus
be considered to be a bound state of a pair of fronts. The rung states are always unstable. The
resulting stability assignments are indicated in Figures 6 and 7. A neutral translation mode is
present in addition.

2.2.1. Multipulse states. In fact, the situation is much more complicated. This is because the
snaking region also contains a variety of multipulse states (40). The term multipulse refers to the
fact that the phase space trajectory comes close toO after the first localized state (pulse) but only
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Figure 7

(a) Close-up view of Figure 6a showing two rungs connecting the snaking branches L0 and Lp. Solid lines indicate stable states.
Dotted lines indicate unstable states. (b) The profiles i and viii lie onL0, whereas iv and v lie onLp. The remaining profiles are asymmetric
and lie on the rungs. Adapted from References 31 and 40.
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forms a homoclinic orbit toO after two (two-pulse) or more (multipulse) excursions. Multipulse
states should be thought of as (weakly) bound states of two ormore localized structures of the type
we have been discussing.

Multipulse states can be equispaced, forming a periodic array of identical localized structures.
Such states are not very different from single-pulse states if the pulses are sufficiently separated,
and it comes as no surprise that they also snake (Figure 8). But one can also find two-pulse states
consisting of identical pulses that are separated by a distance that is less than the average interpulse
spacing. The locations of such pulses are “quantized” in terms of half wavelengths, p/qc. Spe-
cifically, two identical L0 pulses can have a local maximum or a local minimum at the halfway
location between them (40, 43). On a periodic domain of a large but finite period, there is thus
a finite number of such states. These do not snake but instead lie on nested isolas. The nested isolas
are in turn organized into a vertical stack, each level consisting of nested isolas of bound states of
localized states of ever-increasing length (Figure 9). The breakup of the two-pulse states into isolas
as soon as they are not evenly spaced is a consequence of the resulting asymmetry in the interaction
between adjacent pulses.

In addition, one can also find two-pulse states consisting of different localized states (40) and an
ever greater variety ofmultipulse states. Thus, the snaking region consists of an immense variety of
different localized structures, a significant fraction ofwhich can be stable.All correspond to critical
points of the energy F, stable ones to local minima, and unstable ones to local maxima. Thus, the
energy landscape in the pinning region has a remarkably complex structure.

2.2.2. Mathematical explanation of the pinning region. For applications it is important to un-
derstandwhat determines thewidth of the pinning or snaking region. For this purpose, it is helpful
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Figure 8

Bifurcation diagrams for SH23 showing (a) aL0 single-pulse snaking branch and (b) a two-pulse snaking branch
consisting of two evenly spaced copies ofL0, both on the sameperiodic domain of periodG. (c,d) Sample profiles
at the points indicated in the bifurcation diagrams; the states in panel d are separated by G/2. Similar branches
consisting of Lp pulses are omitted. Parameters: b2 ¼ 1.8, qc ¼ 1, G ¼ 118. Adapted from Reference 40.
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to observe that equilibria of Equation 3 satisfy a fourth-order ordinary differential equation in
space that defines a (nonintegrable) autonomous Hamiltonian system with Hamiltonian

H ¼ �1
2

�
r� q4c

�
u2 þ q2c u

2
x �

1
2
u2xx þ uxuxxx �

Z u

0
f ðvÞdv. 15:

Thus, dH/dx ¼ 0, and any homoclinic orbitO→Omust lie in the level setH ¼ 0, i.e., in a three-
dimensional surface in four dimensions. This is so for the heteroclinic cycle O → g → O as well.

Because of translation invariance, periodic orbits of Equation 3 are not isolated—for each H
there is a continuous family of such orbits. In the following, we pick H ¼ 0 and select one
representative from this family, for example, by assigning the originx¼0 to themaximumvalue of
u along the orbit. We call the resulting orbit g. A point on this orbit with phasef relative to x¼ 0,
g(f) is a fixed point of a“time-T”map,whereT is the (spatial) period of the orbit, andwemaypick
f to correspond to a point of symmetry on g, for example, f ¼ 0 (39). Note that T depends in
general onH. By construction, the “time-T”map is two dimensional and has two fixed points,O
and g(f). The result of repeated application of the “time-T”map can therefore be represented in
a plane, as shown in Figure 10. The figure shows the two fixed points as solid black points; these lie
on a purple line labeledFix(R1), representing solutionswith the symmetryR1. The figure shows the
intersections of the stable and unstablemanifolds ofO, labeledWs,u(O), with the surfaceH¼ 0. In
Figure 10, these are one dimensional (blue curves) and consist of points that approachO after an
infinite number of forward and backward applications of the map. The intersection of the cor-
responding (three-dimensional) center-stable and center-unstable manifolds of g with H ¼ 0 at
phase f ¼ 0 is shown in brown and is also one dimensional. Since we are dealing with a discrete
map, these manifolds consist of discrete sequences of points obtained by applying the map to
different points in the stable and unstable manifolds of these fixed points. Because of the discrete
nature of the resulting two-dimensional dynamics, we expect the unstable manifold Wu(O) to
intersect transversallywith the center-stablemanifoldWs(g) (Figure 10, top right panel). The point
of intersection is simultaneously on both manifolds, implying that forward iterations take it to
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Figure 9

(a) Bifurcation diagram showing isolas of symmetric but unevenly spaced two-pulse states in SH23.
In the main diagram, only one isola at each level of the isola stack is plotted to avoid clutter. (b) Profiles
at the points labeled in the bifurcation diagram; the states are separated by distances less than G/2.
Parameters: b2 ¼ 1.8, qc ¼ 1, G ¼ 118. Adapted from Reference 40.
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g(f), whereas backward iterations take it toO, i.e., such a point is a heteroclinic point. Each image
of this point, forward or backward, is also a heteroclinic point since it must again lie on an in-
tersection of these manifolds. Since the forward iterates accumulate on g, the unstable manifold
Wu(O) must execute increasingly wild gyrations near g(f), as indicated in Figure 10. This is
a consequence of theHamiltonian nature of the steady states of Equation 3, which implies that the
“time-T”map is area-preserving. Thus, the areas of the (primary) lobes are all the same, and since
the foot of the lobes shrinks towardg(f), their lengthmust grow in proportion. Spatial reversibility
implies thatWs(O) undergoes identical behavior and hence thatWu(O) andWs(O) must intersect.
The primary intersections must lie on the purple curve and hence correspond to solutions with
u(�x)¼ u(x) that lie simultaneously inWu(O) andWs(O) (Figure 10, large red dot). Such solutions
represent symmetric homoclinic solutions of Equation 3. Observe that because the primary
intersections accumulate on g(f), there is in fact an infinite number of such homoclinic solutions
corresponding to symmetric localized structures of ever greater length.Figure 10also indicates that
associated with each primary intersection there is a pair of secondary intersections (Figure 10;
bottom right panel, small red dots). These do not lie in the purple line and hence correspond to
asymmetric homoclinic points, i.e., the rung states.

Figure 10 shows that the heteroclinic tangle described above is created, as the bifurcation
parameter r increases, at the point of first tangency betweenWu(O) andWs(g) (Figure 10, top left
panel), and destroyed at the point of last tangency (Figure 10, bottom left panel). Thus, the snaking
region is bounded on either side by the location of tangencies between these manifolds, and no
(long) localized states are present outside of the parameter interval between these two tangencies
(19, 39, 41).

An essentially identical picture applies to reversible but non-Hamiltonian systems since the
fundamental properties of the heteroclinic tangle depend only on the presence of a transversal
intersection between Wu(O) and Ws(g) together with spatial reversibility. For this reason, the
geometrical picture sketched here has a far greater applicability than onemay imagine at first sight.
This is a consequence of the fact that a transversal intersection between manifolds cannot be
destroyed by small perturbations in the parameter r, or, indeed, of the equation, i.e., it is a
consequence of structural stability.
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Figure 10

A graphic of the stable and unstable manifolds of the fixed points O and g(f) in the planar representation,
at different values of r in the pinning region. Intersections of Wu(O) and Ws(O) correspond to localized
states (LS) homoclinic to O. Adapted from Reference 41. ©2009 Society for Industrial and Applied
Mathematics. Adapted with permission. All rights reserved.
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2.2.3. Physical explanation of the pinning region. Consider now the energetics of the system.
The free energy F allows us to compare the energy of the homogeneous state O with that of the
periodic state g. The point where these are equal is called the Maxwell point by analogy with
a phase transition between two homogeneous phases such as a liquid and a gas. At theMaxwell
point the two phases coexist; away from it one or the other is energetically favored, and a front
separating the two will move so as to lower the energy of the system. In the present case, F(O)<
F(g) when r < rM, implying that O is energetically preferred and vice versa when r > rM.
However, the phase g is structured and small changes in r do not result in front motion, as the
front is held back by a pinning potential due to the structured state behind it (38). This self-
pinning allows stationary fronts over a range of r straddling rM, and rmust be changed by a finite
amount to overcome the pinning potential and allow the fronts to move. Within this interval
many steady states coexist since it costs little to insert fronts between the two competing phases.
The pinning region can thus be thought of as an “unfolding” of the Maxwell point due to the
heterogeneity of one of the states.

The wavelength ‘(r) of the pattern within the localized structure depends on the value of r
in the pinning region. This wavelength is not given by minimizing the free energy F because
of the H ¼ 0 constraint required of all homoclinic orbits. One finds that for r < rM, the wave-
length is compressed relative to that at rM, but that it is stretched for r > rM. This behavior is
expected on energy grounds (to reduce energy the fronts are displaced inward for r < rM and
outward for r > rM) and is in agreement with predictions based on the imposition of the
H ¼ 0 constraint (31, 44).

We remark that the presence of the fronts at either end of the structure leads to a unique
wavenumber between them, however far apart the fronts are. This is in contrast to spatially pe-
riodic states for which there is an interval of stable wavenumbers within the so-called Eckhaus
stability limits (45, 46). Thus, the fronts collapse the Busse balloon (45, 46).

2.3. Depinning

If r is moved sufficiently far from rM, the energy difference betweenO and g exceeds the pinning
potential and the fronts depin (19). The resultingmotion can be predicted by projecting SH23onto
the near-marginal eigenfunctions present at either edge of the pinning region. As already men-
tioned, the marginally stable amplitude eigenfunctions are localized near either front of the
structure. Near Eþ, where the state of the system evolves toward the lower energy periodic state,
this fact indicates incipient nucleationof newcells just outside the localized state.Direct integration
of Equation 3 reveals time-dependent growth of the structure via sequential nucleation of new cells
(Figure 11a). The nucleation time depends on the distance from the edge of the pinning region, as
indicated in Figure 11b. The time diverges at the edge of the pinning region (where it takes an
infinite amount of time to nucleate a new cell) anddecreases as the distance from the pinning region
increases. The speed of the front, which is a pushed front because it propagates into a stable state
(47), can be calculated from the time it takes to nucleate cells at the front (31, 48). To the left of the
pinning region (where the solution evolves toward the lower energy zero state), the fronts move
inward via sequential annihilation of cells with the same dependence on the distance fromE� as in
the Eþ case (31).

2.4. Broken Symmetries

The scenario described above is substantially affected by forced symmetry-breaking, as we now
describe.
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2.4.1. Finite size effects. Figure 8a is computed on a periodic domain of length G with periodic
boundary conditions. We see that for G < 1, the multiple bifurcation at r ¼ 0 breaks up into
aprimarybifurcation toaperiodicwavetrainanda secondarybifurcation fromthis state to the (two)
branches of localized states that takes place at small but nonzero amplitude. This is almost certainly
the reasonwhy spatially localized states havebeendiscoveredonly recently: Almost all textbooks on
hydrodynamic instability immediately impose periodic boundary conditions when studying the
instability of a homogeneous base state. This innocuous assumption pushes the bifurcation to
localized states to finite amplitude, where its discovery requires not only knowledge of the finite
amplitude periodic state but also a linear stability analysis of a nontrivial periodic state requiring
Floquet theory. As we have seen, the problem becomes so much easier if posed on the real line.

Figure 8a also reveals that on a finite periodic domain snaking does not continue forever. Once
the localized structure has grown to fill the domain no additional growth is possible, and the
branch of localized states exits the snaking region and terminates near the fold on a branch of
periodic states. The details of this transition are, in general, complex since they depend on exactly
how much space is left, i.e., on Gmod ‘(r), where ‘(r) is the wavelength within the pinning region
(49). Moreover, as G increases the termination points must “jump” between different periodic
states, a process studied inReferences 49 and50.Near the fold the localized states resemble holes in
an otherwise periodic wavetrain. This bifurcation is present even on the real line and gives rise to
two branches of holes that snake once the hole approaches u¼ 0 and starts to broaden.On the real
line, the branches of localized states bifurcating from u ¼ 0 at r ¼ 0 and the branches of holes
remain distinct, but on a periodic domain with G<1 they connect up pairwise: A broad localized
state can, after all, be viewed as a hole in a periodic state. Moreover, on smaller domains (Figure
8b), a single-pulse state bifurcates from the periodic states at a larger amplitude than on larger
domains, and the resulting branch also terminates farther from the fold.

If the boundary conditions are changed from periodic to Robin (or mixed) boundary con-
ditions, the effect is dramatic. Since periodic states are now absent, the localized states bifurcate
directly from u ¼ 0 in a primary bifurcation. Thereafter, they snake normally since the localized
states are insensitive to the details of the boundary conditions, but when the domain is almost full
the snaking branch evolves continuously into an extended large amplitude (almost) periodic state
with defects at the boundaries (51, 52).
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Figure 11

Space-time plot of (a) the evolution of a localized structure in SH23 and (b) the nucleation time T as a function
of r. Parameters: b2 ¼ 1.8, qc ¼ 1. Adapted from Reference 44.
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2.4.2. Broken reversibility. Spatial reversibility can be broken, for example, by adding dispersion
to SH23. In this case, one expects that generically all states drift. This expectation is confirmed by
numerical calculations (53); these show in addition that dispersion destroys the snakes-and-
ladders structure of the snaking region and that the drifting localized states now fall on a stack of
figure-eight isolas. As the dispersion increases the isolas shrink and eventually disappear. Thus,
drifting localized structures are absent for large dispersion.

2.4.3. Broken translation invariance. Broken translation invariance, either through the imposi-
tion of Robin boundary conditions at the boundaries of a finite domain (51) or through space-
dependent forcing (54, 55), have also been studied. The details are complex and not well un-
derstood. Either type of forcing selects preferred locations for the localized structures (56) andmay
result in incomplete snaking, depending on whether local maxima are in phase with the maxima in
the localized state or out of phase. Large-scale heterogeneity may cause an overall slant to the
snaking structure, as discussed in a different context below.We alsomention that spatially periodic
forcing can generate stable localized states even in systems inwhich snakingwould not otherwise be
present (57). In fact, this is always the case in the vicinity of a Maxwell point between two ho-
mogeneous states (58) and is a consequenceof thepinning introduced into the systemby the forcing.
The related problem of localization on an imposed periodic lattice is of interest in optics (59).

Discrete problems in which the spatial Laplacian is replaced, for example, by nearest neighbor
coupling, also lack translation invariance and constitute an important class of systems with
multiple coexisting localized structures that snake (60).

2.5. Additional Symmetry

The Swift-Hohenberg equation with f(u) ¼ b3u
3 � u5 (hereafter, SH35) possesses an extra

symmetryR2 : x→ x, u→�u that is analogous to the so-called Boussinesq symmetry of Rayleigh-
Bénard convectionwith identical boundary conditions at the top and bottom (61). For this reason,
predictions based on SH35 find a number of applications, particularly in fluid mechanics. The
most important properties of SH35 include the following: (a) The periodic states with q ¼ qc
bifurcate subcritically if b3> 0. (b) Exponentially small terms select four phasesf : 0,p/2,p, 3p/2
(62, 63). The f ¼ 0, p states are related by R2 and likewise for the f ¼ p/2, 3p/2 states. A bi-
furcation diagram showing the L2 norm of uL thus shows two branches, a branch of even parity
statesf ¼ 0,p, and a branch of odd parity statesf ¼p/2, 3p/2. The former are invariant underR1

as in SH23; the latter are invariant underR2 �R1. Both bifurcate subcritically fromu¼0at r¼0, as
described by Equation 14with a ¼ �3b3=4q2c . (c) The odd and even parity branches are organized
within the same type of snakes-and-ladders structure as SH23, with identical stability properties
(62). (d) Each back-and-forth oscillation of a branch indicates the nucleation of half a wavelength
on either side of the localized structure.

2.6. Other Effects

A number of other effects has also been studied.

2.6.1. Nonvariational effects. Gradient systems such as Equation 3 are nongeneric. Generic
systems no longer possess an energy functional, but the snakes-and-ladders structure of the
snaking or pinning region persists when a gradient system is perturbed by nongradient terms.
However, whereas solutions with the symmetry R1 remain stationary, the asymmetric rung states
now drift; the drift direction is determined by the asymmetry. In addition, secondary bifurcations

SH35: cubic-quintic
Swift-Hohenberg
equation
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may appear on the stable segments of the primary snaking branches leading to localized oscil-
lations (64). As examples, wemention the generic pattern-formingmodel for biological, chemical,
andoptical systems derived inReference 65 and a variety of two-species reaction-diffusion systems
that are formally of fourth order in space. In particular, if these systems exhibit a primary in-
stability to periodic states (e.g., a Turing instability) that is subcritical, the same basic ideas apply.
Thus, snaking localized structures are found, for example, in the Gierer-Meinhardt model (20).

2.6.2. Collisions of localized structures. In nonvariational systems with the symmetry R2 3 R1,
the oddparity states are fixedbyR2 �R1. Such states are necessarily stationary. To see this, suppose
that their speed c� 0. Application ofR1 yields a statewith speed�c, but byR2 this state is the same
as the state with speed c. Thus, c¼ 0.However, secondary bifurcations that break either symmetry
generate asymmetric drifting states. However, when R2 is externally broken, odd parity states
deform into asymmetric states that drift with a speed that depends on the solution length (42, 66).
At the same time, even parity states persist and remain stationary. Since a large number of stable,
coexisting, traveling states is created in this way, it is possible to study head-on collisions between
identical states, head-on and follow-on collisions between distinct states, and collisions between
traveling and stationary states (66). These collisions are attractive/repulsive if the approaching
fronts are unlike/like, but all collisions are inelastic: The two states stick together, forming a final
state that is either moving or stationary. The length of this state exceeds that of the incoming states
because additional structure is nucleated between them during the collision (at least when r> rM).
Figure 12 shows a typical space-time diagram for Equation 3 with f ðuÞ ¼ b3u3 � u5 þ eu2x and
compares it with an analogous collision of binary fluid convectons (67). The behavior could not
differ more from the dynamics of integrable systems exhibiting solitons.

2.6.3. Other growth mechanisms. In the preceding discussion, we have seen that the steady
structures grow as one follows a solution branch by nucleating new cells along the periphery of the
structure. Although this appears to be the most common process in the Swift-Hohenberg type of
models and in many systems arising in fluid dynamics (see below), other mechanisms are also
possible. In the forced complex Ginzburg-Landau equation (FCGLE) describing the 1:1 and 2:1
temporal resonance (68, 69), one finds a differentmechanism, called defect-mediated snaking (70),
whereby the central cell of the structure repeatedly splits, injecting spatial phase and pushing the
preexisting cells to either side. The boundaries of the snaking region are determined by the Eckhaus
instability (45, 46) of the periodic wavetrain, which changes the corresponding periodic orbit in
phase space from a hyperbolic periodic orbit to an elliptical periodic orbit, thereby breaking the
connection to this orbit. Details of this mechanism are described in Reference 71. Outside the
pinning region, the structure grows in time, initially by repeated splitting of the central cell, but
once it becomes broad enough, phase is injected at a pair of locations on either side of the center,
which gradually migrate outward but never reach the location of the moving fronts (72).

We mention that the Lugiato-Lefever equation (LLE), which describes pattern formation in an
optical cavity in a plane transverse to an incident coherent light beam (73), is a special case of the
FCGLEwith 1:1 resonance. A driven optical cavity is described by similar equations that reduce to
SH23 in the limit of nascent bistability and weak dispersion (74).

2.6.4. Localized temporal dynamics. As mentioned above, the FCGLE provides a convenient
reduction, under appropriate andwell-understood conditions, of a temporally vibrated system to an
autonomous partial differential equation (PDE). In this equation, uniform steady states correspond
to spatially homogeneous oscillations, and localized steady states correspond to localized oscil-
lations. Recent work (75) compares oscillons in a nonautonomous PDE with the corresponding

FCGLE: forced
complex Ginzburg-
Landau equation
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solutions of the FCGLE (69) and demonstrates just how robust the FCGLE approximation is.
Localized solutionsneednotbeperiodic, however.Different examples of localized stateswith chaotic
dynamics are known (68, 76). The much-studied chimera states in systems of identical globally
coupled phase oscillators (77–79) provide an example inwhich a set of adjacent oscillators oscillates
in phase while the phases of the remaining oscillators remain random. The turbulent stripes in-
terspersed with laminar flow observed in experiments on plane Couette flow (PCF) provide another
intriguing example (80), as do turbulent puffs in pipe flow (81) and turbulent boundary layer flow
(82) (see below).

2.6.5. Noise. It is natural to consider the effect of small amplitude additive noise on the localized
states in the pinning region. Each local minimum has a lowest barrier in the energy landscape
across which escape is most probable. The type of evolution that results is expected to depend on
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Figure 12

Space-time plot of (a) a repulsive collision and (b) an attractive collision between a traveling and a stationary localized state in the Swift-
Hohenberg equation with f ðuÞ ¼ b3u3 � u5 þ eu2x and r¼�0.65, b3¼ 2, e¼ 0.1. Adapted from Reference 66. (c) An attractive collision
between traveling and stationary convectons in binary fluid convection, shown in terms of the midplane temperature fluctuation, is
accompanied by wave radiation but is broadly similar. Adapted from Reference 67.

PCF: plane Couette
flow
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whether r < rM or r > rM. In the former case, the localized structure should gradually shrink; in
the latter case, it should gradually grow. Despite some numerical studies of this process (83, 84),
the details of the resulting evolution are by nomeans clear. The effects of multiplicative noise have
not been studied.

3. TWO-DIMENSIONAL LOCALIZED STRUCTURES

Wenow consider the Swift-Hohenberg equation 3 in two dimensions (2D). In 2D, there is a larger
range of different types of localized structures that arise, including stripes, spots, targets, squares,
and hexagons. Quadratic terms in f(u) favor, as usual, patterns with hexagonal structure (45, 46).

3.1. Stripe-Like Patterns

Stripe patterns, produced by extending 1D localized states in the y direction, are the simplest 2D
states to consider. In addition to the 1D instability modes already mentioned, the stripes are now
susceptible to transverse (y-dependent) instabilities. There are two types, wall modes that repre-
sent instabilities confined to the fronts and body modes that represent bulk instability. Together
these modes reduce substantially the region in parameter space where stable localized states are
found (Figure 13). The 1D pinning region originates in the codimension-two points ðr, b2Þ ¼�
0,

ffiffiffiffiffiffiffiffiffiffiffiffiffi
27=38

p
q2c
�
(SH23) and (r,b3)¼ (0, 0) (SH35).However, because of transverse instabilities, the

region of stable stripes does not reach all the way to these codimension-two points (32).
Outside the 2D stability region, the transverse instabilities may remain confined to the

fronts; may propagate throughout the interior of the stripe, leaving behind a stripe with a 2D
internal structure; or may depin the fronts, resulting in a dynamic invasion of the stable ho-
mogeneous state (32). The time-independent SH35 stripes with 2D fronts (Figure 14a) have
been followed using numerical continuation (85). One finds two types of growth: The
structure grows in a 1Dmanner by adding rolls parallel to the existing rolls, or it may grow by
sending out rolls that are orthogonal to the existing rolls. In the former process, the fronts
connecting the state to the background are pinned to the structured state behind them, and this

–1 –0.5 0
0

8 rM

r

4

–3 –2 –1 0

0

1

2

3

4

r

b3b
2
2

rM
a b

Figure 13

Stability regions for localized stripes with respect to one- (blue) and two-dimensional (gold) perturbations in (a) SH23 and (b) SH35, both
for qc ¼ 1. Adapted from Reference 32.
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type of growth process is therefore accompanied by snaking (Figure 14c). In the latter process,
the fronts see behind them a translation invariant state, and hence no pinning takes place and
the L2 norm of the state therefore grows monotonically (Figure 14b). This type of collapsed
snaking is typical of the approach to the Maxwell point between two homogeneous phases.
However, the pinning process continues to generate intertwined branches of states with odd
and even parity, with asymmetric rung states connecting even states to odd, even states to even,
and odd states to odd, the latter two of which may be stable. Additional states with check-
erboard internal structure are located on stacks of isolas.

3.2. Structures Localized in Two Dimensions

To identify structures fully localized in 2D, we may perform analogs of the experiment in Ref-
erence 8. We introduce distinct localized perturbations in different parts of the domain and allow
them to relax. In the right parameter regime, thesemay relax to a localized spot or target pattern, or
to a localized patch of hexagons (SH23; Figure 15); in SH35, we may instead get a stripe-like
pattern localized in both directions.We show examples of the former in Figure 16 and of the latter
in Figures 17 and 18. For other examples, see Reference 19.

The growth process whereby the hexagonal patch grows as the solution branch is followed has
been studied in detail in Reference 86: The structure first adds a cell (or two cells) in the center of
each face and then fills in the row by adding cells symmetrically on either side of the new cell. The
last locations to be filled are the six corners of the structures. These nucleation events are all
reflected in the associated snaking diagram. Why the structure grows in this manner is not un-
derstood, although the misalignment of the folds provides an indication of the energy associated

a b c

||u||
2
2

–0.56–0.64–0.72
r

–0.56–0.64–0.72
r

–0.56–0.64–0.72
r

Figure 14

Bifurcation diagram of an even parity localized stripe pattern in SH35. (a) A localized state identified through time integration. (b,c)
Different typesof snakingobtainedby following the solution inpanel a in opposite directions. Each figure shows the appropriateportionof
the bifurcation diagram (left panel) and the solution profile u(x, y) (right panel) corresponding to the location indicated by the red dot.
Parameters: b3 ¼ 2, qc ¼ 1. Adapted from Reference 85. ©2010 Society for Industrial and Applied Mathematics. Reprinted with
permission. All rights reserved.
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with the nucleation of cells in different locations along the edges. There are two different types of
hexagonal structures confined to a stripe, with wavenumbers (k0, k1, k2) ¼ (1, 0, 0) and (0, 1, 1)
relative to the front, and these also grow in specific ways (86) and in particular exhibit secondary
snaking (see below).

The 2D localized stripes shown inFigures 17 and 18 are also poorly understood. One presumes
that it is the curvature of the states in Figure 17 that pins the curved fronts and prevents them from
expanding outward. The structures shown in Figure 18 are locally concave and hence cannot be
explained in terms of the usual notions of surface energy. In fact, stable localized structureswith no
symmetry can be created by cutting out pieces of symmetric states—in appropriate parameter
regimes, the resulting structure is stable and does not heal over time.

Figure 19 summarizes the locationof someof the statesmentioned above in the parameter plane
for SH23. As in 1D, the pinning regions are exponentially narrow near r¼ 0 and so have not been
extended all the way to the vertical axis.

2

1

0

u

Figure 15

Coexisting localized structures generated by different finite amplitude perturbations of the u¼ 0 state in SH23.
Parameters: r¼�0.5, b2¼ 2.2, qc¼ 1. Adapted fromReference 86.©2008 Society for Industrial and Applied
Mathematics. Reprinted with permission. All rights reserved.

2 4

1 3
4

2

3

1

||u||
2
2

–0.25–0.35
r

Figure 16

Bifurcation diagram for localized hexagons in SH23 showing the L2 norm as a function of the bifurcation
parameter r. The side panels illustrate the solution profiles at the points labeled in the middle panel. Solid
lines indicate stable solutions. Dashed lines indicate unstable solutions. Parameters: b3 ¼ 1.6, qc ¼ 1.
Adapted from Reference 86. ©2008 Society for Industrial and Applied Mathematics. Reprinted with
permission. All rights reserved.
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3.3. Spots and Targets

Figure 15 reveals the presence of two distinct types of steady axisymmetric structures: spots and
targets. The spatial dynamics formulation of the axisymmetric problem leads to a nonautonomous
problem in the radial coordinate R. Despite this (nontrivial) complication, it is possible to obtain
the following results for SH23 (87, 88): (a) For each b2> 0, there is a family of spots (called spot A)
with a positive Oðjrj1=2Þ amplitude in the center for small jrj, resembling Bessel functions and
bifurcating subcritically from u ¼ 0 at r ¼ 0; (b) a pair of target patterns, with maximum ampli-
tude Oðjrj1=2Þ away from the center, bifurcates subcritically from u ¼ 0 at r ¼ 0 for each b2 >

b�2 [
ffiffiffiffiffiffiffiffiffiffiffiffiffi
27=38

p
q2c (i.e., a < 0). Both spot A and the two target states snake when b2 > b�2, at least

initially; (c) there is a second family of spots (spot B) with negativeOðjrj3=8Þ amplitude in the center

||u||
2
2

21

3

–0.80–0.85–0.90–0.95–1.00–1.05–1.11
r

123

a b

Figure 17

(a) Barrel-shaped localized structures of SH35 initially snake, but large structures of this type lead to collapsed snaking. (b) Subsidiary
barrel-shaped structures differing by one stripe at the points labeled in panel a. Parameters: b3¼ 2.50081, qc¼ 1. Adapted fromReference
85. ©2010 Society for Industrial and Applied Mathematics. Reprinted with permission. All rights reserved.

2 4 5 61 3

2
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||u||
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r

Figure 18

Planar leaf-like solutions of SH35at the points labeled 1–6 in the left panel. Parameters:b3¼ 2,qc¼1.Adapted fromReference 85.©2010
Society for Industrial and Applied Mathematics. Adapted with permission. All rights reserved.
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that bifurcates subcritically from u ¼ 0 at r ¼ 0 for each b2 > b�2. However, snaking does not
continue indefinitely—at large enough amplitude the structure breaks up into isolas as spot A
reconnects with target A and spot B reconnects with target B. At yet larger amplitude the structures
are so extended that the curvature effects near the outer front are reduced and snaking resumes. In
contrast, spots consisting of one homogeneous state embedded within another do not snake.

The fact that spots A are present for 0 < b2 < b�2, i.e., in the absence of hysteresis between the
homogeneous state and the 1D periodic state, could explain the prevalence of spots in experiments
in which 1D bistability does not occur.

3.4. Secondary Snaking

Secondary snaking has been observed in several systems. In the 2D SH23, stripes of hexagons un-
dergo primary snaking corresponding to the addition of complete rows of cells on either side of the
stripe, but each row itself grows on an inhomogeneous interface, leading to secondary snaking as-
sociatedwith the nucleation of individual cells (86) (Figure 20). Other examples of similar behavior
have been found in a reaction-diffusion model (89) and in 3D convection in a vertical slot (90). This
type of behavior ariseswhenever growth processes in twodistinct directions compete, e.g.,x versus y
growth, as in Figure 20, and radial versus azimuthal growth, as in Reference 89.

4. FLUID DYNAMICS

In fluid dynamics, multiple localized states were first identified in a vertical liquid-
filled cavity driven by lateral gradients in temperature and concentration (13). Insights

Domain-covering
hexagons

b
2
2

5

6

4

3

2

1

0
0–0.1–0.2–0.3–0.4–0.5–0.6

r

Stable spots

Snaking
localized
hexagons

Snaking targets

Snaking targets

No patterns

Figure 19

Location in the parameter plane of localized hexagons, targets, and spots in SH23 with qc ¼ 1. Adapted
from Reference 86. ©2008 Society for Industrial and Applied Mathematics. Reprinted with permission. All
rights reserved.
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based on the Swift-Hohenberg equation have led to a better understanding of this
phenomenon.

For applications of these ideas to specific systems, one needs first to find a good approxi-
mation to the solution of the nonlinear problem to use as an initial guess for numerical con-
tinuation. This may be done in one of two ways: (a) solving the time-independent linear
problem describing perturbations of a homogeneous state for the spatial eigenvalue l and
searching for purely imaginary eigenvalues of double multiplicity. In fluid mechanics, this
typically requires the solution of a complex-valued boundary value problem. If such a pa-
rameter value is found and the corresponding periodic states bifurcate subcritically, the
presence of localized states in the subcritical regime is guaranteed and the eigenfunctions in this
regime provide a good approximation to these states that can be used to initialize numerical
continuation (91). (b) In some problems, such as binary fluid convection and PCF, the periodic
states come in from infinity, and in this case numerical integration in time is useful. This may
identify a stable localized state that may then be followed using numerical continuation (2D
binary fluid convection); alternatively, localized transients may be used to initialize numerical
continuation (PCF). Numerical continuation of steady (or time-dependent) solutions is ex-
tremely useful since both stable and unstable states can be followed and the origin of stable
states determined.

4.1. Binary Fluid Convection

The best-studied system from the above point of view is binary fluid convection with a negative
separation ratio and identical boundary conditions at top and bottom. In this system, the heavier
and lighter components of the mixture partially separate when the system is placed in an imposed
temperature gradient. When the system is heated from below the heavier component migrates
toward the hotter boundary at the bottom, and its effects on buoyancy then compete with the
thermal effects, leading to an oscillatory doubly diffusive instability. This instability develops into
traveling waves and in large domains generates a state known as dispersive chaos (92, 93).
Simulations by Batiste et al. (14) have shown that as the Rayleigh number Ra increases, this

||u||2
2

–0.26–0.3–0.34
r

a b c

Figure 20

(a) Secondary snaking in SH23 associated with the growth of a new row of cells. (b,c) Sample solutions at r ¼� 0.3 along the secondary
snaking branch. Parameters: b2 ¼ 1.6, qc ¼ 1. Adapted from Reference 86. ©2008 Society for Industrial and Applied Mathematics.
Reprinted with permission. All rights reserved.
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chaotic state itself undergoes a focusing instability that leads to the appearance of steady spatially
localized convection, i.e., a convecton. Thisword, coined byA.Rucklidge, first appears in a paper
by Blanchflower (94). The growth of the convecton suppresses motion in the rest of the domain,
leading to numerically stable, localized convection embedded in a background conduction state.
The stability of this state is a surprise because the background state is unstable to the oscillatory
instability. Batiste et al. (14) suggest that this is a consequence of the interaction of the small
amplitude traveling waves with the convectons. These absorb the waves for values of Ra for
which a wavepacket propagates faster than it grows, i.e., for Ra < Raa, where Raa defines the
threshold for absolute instability (95). The background therefore fills with waves only for Ra >
Raa (see 96).

The convectons found by Batiste et al. (14) are of odd and even parity and fall on intertwined
branches, much as in SH35. This is a consequence of the symmetry of the binary fluid equations
with respect to the layer midplane, and hence a consequence of the use of the Boussinesq
approximation together with identical boundary conditions at the top and bottom boundaries.
As a result new rolls are nucleated near the left edge of the snaking region andmature by the time
Ra reaches the right edge.With each complete oscillation of the branch, the structure adds a pair
of rolls, one roll on either side, just as in SH35. The rung states are also present (67) but
correspond to asymmetric convectons that drift, a consequence of the nongradient structure of
the fluid equations. Like the rung states in SH35, these are unstable. Since the rolls at either end
of an odd parity state rotate in the same sense, the odd parity states entrain concentration-rich or
concentration-poor fluid from one side of the structure and reject it at the other end: Odd parity
convectons therefore act as a pump that transfers concentration from one side of the structure to
the other. Since the direction of the end rolls reverses with each oscillation of the branch, the
pumping direction also reverses. In contrast, the even structures entrain concentration-rich/
concentration-poor fluid from both sides simultaneously and so are associated with enhanced/
suppressed concentration relative to the mean. As one proceeds up the even convecton branch
and the convectons add new rolls on either side, these processes alternate.Multipulse states have
also been computed, and these behave as in SH35 (97).

In addition to calculations with periodic boundary conditions, calculations have also been
done with Neumann boundary conditions (NBCs) at the sides and with no-slip, no-flux
boundary conditions [insulating closed container boundary conditions (ICCBCs)]. The use
of NBCs breaks translation invariance, and this results in the termination of the snaking
branches on different branches. Since Eckhaus points remain multiple bifurcation points, the
termination of a single branch of localized states is accompanied by the appearance of a non-
snaking branch of defect-like states called mixed modes. Farther from the Eckhaus point, these
states also resemble localized structures, leading to scenarios in which not all localized
structures snake. Since NBCs allow discrete translations, it is possible to use these to construct
localized solutions confined to the boundary and then use these to find similar solutions at-
tached to walls in the case of ICCBCs (97). These wall-attached states also snake but because
they are in effect localized states on a domain of double size, they snake with twice the fre-
quency, as each oscillation is responsible for the addition of only one roll. These results provide
a likely explanation for the states first identified by Ghorayeb & Mojtabi (13) in doubly
diffusive convection in a vertical slot. No time-independent localized states have been found in
binary convection in cylindrical domains despite the presence of a focusing instability anal-
ogous to that in two dimensions (98).

Similar single-pulse and multipulse snaking behavior has been found in 2D doubly diffusive
convection in a horizontal layer (99) and in 2D binary convection in a porous medium (100).
Recent extension of the latter study to 3D has revealed remarkable localized structures resembling
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snowflakes in which the stationary structure sends out long arms, as one follows the solution
branch, consisting of transverse rolls that appear to be confined laterally by the expulsion of
concentration gradients fromwithin the arms (101), in amanner reminiscent of the 1Dprocess first
described by Riecke (102).

4.1.1. Collisions. When the midplane symmetry R2 of the system is broken, for example by
allowing heat to leak out from the upper boundary, the odd parity convectons necessarily start
to drift while R1 symmetric states remain stationary. Given the large number of coexisting
states of this type within the pinning region, different types of collisions are possible, but all
turn out to be inelastic (67), as predicted by the corresponding problem using SH35 (66).
Nishiura et al. (103, 104) have studied similar processes in reaction-diffusion equations in 1D
and 2D. In these systems, localized spots exist as stable solutions, but these can undergo
a parity-breaking bifurcation resulting in drift and hence collisions. Owing to the absence of
snaking, all spots at a fixed parameter value are identical, but their interaction can lead
to annihilation, repulsion, or coalescence into a single drifting pulse, depending on the
parameters. Ward and colleagues (105, 106) have studied instabilities leading to spot fission
and hence to spot proliferation, employing asymptotic techniques based on the assumed
disparity in the diffusion coefficients of the activator and inhibitor to study the organization of
the resulting spots in 2D. Studies of this type are motivated by experiments (107, 108), and in
this case these were in turn motivated by simulations of model reaction-diffusion systems,
such as the Gray-Scott model (109).

4.1.2. Localized traveling waves. It is important to distinguish spatially localized steady states
that drift, such as that shown in Figure 12c, created by changing the temperature boundary
condition at the top to allow heat loss (67) from superficially similar states created through
amodulational instability of travelingwave convection. This type of time-dependent convection
is characteristic of doubly diffusive systems, including binary fluid convection. The waves are
created through a primary Hopf bifurcation and lead to wavepackets that drift with the group
speed of the waves, a speed that differs in general from the phase speed of the waves within the
wavepacket. Such states are therefore quasiperiodic, and the motion is driven by phase lag
between the thermal and concentration fields (110). In experiments (111, 112) and simulations
(110), waves of this type are found in the subcritical regime, i.e., below the primary Hopf
bifurcation. In contrast, the drifting steady states are stationary in a comoving frame, and phase
lags between the thermal and concentration fields are absent. At a fundamental level the
mathematics behind the formation and evolution of localized traveling waves is not fully un-
derstood, although it is clearly related to a focusing instability and amplitude saturation via
wavenumber growth (113). Heroic simulations of such waves have recently been carried out by
Watanabe et al. (114; see also, 115).

4.2. Shear flows

Localized structures have been observed in experiments on the transition to turbulence for many
years. In pipe flow, these take the form of spontaneously generated turbulent puffs that either
decay as they propagate downstream or trigger a transition to turbulence (116). PCF, in which
a shear flow is driven by horizontal plates moving with speed U in opposite directions, is better
suited for studies of localization since the symmetry R1 3 R2 of this system forces structures with
R1 � R2 symmetry to be stationary. PCF is known to be linearly stable for all Reynolds numbers
Re[ UL/n, where 2L is the separation between the planes and n is the kinematic viscosity (117).
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However, like pipe flow, the flow is susceptible to finite amplitude perturbations that trigger the
appearance of turbulence at values of Re as low as Re � 325 (80, 118, 119). For pipe flow, the
corresponding value is Re � 2,040 (81). Numerical computations have revealed the presence of
localized edge states, states lying on the boundary between laminar and turbulent PCF (16, 17).
These states are localized in the spanwise (cross-stream) direction and are typically once unstable.
When used to initialize numerical continuation, these states have been found to exhibit the type of
snaking expected of systems with the symmetry of SH35. Odd states that are in as much contact
with the upper and lower plates are stationary (EQ), but even states that have greater contact
with either the upper or lower plate have a nonzero streamwise velocity (TW; Figure 21). The
asymmetric rung states are also present (120). It is remarkable that after more than a century of
study, ideas based on the Swift-Hohenberg equation have led to the discovery of a completely
new class of solutions of this classic problem. In fact, localization in the spanwise direction is not
surprising—it is a consequence of the pinning of the fronts bounding the structure to the
streamwise-aligned vortices generated by finite amplitude perturbations. The streamwise lo-
calization of these structures, if any, is more problematic since it may have to rely on weak
departures from two-dimensionality; strictly 2D structures are known to decay because of the
absence of the self-sustaining mechanism identified byWaleffe (121). In such states, streamwise
pinning would be absent in any case.

Although these states are unstable, experiments (80, 119) and simulations (122, 123) of PCF
reveal a second type of localized state: localized stripes of turbulence at an oblique angle to the
streamwise direction with nonturbulent shear flow in between. Despite our ability to simulate
this remarkable state, its origin remains unclear. Models based on ideas from the theory of
excitable systems have proved illuminating (124), but it may be that one should view the system
as a bistable systemwith a stable homogeneous shear flow and a coexisting turbulent state, with
the latter state undergoing a saddle-node bifurcation at Re < 325. Bifurcation to a state of
spatially modulated turbulence from the saddle-node could lead to a turbulent state with
nonturbulent “holes” that acquires stability asRe increases, much as occurs in similar situations
arising in oscillon models (69).

D
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2.2
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z

y

y

x

x

a b

Figure 21

(a) Bifurcation diagram showing the snakes-and-ladders structure of localized states in plane Couette flow
showing the dissipationD as a function of the Reynolds numberRe. (b) Sample solutions uTW (top panels) and
uEQ (bottom panels) showing the streamwise velocity in the midplane (upper) and the spanwise cross-section
(lower). Adapted from Reference 120.
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5. CONSERVED SYSTEMS

The above behavior is typical of nonconserved order parameter fields. However, an important
subclass of gradient systems possesses a conserved quantity, and in such systems the order pa-
rameter field has a fixed mean value. Systems of this type arise frequently in fluid convection and
other applications (125–127) and are distinguished from the standard scenario summarized above
by the following properties (128, 129): (a) The snaking becomes slanted (sometimes referred to as
sidewinding); (b) localized states may be present outside of the region of coexistence of the ho-
mogeneous and periodic states; and (c) localized states are present even when the periodic states
bifurcate supercritically, i.e., when the coexistence region is absent entirely. The slanting of the
snakes-and-ladders structure is a finite size effect: In a finite domain, expulsion of the conserved
quantity from the localized states implies its excess outside, a fact that progressively delays (to
stronger forcing) the nucleation eventswhereby the localized states grow in length. The net effect is
that localized states are found in a much broader region of parameter space than in nonconserved
systems.

5.1. Fluid Systems with a Conserved Quantity

Convection in an imposed magnetic field (130) provides a classic example of a system with
a conserved quantity, the magnetic flux imposed across the layer. The conservation of flux is
a consequence of the boundary conditions typically adopted for this type of problem and
implies that the flow within the layer can at most redistribute the flux. The resulting conserved
quantity exerts considerable influence on the behavior of the system, provided the system is of
finite lateral extent. The presence of the conserved quantity implies that long wavelength
perturbations of the conduction state are only weakly damped. This slow mode must therefore
be included in the derivation of amplitude equations valid near the onset of the convective
instability that sets in as Ra increases. This is also the case for 2D convection in a horizontal
layer with stress-free boundaries at top and bottom that is rotating uniformly about the vertical

ẑ, where the conserved quantity is the zonal momentum
Z

vðx, zÞdxdz that may be set equal to

zero (125). Here, v represents the y component of the velocity. The equations analogous to
Equation 10 take the form

AT ¼ rAþ AXX � 1
2

�
1� j2

�
jAj2A� jAVX 16:

VT ¼ VXX þ j
�
jAj2

�
X

17:

(125, 131, 132), where j is a parameter measuring the strength of the magnetic field or rotation,
and X [ ex, T [ e2t are slow spatial and temporal variables. Here, the complex amplitude A
represents the strength of the convective flow in the (x, z) plane, and V denotes the large-scale
mode. It was realized by Cox & Matthews (125, 131) that the coupling to the large-scale mode
destabilizes supercritical convection close to onset, resulting in the presence of spatiallymodulated
states close to onset even in situations in which a hysteresis loop is absent. Despite earlier attempts
(125, 133), the fully nonlinear states resulting from this instability have only been computed
recently (126, 127). The calculations confirm that all three departures (a–c) from standard be-
havior mentioned above take place in these systems (Figure 22) and confirm that these are
a consequence of the coupling to a large-scalemode. Themagnetic convectons expel magnetic flux
to the outside, while in the rotating layer the convectons expel gradients in the zonal velocity,
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resulting in slower rotation within the localized structure and faster rotation outside. Thus,
convectons are embedded in a shear layer they themselves create. These results are consistent with
the weakly nonlinear theory summarized above. In the stationary case with periodic boundary
conditions on the large scale X, Equation 17 implies that

VX ¼ j
�
ÆjAj2æ� jAj2

�
, 18:

where Æ×æ represents a spatial average over the domain. Thus,VX>0 if jAj2< ÆjAj2æ, i.e., outside the
convecton, whereas VX < 0 if jAj2 > ÆjAj2æ, i.e., inside the convecton, exactly as found in fully
nonlinear computations (126, 127). Note that the resulting equation for A is nonlocal, with the
effective Raleigh number reff[ r� j2ÆjAj2æ responsible for the presence of a slant in the bifurcation
diagram and any associated snaking. Nonlocal evolution equations of this type have been studied
by a number of authors (134–136).

If the boundary conditions are perturbed in such a way as to destroy the conservation of the
conserved quantity, the large-scale mode becomes damped and its characteristic scale becomes the
convection length scale. Localized states remain, albeit at different values of the parameter, but
snaking returns to its standard,nonslanted form(137). Related issues arise in studies of oscillons in
granular media (or liquids), where the conservation of mass (or volume) also exerts a significant
influence (138–141).
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Figure 22

Poloidal kinetic energy E per unit area as a function of the Rayleigh number Ra showing slanted snaking in
rotating convection. Bifurcation to subcritical localized states from (a) a subcritical branchP10 of periodic states
with 10 wavelengths in the domain and (b) a supercritical P10 branch. Adapted from Reference 127.
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5.2. The Conserved Swift-Hohenberg Equation and Phase-Field Crystals

The conserved Swift-Hohenberg (cSH) equation arguably provides the simplest illustration of
the above results. Although this equation appears in earlier work in different fields (131, 142), it
arises naturally in the phase-field crystal (PFC) model of soft matter (143). This model is in turn
derived from the dynamical density functional theory (DDFT) of solids (143–145) and may be
viewed as probably the simplest microscopic model for the freezing transition that can be
constructed. In this model, the transition from a homogeneous state to a periodic state cor-
responds to the transition from a uniform density liquid to a periodic crystalline solid. The
localized structures of interest in this model then correspond to states in which a finite size
portion of the periodic crystalline phase coexistswith the uniformdensity liquid phase, and these
are expected to be present in the coexistence region between the two phases. In fact, it turns out
that localized structures are also present at state points outside of the coexistence region (146).
Some rather striking examples of localized structures in large 2D systems with conserved mass
include snow-flake-like and dendritic structures (143, 147–149).

We write the cSH (or PFC) equation in the form

∂tfðx, tÞ ¼ a=2 dF½f�
dfðx, tÞ, F½f�[

Z
dx

"
f

2

�
rþ

�
q2c þ =2

�2�
fþ f4

4

#
, 19:

where f(x, t) is an order parameter field that corresponds in the PFC context to a scaled density
profile, r plays the role of temperature, and a is a (constant) mobility coefficient. It follows that the
system evolves according to the cSH equation

∂t f ¼ a=2
�
rfþ

�
q2c þ =2

�2
fþ f3

�
. 20:

Acubic contribution can be added toFwithout substantial change in behavior. This is because the
role of the coefficient b2 is now played by f0, the conserved average value of the order parameter
f(x). Stationary states thus obey the equation

rfþ
�
q2c þ =2

�2
fþ f3 ¼ m, 21:

where m is the chemical potential for a supercooled liquid. The quantity f0 controls the
fraction of the mass that is in the liquid and solid phases, and this fraction depends on the
temperature r< 0. The bifurcation diagrams showing kf�f0k as a function off0 take the formof
slanted snaking (cf. Figure 22), completewith rung states representing asymmetric states, provided
r is sufficiently below the thermodynamic tricritical point (146). It is significant that the localized
states described by these diagrams tend to have lower energy than the periodic crystal and that
standard snaking is recovered if the results are replotted as a function of m (146). Thus, m is the
proper thermodynamic variable for systems of this type, and it would be of interest to identify
a quantity that plays the role of the chemical potential in the fluid systemswith conserveddynamics
described above.

Direct numerical simulation of the cSH equation in 2D and 3D (146) reveals a similar ther-
modynamic preference for localized structures in particular intervals of f0. However, the sig-
nificance of these states for the liquid-solid transition in soft matter systems remains to be worked
out, as does the persistence of these structures in more realistic models of the particle-particle
interaction, e.g., within a nonlocal description like DDFT.

PFC: phase-field
crystal
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