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In structural equation modeling, incremental fit indices are based on the comparison
of the fit of a substantive model to that of a null model. The standard null model
yields unconstrained estimates of the variance (and mean, if included) of each
manifest variable. For many models, however, the standard null model is an im-
proper comparison model. In these cases, incremental fit index values reported
automatically by structural modeling software have no interpretation and should be
disregarded. The authors explain how to formulate an acceptable, modified null
model, predict changes in fit index values accompanying its use, provide examples
illustrating effects on fit index values when using such a model, and discuss
implications for theory and practice of structural equation modeling.

Over the last two decades, structural equation mod-
eling (SEM) has steadily gained popularity as a
method of data analysis in the social sciences. SEM
practitioners usually rely on statistical programs de-
signed specifically for such analyses, programs in-
cluding LISREL (Jöreskog & Sörbom, 1993, 1996),
EQS (Bentler & Wu, 1995), AMOS (Arbuckle &
Wothke, 1999), and RAMONA (Browne & Mels,
1990), among others. SEM software allows the user to
specify and to test even very complex structural mod-
els with relative speed and ease.

One notable feature of most SEM software pro-
grams is the ready availability of a large number of
indices of the goodness of fit of a model to data.

Members of one of the more useful classes of fit in-
dices are termed incremental fit indices because such
indices reflect the increment in fit of a given substan-
tive model over that of a null model. Automatic cal-
culation of fit indices is a welcome feature of SEM
software packages. However, these SEM programs
automatically use, implicitly, a standard, generic null
model when computing incremental fit indices. In-
stances in which this generic null model is an inap-
propriate comparison model are not uncommon; in
these cases, SEM software programs will fail to cor-
rect this mistaken assumption for the user.

In this article, we discuss first the general linear
structural model on which SEM is based. Then, we
discuss the traditional chi-square (�2) test of signifi-
cance of model fit and the use of incremental fit in-
dices. In doing so, we explain the concept of nested
models and the role of the null model in the compu-
tation of these fit indices. Next, we highlight situa-
tions in which the traditional null model is an inap-
propriate comparison model and describe the likely
effects of using a different, more appropriate null
model. We then provide two empirical illustrations
representing situations in which the traditional null
model is an incorrect comparison model and close
with discussion of implications of our results for the
use of incremental fit indices.

A General Linear Structural Equation Model

In this section, we review briefly one general form
of the mean and covariance structure model. The
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purpose of this presentation is to provide a back-
ground for discussion of model fit to the data. Bollen
(1989b) and Byrne (1998) provided introductions to
this topic, and Browne and Arminger (1995) provided
a more complete discussion. Readers new to SEM
should pay special attention to the definition of the �,
�, and � matrices in Equations 1–4 below and to the
role of sample size in Equation 6. An in-depth under-
standing of Equations 1–5 is less important to achieve
on first reading.

If p manifest (i.e., measured or observed) variables
for a random person are in raw score form (i.e., not in
mean-deviation form) and are placed in a column vec-
tor Y, the linear structural equation model can be
written as

Y � � + � (I − B)−1 (� + �) + �, (1)

where � is a p × 1 vector of intercepts for the p
manifest variables, � is a p × r matrix of loadings of
the p manifest variables on the r latent variables, I is
an r × r identity matrix, B is an r × r matrix of
regression weights for predicting latent variables from
other latent variables, � is an r × r vector of intercepts
for the r latent variables, � is an r × 1 vector of
residual scores (in mean-deviation form) on the latent
variables for the person, and � is a p × 1 vector of
unique factor scores for the individual.

The linear structural model in Equation 1 implies
the following moment structure model:

�* � [(� + �(I − B)−1�)(� + �(I − B)−1�)�]
+ [�(I − B)−1�(I − B�)−1�� + 	], (2)

where �* is a p × p population moment matrix, � is
an r × r matrix of covariances among latent variable
residuals, � is a p × p matrix (usually diagonal) of
covariances among unique factors, and all other sym-
bols are as defined above.

If the model in Equation 2 is fit to an observed
sample moment matrix S*, one has

S* ≈ [(�̂ + �̂(I − B̂)−1�̂)(�̂ + �̂(I − B̂)−1�̂)�]
+ [�̂(I − B̂)−1�̂(I − B̂�)−1�̂� + �̂]

� �̂*, (3)

where a caret (ˆ) was added to matrices with best-fit
parameter estimates, and all other symbols are as de-
fined above. In Equation 3, the observed moment ma-
trix S* is approximated by the linear model with best-
fit parameter estimates, and this model leads to an
estimate of the population moments among variables,
�̂*, assuming the model is correct in the population.

If the manifest variables are measured in mean-

deviation form, then the � and � parameters fall out of
Equations 1–3, and Equation 3 simplifies to the typi-
cal covariance structure model:

S ≈ �̂ (I − B̂)−1 �̂ (I − B̂�)−1 �̂� + �̂ � �̂, (4)

where S is a p × p sample covariance matrix, � is a
population covariance matrix, and all other symbols
are as defined above.

If moment structure models are fit to data using
Equation 3, estimates of the means of the manifest
variables, µ̂, are reproduced, using best-fit parameter
estimates, by µ̂ � �̂ + �̂ (I − B̂)−1 �̂, where all
symbols are as defined above. Estimates of population
covariances among manifest variables are reproduced
using Equation 4, which is a subset of Equation 3.

Indices of the Goodness of Fit of Models
to Data

The Likelihood Ratio Chi-Square Statistic

For evaluating model fit to data, the chi-square sta-
tistic is the first fit index evaluated and reported by
most investigators. The chi-square statistic is based on
the discrepancy between the sample moment (or co-
variance) matrix and the model-implied moment (or
covariance) matrix. When fitting moment structure
models, the discrepancy function must incorporate
misfit in modeling both means and covariances. An
appropriate discrepancy function F is the normal
theory maximum likelihood discrepancy function (cf.
Brown & Arminger, 1995):

F � (Y − µ)��−1 (Y − µ) + log|�| − log|S|
+ tr(�−1S) − p, (5)

where Y is a column vector of sample means on the p
manifest variables, µ is a column vector of model-
implied means, log represents the natural log, | | de-
notes the determinant of a matrix, tr is the trace op-
erator that returns the sum of diagonal elements of a
matrix, and other symbols are as defined above. The
first term on the right side of Equation 5 represents the
contribution to F of model misfit to the means on
manifest variables. The remaining four terms on the
right side of Equation 5 represent model misfit to the
covariances among manifest variables. The discrep-
ancy function F is bounded below by zero and will
attain a value of zero only when � � S and Y � µ.

The maximum-likelihood solution is obtained when
F in Equation 5 is at its minimum for a given model.
The likelihood ratio chi-square statistic is then com-
puted as
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�2 � (N − 1) F, (6)

where N is sample size, and other symbols are as
defined above.1 If t is the number of parameter esti-
mates in a model, the chi-square statistic in Equation
6 has degrees of freedom (df) equal to [p (p + 3)/2 −
t] for a moment structure model or df � [p (p + 1)/2
− t] for a covariance structure model. The chi-square
statistic from Equation 6 is distributed approximately
as a central chi-square if N is large, the model is
correct, and all distributional assumptions (e.g., lin-
earity and normality) are satisfied. Further, the null
hypothesis tested by this chi-square statistic is that the
model is exactly correct in the population.

Practical Fit Indices

Like any test of statistical significance, the chi-
square statistic is a direct function of sample size and
model misfit (cf. Equation 6). Hence, ill-fitting mod-
els might be judged to have adequate fit by this cri-
terion if sample size were small. Conversely, the chi-
square test of significance might suggest rejection of
models associated with trivial discrepancies between
the observed and model-implied covariance matrices
and mean vectors if sample size were very large.

Consequently, alternative fit indices have been de-
veloped under the assumption that they might yield
intuitively understandable indices of goodness of fit,
yet be less sensitive to sample size (although sensi-
tivity to sample size is reasonable in some situations;
cf. Cudeck & Henly, 1991). These alternative fit in-
dices are often termed practical fit indices, offering a
contrast with the chi-square statistic, which is a sta-
tistical fit index. At least two general classes of prac-
tical fit indices may be distinguished: incremental and
absolute fit indices. Each incremental fit index pro-
vides a measure of the proportional improvement in
fit of a substantive model relative to a null model that
is nested within the substantive model. In contrast,
each absolute fit index yields a direct measure of
model fit, with no consideration of the fit of the sub-
stantive model relative to a null model. Both incre-
mental and absolute fit indices may, however, involve
an implicit or explicit comparison with other models
for the data, such as the saturated model.

During the past decade or so, several investigations
of large numbers of SEM fit indices have been con-
ducted (Bentler, 1990; Hu & Bender, 1998, 1999;
Marsh, Balla, & McDonald, 1988). These studies
have led to the following general conclusions: First,
many absolute fit indices are relatively poor indicators

of practical fit, as they are related too strongly to
sample size. The root-mean-square error of approxi-
mation (RMSEA; Browne & Cudeck, 1993; Steiger &
Lind, 1980) and the centrality index (CI; McDonald,
1989) represent two notable exceptions to this trend.
Both the RMSEA and the CI are relatively indepen-
dent of sample size and thus perform well as indices
of practical fit. Second, in contrast, most of the com-
monly used incremental fit indices exhibit relative
independence from sample size and thus are useful
indices of practical fit. Given the generally good per-
formance of incremental fit indices and our contention
that values of these fit indices are calculated incor-
rectly in many cases, we restrict our attention in this
article to the class of incremental fit indices. Further-
more, because absolute fit indices do not use the fit of
a null model in their calculation, consideration of ab-
solute fit indices is beyond the scope of this article.

Incremental Fit Indices

The most commonly used incremental fit indices
are (a) the Tucker–Lewis index (TLI; Tucker &
Lewis, 1973), also called the nonnormed fit index
(NNFI; Bentler & Bonett, 1980); (b) an adjustment to
the TLI (Bollen, 1986), called the relative fit index
(RFI; Jöreskog & Sörbom, 1993); (c) the normed fit
index (NFI; Bentler & Bonett, 1980); (d) a modifica-
tion of the NFI (Bollen, 1989a), termed the incremen-
tal fit index (IFI; Jöreskog & Sörbom, 1993); (e) the
relative noncentrality index (RNI; McDonald &
Marsh, 1990); and (f) the comparative fit index (CFI;
Bentler, 1990). These fit indices can be calculated as
follows:

TLI =
��0

2�df0� − ��k
2�dfk�

��0
2�df0� − 1

=
F0�df0 − Fk�dfk

F0�df0 − 1��N − 1�
; (7)

RFI =
��0

2�df0� − ��k
2�dfk�

��0
2�df0�

=
F0�df0 − Fk�dfk

F0�df0
; (8)

1 Technically, under normal theory maximum likelihood
estimation, the multiplier for the chi-square statistic should
be N, rather than (N − 1) (see Browne & Arminger, 1995).
However, with large sample size, the use of (N − 1), rather
than N, as multiplier has a trivial effect on the resulting
chi-square value. Moreover, use of (N − 1) as multiplier puts
the resulting chi-square value on the same metric as the
Wishart maximum-likelihood chi-square that is most com-
monly computed when models are fit only to the covari-
ances among manifest variables.
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NFI =
�0

2 − �k
2

�0
2 =

F0 − Fk

F0
; (9)

IFI =
�0

2 − �k
2

�0
2 − dfk

=
F0 − Fk

F0 − �dfk��N − 1��
; (10)

RNI =
��0

2 − df0� − ��k
2 − dfk�

��0
2 − df0�

= 1 −
��k

2 − dfk�

��0
2 − df0�

= 1 −
Fk − �dfk��N − 1��

F0 − �df0��N − 1��
; (11)

CFI = 1 −
max���k

2 − dfk�, 0�

max���k
2 − dfk�, ��0

2 − df0�, 0�

= 1 −
max��Fk − �dfk��N − 1���, 0�

max��Fk − �dfk��N − 1���,
�F0 − �df0��N − 1���, 0�

(12)

where �2
0, df0, and F0 signify, respectively, the chi-

square, degrees of freedom, and minimum fit function
value for the null model Model M0, and �2

k, dfk, and Fk

represent the chi-square, degrees of freedom, and
minimum fit function value, respectively, for a sub-
stantive model of interest, Model Mk.

Nested Models in SEM

The Concept of Nested Models

The statistical and practical fit indices described
above provide useful measures for evaluating the rela-
tive fit of nested models. Under parameter nesting, a
common definition of nested models is this: One
model, Model Mk , is nested within another model,
Model Ml, if one may arrive at the parameter vector
for Model Mk by placing constraints on the parameter
vector for Model Ml. The constraints invoked when
moving from Model Ml to Model Mk may be quite
varied, including constraining parameters to zero, in-
voking equality constraints, and so on. However, the
important consideration is that the parameter vector
for the nested Model Mk can be obtained by placing
constraints on the parameter vector for the more in-
clusive Model Ml.

Given the preceding definition, two conditions will
be satisfied if Model Mk is nested within Model Ml.
First, Model Mk will have fewer parameter estimates
and therefore a larger number of degrees of freedom
than does Model Ml. Second, the parameter vector for
Model Mk cannot include new parameter estimates
that do not appear in the parameter vector for Model

Ml. If either of these conditions is violated, then
Model Mk cannot be nested within Model Ml.

A Continuum of Nested Models

Another common conception in the use of SEM is
that of a continuum of nested models, which can be
represented graphically as

M0 . . . . . . . . . Mk . . . . . . . . . Ml . . . . . . . . . . Ms ,

a continuum bounded by Models M0 and Ms .
At one end of this continuum is Model Ms , the

saturated model. Technically, to speak of the saturated
model as if only one form of saturated model speci-
fication were possible is a misnomer, as a wide array
of models of very different form satisfy the definition
of the saturated model. To qualify as a saturated
model, a model must (a) make as many parameter
estimates as can be made from the data, a number of
estimates that equals the number of unique elements
of the covariance matrix and mean vector (if these are
included in the analysis); and (b) reproduce exactly
the covariances among and means on the manifest
variables. If these conditions hold, a saturated model
will have a chi-square value of zero with 0 df.

At the other end of the continuum is Model M0, the
null model. Once again, several options exist for
specifying a null model. Any version of the null
model must (a) estimate as few parameters as are
reasonable for the data, and (b) reproduce a nonzero
variance and mean (if included in the analysis) for
each manifest variable.

Falling between the two ends of the continuum are
interesting substantive models, two of which are iden-
tified above as Models Ml and Mk. If, as above, the
parameter vector for Model Mk can be obtained by
placing one or more constraints on the parameter vec-
tor for Model Ml , then Model Mk is nested within
Model Ml. If all substantive models can be arrayed
along a single continuum, as above, then the nesting
relations among models are simple to characterize. At
times, however, a linear continuum cannot be used to
arrange models because a series of competing models
has no simple nesting pattern. In such cases, a tree
structure of models may be necessary; a tree structure
with utility for certain classes of model is described in
a later section. Regardless of whether a linear con-
tinuum or more complex tree structure is required to
portray the nesting relations among models, any ac-
ceptable ordering of models should satisfy the follow-
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ing two conditions: (a) any given substantive model
(e.g., Model Mk) should be more restricted than and
therefore nested within the saturated model, Model
Ms; and (b) the null model, Model M0, should be more
restricted than and therefore nested within any given
substantive model, Model Mk , as well as, by substi-
tution, within the saturated model.

The Form of the Null Model

We used the subscript zero for the null model in
this and preceding sections to indicate that the null
model considered here represents the hypothesis that
the manifest variables are mutually independent and
therefore reproduces zero, or null, covariances among
all manifest variables. That is, in the traditional inde-
pendence null model, the covariances among all
manifest variables are constrained to zero, even
though the variance and mean of each manifest vari-
able are not constrained in any way and are therefore
freely estimated. Tucker and Lewis (1973) used just
such an independence model when developing the
first incremental fit index, and Bentler and Bonett
(1980) emphasized the independence null model
when developing their incremental fit indices.

On the other hand, some researchers have argued
that an independence null model is too restrictive a
comparison model. For example, Sobel and Bohrn-
stedt (1985) argued that the null model should include
estimates of certain parameters (e.g., factor loadings)
that have been verified in prior research. Recently,
Rigdon (1998a; see also Marsh, 1998; Rigdon, 1998b)
argued that an equal-correlation model was a more
appropriate null model than was an independence
model.

Detailed consideration of claims regarding these
competing null models is beyond the scope of this
article, although these issues clearly deserve addi-
tional attention. For the present, we consider only
independence null models that reproduce zero or null
covariances among manifest variables. An indepen-
dence null model is the most widely accepted null
model and is the model used by existing SEM soft-
ware when calculating incremental fit indices. How-
ever, as we show below, in many research applica-
tions, the standard independence null model is not
nested within all substantive models under consider-
ation, is therefore an inappropriate comparison model,
and must be reformulated to be an acceptable null
model.

The Use of Nested Models in Evaluating Fit

Likelihood Ratio Test Statistics

As is well known, if one model, Mk , is nested
within another model, Ml, the difference in fit be-
tween the two models can be evaluated using a nested
model chi-square difference test based on the likeli-
hood ratio test statistics for the two models. Using this
test, the difference in chi-square values, or ��2, is
distributed as a chi-square variate with degrees of
freedom equal to the difference in degrees of freedom,
or �df, for the two models. If this ��2 is significant,
then a statistically significant decrement in model fit
accompanies the constraints on Model Ml that result
in Model Mk.

Because the saturated model has 0 df and a chi-
square value of zero, the chi-square statistic for any
given substantive model, Mk , is directly a test of the
statistical difference in fit between the substantive and
saturated models. Although rarely considered, a chi-
square difference test also could be computed be-
tween the substantive model and the null model
nested within it. Such a test would provide a statistical
indicator of improved fit of the substantive model
over that of the null model. However, a statistical
comparison between the substantive and null models
has a valid interpretation only if the null model is
nested within the substantive model and, by substitu-
tion, within all substantive models considered for a set
of data. By extension, incremental fit indices also re-
quire the null model to be formally nested within all
substantive models because these fit indices involve
an explicit comparison with a null model.

Incremental Fit Index Values

The incremental fit indices in Equations 7–12 share
a common characteristic: Each provides a measure of
the proportional improvement in fit of a substantive
model relative to a null model that is nested within the
substantive model. This highlights the need for the
null model to be nested within all substantive models
considered for a given set of data, as only then can the
proportional improvement in fit of competing sub-
stantive models be defined in a globally consistent
fashion.

One way of conceiving of incremental fit indices is
as providing indices of the placement of given sub-
stantive models on a normalized, 0–1 continuum,
where the null model has a value of zero and an ideal
model that fits perfectly in the population has a value
of unity. The incremental fit indices in Equations
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7–12 are distinguished by the ways in which they
define the end points and the metric of the continuum.
To define the end points of the continuum, the metric
of the continuum, and the placement of a given sub-
stantive model on the continuum, one needs (a) the
chi-square and degrees of freedom for the null model,
for an ideal model, and for a substantive model or (b)
the function minimum F for the null, ideal, and sub-
stantive models and sample size (cf. Equations 7–12).
The statistics for an ideal model for the data are
needed for the following reasons: An ideal model is
correct in the population. Given this, if N is large and
all assumptions (e.g., multivariate normality) are sat-
isfied, then sampling variability is the only source of
misfit of an ideal model in a sample. That is, sampling
variability will lead to a nonzero value of the discrep-
ancy function F and is therefore the only reason the
chi-square statistic for an ideal model differs from
zero. In such situations, the expected value of the
sample estimator of the chi-square statistic is equal to
its degrees of freedom, so the expected value of the
sample estimator of the �2/df ratio for an ideal model
is unity.

TLI. When formulating the TLI, Tucker and
Lewis (1973) noted that the minimum fit function
value F and its associated chi-square are both in a
metric of sums of squared residuals. They then di-
vided each model chi-square by its degrees of free-
dom to yield a measure of misfit that is in a mean
square metric, and this also served as a strong correc-
tion for model complexity. The expected value of the
sample estimator of the �2/df ratio is unity for an ideal
model, so the denominator of the TLI (see Equation 7)
represents the length of the continuum running from
the null model to an ideal model, a continuum that has
a mean square, or �2/df, metric. By subtracting the
�2/df ratio for a substantive model from the �2/df for
the null model and then dividing by the length of the
null-model-to-ideal-model continuum, the TLI pro-
vides an index of the relative placement of a substan-
tive model along the continuum. A substantive model
with a TLI of .95 falls 95% of the way, in mean-
square metric units, along the continuum from the null
model (TLI � 0) to an ideal model for the data
(which has �2 � df and therefore �2/df � 1 and TLI
� 1.0).

RFI. The mean square metric pioneered by the
TLI is retained in the RFI, but the upper end point of
the null-model-to-ideal-model continuum is defined
in a different fashion (see Equation 8). To force val-
ues of the RFI to fall between 0 and 1, the ideal model

must have a �2/df ratio of zero. The only model hav-
ing a chi-square statistic with a sample expected value
of zero is a saturated model, the �2/df ratio for which
is undefined (i.e., 0/0) because it has 0 df. Despite this
problem, an ideal model is implicitly defined as one
with a �2/df ratio of zero. Thus, a substantive model
with an RFI of .95 falls 95% of the way, in mean-
square metric units, on the continuum from the null
model (RFI � 0) to this redefined ideal model for the
data (having �2/df � 0 and RFI � 1).

NFI and IFI. In the NFI, the null-model-to-ideal-
model continuum is redefined in a sums of squares
metric, embodied in the chi-square (see Equation 9).
If one also redefines the ideal model as a model that
fits the data perfectly, a substantive model with an
NFI of .95 falls 95% of the way, in sum-of-square
metric units, along the continuum from the null model
(NFI � 0) to an ideal model for the data (with �2 �
0 and NFI � 1). The IFI (Equation 10) has a form that
is very similar to the NFI, the only change being the
redefinition of the ideal model as a model with chi-
square equal to the degrees of freedom for the given
substantive model. The length of the null-model-to-
ideal-model continuum changes if competing substan-
tive models have different degrees of freedom values,
so computing the difference in IFI values for compet-
ing nested models is technically invalid, though often
not too misleading. We note that the IFI is the only
incremental fit index with this problematic feature.
Nonetheless, a substantive model with an IFI of .95
falls 95% of the way, in sum-of-square metric units,
along the continuum from the null model (IFI � 0) to
this redefined ideal model for the data (having �2 �
df for the substantive model, hence IFI � 1).

RNI and CFI. In the RNI and CFI2 (Equations 11
and 12, respectively), the null-model-to-ideal-model
continuum is defined in a sums of squares metric
similar to that of the NFI (cf. Equation 9), albeit
couched in terms of noncentrality. The noncentrality
parameter (NCP) is a parameter of a theoretical dis-
tribution, in this case the chi-square distribution. In
SEM, if a model is correct in the population, N is

2 The RNI (McDonald & Marsh, 1990) and CFI (Bentler,
1990) are essentially identical in theoretical justification and
similar in computation. When RNI values fall between 0
and 1, the RNI and CFI yield identical values. Bentler
(1990) added side conditions to keep CFI values within the
0–1 continuum, whereas RNI values are not constrained to
fall within this range.
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large, and all assumptions are satisfied, then sample
values of the likelihood ratio test statistic are distrib-
uted as a central chi-square with appropriate degrees
of freedom (cf. Equation 6 and its discussion). A cen-
tral chi-square has an NCP equal to zero. However, if
a model exhibits misfit in the population, as do vir-
tually all empirical models, or if assumptions are not
satisfied, then sample values of the likelihood ratio
test statistic are distributed as a noncentral chi-square,
with an NCP greater than zero if N is large. The NCP
is related to the degree of model misfit in the popu-
lation, with greater misfit reflected in a larger NCP. In
a sample, the NCP for a model is estimated by the
model �2 − df. Hence, the NCP represents excess
model misfit beyond that expected by sampling vari-
ability alone. The expected value of the sample esti-
mator of the NCP is zero for an ideal model because
an ideal model fits perfectly in the population. Be-
cause of this, a model with an RNI or CFI of .95 falls
95% of the way, in sum-of-square metric units, along
the continuum from the estimated noncentrality of the
null model (RNI � CFI � 0) to the noncentrality
associated with an ideal model (having �2 � df, NCP
� 0, and RNI � CFI � 1.0).

The Nature of the Independence Null Model

The Standard Null Model

One way to specify the standard independence null
model Model M0 is to delete all parameter estimates
associated with latent variables. For example, if the
covariance structure model in Equation 4 is used, fix-
ing the three parameter matrices �, B, and � to be
null matrices leaves the diagonal � matrix as the only
matrix containing parameter estimates. Estimating
only the p diagonal elements of � leads to a null
model that reproduces exactly the variance of each
manifest variable and null covariances among all
manifest variables. If the model in Equation 4 is ex-
tended to a multiple-group setting, then p estimates of
the variances of the manifest variables are made in
each of the G groups, for a total of pG parameter
estimates across the groups.

If the moment structure model in Equation 3 is fit
to the means on and covariances among manifest vari-
ables, defining the four parameter matrices �, B, �,
and � to be null matrices leaves the � vector and
diagonal � matrix as the only matrices with param-
eter estimates. A model of this form uses 2p param-
eter estimates to reproduce both means and variances
of manifest variables but represents covariances

among manifest variables as null, or zero. If this
model is extended to a multiple-group setting, 2pG
estimates of mean and variance parameters are made
across the groups.

Specifying an Acceptable Null Model

The standard null model described above is appro-
priate for many single-sample analyses. However,
many single-group models and most multiple-group
models require a modified null model, labeled here
Model M�0, to ensure that this modified null model is
nested within the most restrictive substantive model
for the data. Two conditions must hold for a model to
be an acceptable independence null model. First, an
acceptable null model must represent covariances
among manifest variables as null, or zero. Second,
and the key distinction here, if any within-group and/
or between-group constraints on estimates of manifest
variable means or residual variances are invoked in
any substantive models under consideration, these
constraints must be included in an acceptable null
model. These constraints on means and residual vari-
ances will typically be operationalized as constraints
on the � and � matrices that are the only matrices
with parameter estimates in the standard null model.
Thus, a modified, acceptable null model is more
highly constrained than the standard null model. One
further complication is the presence of more than one
acceptable null model. We describe below consider-
ations that govern selection of one of these multiple
null models when computing incremental fit indices
for a given set of data.

Constraints on mean and/or residual variance pa-
rameter estimates might seem illogical in a null model
in which manifest variables are represented as statis-
tically uncorrelated. However, constraints on mean
and/or residual variance estimates reflect substantive
hypotheses about the scale (i.e., the mean and/or vari-
ance) of each manifest variable. Such hypotheses are
separable from those regarding the latent structure
underlying covariances among manifest variables.
Further, the resulting null model can be a meaningful
model in its own right. For example, low birth weight
infants are at risk for many negative outcomes. Sup-
pose a researcher assessed a sample of low birth
weight infants on several measures of infant mental
functioning, and scaled scores on each measure were
in an IQ metric (i.e., � � 100 and � � 15 in the
population). Placing constraints on estimates of the
mean parameters would allow the researcher to test
whether low birth weight infants were affected
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equally in mean level across the measures in the
analysis; similarly, constraints on residual variance
parameter estimates would enable tests of equality of
variance across the measures. These are meaningful
hypotheses to test, regardless of whether the covari-
ances among the measures were nonzero and consis-
tent with a linear structural model of some form (e.g.,
factor analytic).

Below, we describe briefly some single-group and
multiple-group situations to illustrate how within- and
between-group constraints can be implemented in an
acceptable null model. First, we describe likely effects
on incremental fit index values if a modified null
model is used.

Effects on Incremental Fit Indices of a More
Restricted Null Model

In the preceding section, we argued that the stan-
dard null model is an inappropriate comparison model
in certain research situations. In each of these cases,
an acceptable null model has additional constraints on
parameter estimates and therefore a larger number of
degrees of freedom than the standard null model.
With additional restrictions, the chi-square value for
an acceptable null model must be equal to or greater
than the chi-square for the standard null model. Here,
we explore likely effects of change in chi-square and
degrees of freedom for an acceptable null model on
computed fit index values.

Change in the �2/df ratio for the null model.
Relative to the �2/df ratio for the standard null model,
the �2/df ratio for an acceptable null model may be
smaller, the same, or larger. These outcomes would
occur if the increase in chi-square value for the ac-
ceptable null model over that for the standard null
model were proportionally less than, equal to, or
greater than the increase in degrees of freedom, re-
spectively. Any change in the �2/df ratio for the null
model would have its largest direct effects on the TLI
(Equation 7) and RFI (Equation 8), the two incremen-
tal fit indices that incorporate the strong �2/df correc-
tion for model complexity in their calculation. If the
�2/df ratio for the acceptable null model were smaller
than that of the standard null model, TLI and RFI
index values for substantive models would be lower in
absolute terms, but differences in fit between nested
substantive models would be larger. If the �2/df ratio
for the acceptable null model were larger than that of
the standard null model, TLI and RFI index values for
substantive models would be larger in absolute value,

and differences in fit between nested substantive mod-
els would be smaller. Of course, if the �2/df ratio for
the acceptable null model were identical to that of the
standard null model, then TLI and RFI index values
would be unchanged.

Change in chi-square for the null model. Given
that an acceptable null model imposes additional re-
strictions beyond those in the standard null model, the
overall chi-square for an acceptable null model must
be equal to or greater than the chi-square for the stan-
dard null model. Values of the NFI and IFI (Equations
9 and 10, respectively) would be unchanged if the
chi-square for an acceptable null model were equal to
the chi-square for the standard null model. If the chi-
square for an acceptable null model were greater than
the chi-square for the standard null model, then all
NFI and IFI fit index values would be larger in abso-
lute value but show smaller differences between al-
ternative nested models.

Change in the estimated NCP for the null model.
Because the chi-square for an acceptable null model
must be equal to or greater than the chi-square for the
standard null model, and degrees of freedom for the
former model must be greater than that for the latter,
the estimated NCP for an acceptable null model may
be smaller than, equal to, or larger than that for the
standard null model. Change in the estimated NCP for
the null model is most directly relevant to the RNI and
CFI fit indices (Equations 11 & 12, respectively), the
indices that rely directly on the estimated NCP for the
null and substantive models in their calculation. If the
estimated NCP for an acceptable null model were
smaller than that for the standard null model, RNI and
CFI fit index values would be lower in absolute mag-
nitude, and differences between competing models
would be larger or more pronounced. If the estimated
NCP for an acceptable null model were larger than
that for the standard null model, RNI and CFI fit
index values would be higher in absolute magnitude,
and differences between competing models would be
smaller. Of course, if the estimated NCP for an ac-
ceptable null model were identical to that for the stan-
dard null model, RNI and CFI fit index values would
be unchanged.

General comment. Note also that regardless of
the difference in the �2/df ratio, chi-square, or esti-
mated NCP between the standard and acceptable null
models, values of all incremental fit indices will be
affected less by choice of null model the nearer the fit
index values were to unity when using the standard
null model.

NULL MODEL FOR INCREMENTAL FIT INDICES IN SEM 23



Research Applications Requiring a More
Restricted Null Model

In this section, we describe single- and multiple-
sample models for which the standard null model is an
inappropriate comparison model and demonstrate
how an acceptable null model is nested within sub-
stantive models.

Single-Sample Models

Psychometric models. As discussed by Jöreskog
(1974), psychometric models can be evaluated using
SEM software. If one considers the means of tests as
well as their covariances, psychometric models that
impose stringent requirements on test scores can be
tested. To represent these models, constrain B and �
in Equation 2 to be null matrices, leaving

�* � � �� + � � �� + �, (13)

where all symbols are as defined above.
The most common psychometric models consid-

ered are models for parallel, tau-equivalent, and con-
generic tests. Under usual definitions, parallel tests
have equal means, equal true score variances, and
equal error variances. Tau-equivalent tests have equal
means and equal true score variances, but error vari-
ances that may vary across tests. Congeneric tests are
assumed to measure the same construct but have no
constraints on means, true score variances, or error
variances. We also distinguish essentially parallel and
essentially tau-equivalent tests, which are identical to
parallel and tau-equivalent tests, respectively, except
that the stipulations about equality of means are
dropped, so these models may be evaluated using only
covariances among tests or by relaxing equality con-
straints on mean estimates.

The preceding models may be tested using Equa-
tion 13 in the following manner: First, fix � to be a
unit scalar. Then, (a) parallel tests have equal means
(or intercepts) in �, equal saturation with the latent
construct (i.e., equal factor loadings) in �, and equal
unique factor variances in �; (b) essentially parallel
tests are specified as are parallel tests, but equality
constraints on means in � are relaxed; (c) tau-
equivalent tests have equal intercepts in � and equal
factor loadings in �, but unique factor variances in �
that vary across tests; (d) essentially tau-equivalent
tests are specified as are tau-equivalent tests, except
that equality constraints on means in � are relaxed;
and (e) congeneric tests have no constraints on inter-
cepts, factor loadings, or unique variances. If a re-

searcher has access only to covariances among tests,
only comparisons among essentially parallel, essen-
tially tau-equivalent, and congeneric tests can be per-
formed (cf. Jöreskog, 1974).

The standard null model is an inappropriate com-
parison model for calculating either statistical differ-
ence tests or incremental fit indices for the psycho-
metric models outlined above because the standard
null model cannot be nested within the most con-
strained of the competing models. To see why, con-
sider the tree structure for models shown in Figure 1.
The tree structure in Figure 1 was based on the fol-
lowing considerations: Factor loadings in � can be
freely estimated, estimated with constraints, or fixed
at zero (as in an independence null model), but inter-
cepts in � and residual variances in � can only be
freely estimated or estimated with constraints because
fixing parameters to zero in these matrices is rarely, if
ever, tenable. Given this, we entertained three speci-
fications for elements in the � matrix: Structure 0, in
which all factor loadings are fixed at zero; Structure 1,
in which all factor loadings are estimated but con-
strained to be invariant (or equal); and Structure 2, in
which all factor loadings are freely and separately
estimated. Four sets of specifications were considered
for the � and � matrices: Structure A, in which in-
variance (or equality) constraints are placed on all
elements in � and on all elements in �; Structure B,
with invariance constraints on all elements in � but no
constraints on elements in �; Structure B�, with in-
variance constraints on all elements in � but no con-
straints on elements in �; and Structure C, with all
elements in both � and � freely estimated. The num-
bers and letters assigned to structures provide a key to
nesting relations, with structures having earlier ordi-
nal status being more restricted than, and therefore
nested within, structures having later ordinal status.
That is, Structure 0 is nested within Structure 1, and
Structure 1 is nested within Structure 2. Similarly,
Structure A is nested within Structures B and B�, and
Structures B and B� are nested within Structure C.
Because Structures B and B� have the same ordinal
status, neither is nested within the other, and no sta-
tistical comparisons can be made between these
structures.

The Cartesian product of the three types of � struc-
ture with the four types of structure for � and � gen-
erates 12 potential models, arrayed as a tree structure
in Figure 1 having three columns and four rows. The
first, second, and third columns contain, respectively,
models with Structures 0, 1, and 2 for �. Thus, within

WIDAMAN AND THOMPSON24



each row, a model is nested within any model to its
right. From bottom to top, the four rows of the tree
structure contain, respectively, models with Structures
A, B�, B, and C for � and �. Hence, within each
column, a model is nested within models in higher
rows, with the exception that no nesting relations hold
between models in the second and third rows. Single-
headed arrows represent simple nesting relations be-
tween models, as each arrow is drawn from a nested
(i.e., more restricted) model to a less restricted model
in which constraints on parameter estimates in a
single matrix in the nested model are relaxed; arrows
drawn between models conform to the nesting rela-
tions discussed above. Thus, Model 1A is nested
within Model 1B because invariance constraints on
elements in � in the former model are relaxed in the
latter. The least restricted model shown in Figure 1 is
Model 2C at the upper right corner of the tree struc-

ture; the saturated model (not shown in Figure 1)
would fall to the right and/or above Model 2C. Con-
versely, the most restricted model shown in Figure 1
is Model 0A, in the lower left corner of the tree struc-
ture; as the most restricted model, Model 0A is nested
within all other models shown in Figure 1. In general,
any model in Figure 1 that falls to the left of and/or
below a second model is nested within the second
model, except that models in the second and third
rows have no nesting relations.

Note that all four models in the first column—
Models 0A, 0B�, 0B, and 0C—are null models be-
cause all elements in � are constrained to zero and
thus covariances among manifest variables are repre-
sented as null in all four models. Which null model
should be used in a particular application depends on
the nature of the substantive models considered for
the data. If the most highly constrained model con-

Figure 1. A tree structure of confirmatory factor models based on patterns of constraint placed on the �, �, and � matrices
(where 0 means that parameter estimates are fixed at zero, inv that parameter estimates are constrained to invariance, and free
that parameters are separately and freely estimated). The three columns of the tree structure, from left to right, are defined by
constraints on the � matrix: in Column 0, � elements are fixed at zero; in Column 1, � elements are estimated under
invariance constraints; and in Column 2, � elements are freely estimated. The four rows of the tree structure, from bottom to
top, are defined by constraints on the � and � matrices: in Row A, elements in both � and � are estimated under invariance
constraints; in Row B�, elements in � are freely estimated, but � elements are estimated under invariance constraints; in Row
B, elements in � are estimated under invariance constraints, but � elements are freely estimated; and in Row C, elements in
both � and � are freely estimated.
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sidered for a set of data were Model 1C or 2C, then
Model 0C would be an acceptable null model as
Model 0C is nested within Models 1C and 2C. Be-
cause Models 0B, 0B�, and 0A are nested within
Model 0C, these additional null models would also be
acceptable null models. Model 0C is perhaps the most
logical choice as null model because it is the least
restricted null model that is nested within the most
restricted substantive model for the data. However, if
a researcher ever considered either Model 1B or 2B
for a set of data, Model 0C would no longer be an
acceptable null model because Model 0C is not nested
within Models 1B and 2B. Instead, given its nesting
relation, Model 0B would likely be the null model of
choice. Further, if the researcher ever considered ei-
ther Model 1A or 2A for the data, then Model 0A
would be the only acceptable null model because
Model 0A is the only null model nested within Mod-
els 1A and 2A.

Model 0C is the standard independence null model
used by SEM programs when computing incremental
fit indices. Given the foregoing discussion, Model 0C
will be an appropriate and acceptable null model for
many applications but will not be acceptable for oth-
ers. To determine the optimal null model, a researcher
should consider all substantive models to be fit to a
given set of data. The optimal acceptable null model
must be nested within the most restricted substantive
model specified for the data, must constrain covari-
ances among manifest variables to zero, and should
contain no additional constraints beyond those in-
voked in the most restricted substantive model. Once
it is selected, this optimal acceptable null model
should be used when computing incremental fit index
values for all substantive models fit to the given set of
data.

With regard to psychometric test models, the vari-
ous test theory models identified above can be located
within the tree structure shown in Figure 1. Here,
invariance constraints are within-group constraints on
estimates in parameter matrices, so the parallel test
model is consistent with Model 1A, the tau-equivalent
test model is consistent with Model 1B, the essentially
tau-equivalent test model is consistent with Model
1C, and the congeneric test model is consistent with
Model 2C. Assuming that analyses are based on the
means on and covariances among tests, the standard
null model, Model 0C, has 2p parameter estimates,
which represent the mean and variance of each of the
p tests. The parallel test model, Model 1A, has only
three parameter estimates, as the means, factor load-

ings, and unique factor variances for tests are con-
strained to equality across tests. Because p must be
greater than or equal to 2, the standard null model has
more parameter estimates than the parallel test model,
so cannot be nested within it. An acceptable null
model, Model 0A, retains the equality constraints on
the unique factor variances in � and the mean vector
in � that are present in Model 1A but constrains the
factor loadings in � to zero. Thus, the optimal null
model for this research application has only two pa-
rameter estimates and is formally nested within the
parallel test model. The verbal statement for this null
model is as follows: Each test has positive variance,
and all of these variances are equal; each test has an
unknown mean, and all of these means are equal; and
the tests are mutually uncorrelated.

Example 1: Data from Votaw (1948). To illus-
trate these ideas, we examined data reported by
Votaw in an evaluation of the reliability of scoring
essays. A total of 126 students were tested; the instru-
ment was an English composition test with three sepa-
rate essays. The four forms used in our analyses were
(a) Typed 1, a typed copy of the part 1 essay; (b)
Written 1, a handwritten version of the part 1 essay;
(c) Carbon 1, a carbon copy of the handwritten ver-
sion of the part 1 essay; and (d) Typed 2, a typed copy
of the part 2 essay. The four forms were given to a set
of graders to be scored. Covariances among scores on
the four forms were provided by Jöreskog and Sör-
bom (1996); the means of the ratings were reported by
Votaw, except for the mean of Typed 2, which was
therefore imputed. With both means on and covari-
ances among the four forms (see Table 1), parallel and
tau-equivalent test restrictions can be evaluated.

Using Equation 13, a one-factor model, with all
four tests loading on the single common factor, was
the basic model for the data. The � matrix was a 1 ×
1 matrix, with �11 � 1.0 in all models. To illustrate
effects on fit indices of fitting restricted substantive
models, we evaluated six models from the tree struc-
ture in Figure 1:

Model 2C: � � (�1, �2, �3, �4);
� � (�11, �21, �31, �41);
� � diag(�11, �22, �33, �44);

Model 1C: � � (�1, �2, �3, �4);
� � (�11 � �21 � �31 � �41);
� � diag(�11, �22, �33, �44);

Model 1B: � � (�1 � �2 � �3 � �4);
� � (�11 � �21 � �31 � �41);
� � diag(�11, �22, �33, �44);
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Model 1A: � � (�1 � �2 � �3 � �4);
� � (�11 � �21 � �31 � �41);
� � diag(�11 � �22 � �33 � �44);

Model 0C: � � (�1, �2, �3, �4); � � 0;
� � diag(�11, �22, �33, �44);

Model 0A: � � (�1 � �2 � �3 � �4); � � 0;
� � diag(�11 � �22 � �33 � �44).

The substantive models we considered, from least
to most restricted, were Models 2C, 1C, 1B, and 1A;
these models represented, respectively, the conge-
neric, essentially tau-equivalent, tau-equivalent, and
parallel test models because their patterns of con-
straints met the stipulations discussed above for such
models. Given their patterns of constraint, Models 2C,
1C, 1B, and 1A had 12, 9, 6, and 3 parameter esti-
mates, respectively. Model 0C was the standard null
model, with � fixed to zero and a total of 8 parameter
estimates: 4 in the � vector and 4 in the diagonal �
matrix. Model 0A, the optimal acceptable null model,
had only 2 parameter estimates, invoking equality
constraints on all elements in � and on all elements on
the diagonal of � because these constraints were
invoked in the most restricted substantive model,
Model 1A.

The chi-square values and fit statistics for each of
the models described above are shown in Table 2. In
the top half of Table 2, all values were calculated
using the standard null model, Model 0C, and are
identical to values reported by common SEM soft-
ware. However, the standard null model, with 8 pa-
rameter estimates, cannot be nested within the most
restricted substantive model, Model 1A, which con-
tains equality constraints on elements in the � and �
matrices that are not present in the standard null
model and therefore has only 3 parameter estimates.
Because the standard null model is an improper com-
parison model, incremental fit index values shown in

Table 1
Example 1: Covariances Among Grades Assigned to Four
Essays, With Means on the Essays, From Votaw (1948)

Essay

Essay

Typed 1 Written 1 Carbon 1 Typed 2

Typed 1 25.0704
Written 1 12.4363 28.2021
Carbon 1 11.7257 9.2281 22.7390
Typed 2 20.7510 11.9732 12.0692 21.8707
M 14.9048 15.4841 14.4444 15.1234

Note. N � 126. Covariances are from LISREL 8: User’s Refer-
ence Guide (p. 127), by K. G. Jöreskog and D. Sörbom, 1996,
Chicago: Scientific Software International. Copyright 1996 by Sci-
entific Software International. Reprinted with permission. Means
for the first three variables are from “Testing Compound Symmetry
in a Normal Multivariate Distribution,” by D. F. Votaw Jr., 1948,
Annals of Mathematical Statistics, 19, p. 471. Copyright 1948 by
Institute of Mathematical Statistics. Permission to reprint was
granted by the Institute of Mathematical Statistics. The mean for
Typed 2 was not reported by either Jöreskog and Sörbom or Votaw;
the value of 15.1234 was therefore imputed. Typed 1 � typed
version of Essay 1; Written 1 � handwritten original of Essay 1;
Carbon 1 � carbon copy of the handwritten original of Essay 1;
Typed 2 � typed version of Essay 2.

Table 2
Example 1: Fit Indices for Structural Models Fit to the Votaw (1948) Data

Model
No.
est. df �2 �2/df NCP TLI RFI NFI IFI

RNI
and CFIa

Standard null, Model 0C
0C: Standard null 8 6 272.49 45.42 266.49 0 0 0 0 0
2C: Congeneric 12 2 2.28 1.14 0.28 .997 .975 .992 .999 .999
1C: Ess. tau equiv. 9 5 40.42 8.08 35.42 .841 .822 .852 .868 .867
1B: Tau equivalent 6 8 44.97 5.62 36.97 .896 .876 .835 .860 .861
1A: Parallel 3 11 115.27 10.48 104.27 .787 .769 .577 .601 .609

Acceptable null, Model 0A
0A: Acceptable null 2 12 277.83 23.15 265.83 0 0 0 0 0
2C: Congeneric 12 2 2.28 1.14 0.28 .994 .951 .992 .999 .999
1C: Ess. tau equiv. 9 5 40.42 8.08 35.42 .680 .651 .855 .870 .867
1B: Tau equivalent 6 8 44.97 5.62 36.97 .791 .757 .838 .863 .861
1A: Parallel 3 11 115.27 10.48 104.27 .572 .547 .585 .609 .608

Note. No. est. � the number of parameter estimates in the model; NCP � estimated noncentrality parameter; TLI � Tucker–Lewis Index;
RFI � Bollen (1986) relative fit index; NFI � normed fit index; IFI � Bollen (1989a) incremental fit index; RNI � relative noncentrality
index; CFI � comparative fit index; Ess. tau equiv. � essentially tau-equivalent test model.
a When RNI values fall between 0 and 1, RNI � CFI. This occurred for all models in this table; to conserve space, only a single value for
the RNI and CFI is reported.
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the top half of Table 2 have no straightforward inter-
pretation, are invalid, and should be disregarded.
However, these values are presented to allow com-
parison with values computed using an acceptable
null model.

In the bottom half of Table 2, all fit index values
are based on the acceptable null model Model 0A,
which is nested within all four substantive models, as
shown above. The chi-square for the acceptable null
model (277.83) differed little from that of the standard
null model (272.49), but the acceptable null model
had twice as many degrees of freedom as did the
standard null model. As a result, the �2/df ratio for the
acceptable null model (23.15) was approximately half
the size of the �2/df ratio, for the standard null model
(45.42). As predicted, this led to rather large differ-
ences in TLI and RFI values when comparing parallel
fit values listed in the top half and the bottom half of
Table 2. Because the chi-square values for the stan-
dard and acceptable null models were very similar,
the NFI and IFI were affected only slightly. Further,
because the estimated NCP for the standard null
model (266.49) was virtually identical to that for the
acceptable null model (265.83), RNI and CFI fit val-
ues were essentially identical regardless of choice of
null model.

Differences in fit index values between competing
models are shown in Table 3.3 Three model compari-
sons were of most interest: (a) between the congeneric
model and the essentially tau-equivalent model, (b)
between the essentially tau-equivalent model and the
tau-equivalent model, and (c) between the tau-

equivalent model and the parallel test model. The top
half of Table 3 provides values calculated using the
incorrect, standard null model, whereas values calcu-
lated using the acceptable null model are shown in the
bottom half of Table 3.

Values in Table 3 exhibited two clear trends. First,
fit indices containing a strong correction for model
complexity—the TLI and RFI—were, variably,
equally sensitive (2C vs. 1C), more sensitive (1C vs.
1B), or less sensitive (1B vs. 1A) to differences in
model fit than were fit indices containing no such
correction for model complexity—the NFI, IFI, RNI,
and CFI—but only when the improper, standard null
model was used. When the acceptable null model was
used, the TLI and RFI were either clearly more sen-
sitive (2C vs. 1C and 1C vs. 1B) or approximately
equally sensitive (1B vs. 1A) to differences in model
fit than were the NFI, IFI, RNI, and CFI.

Second, the two indices with a strong correction for
model complexity—the TLI and RFI—were greatly
affected by choice of null model, having difference
values under an acceptable null model approximately
twice as large as those under the standard null model.
In contrast, fit indices with no such correction for
model complexity—the NFI, IFI, RNI, and CFI—were

3 No formal cutoffs have been developed to denote prac-
tically important differences in incremental fit index values
for competing models. Differences in fit index values are
presented here to enable simple descriptive comparisons of
relative model fit.

Table 3
Example 1: Indices of Difference in Fit for Alternative Structural Models Fit to Votaw (1948) Data

Model comparison �df ��2 �TLI �RFI �NFI �IFI
�RNI

and �CFIa

Standard null, Model 0C
Model 2C vs. 1C: � invariance 3 38.14 −.156 −.153 −.140 −.131 −.132
Model 1C vs. 1B: � invariance 3 4.55 .055 .054 −.017 −.008 −.006
Model 1B vs. 1A: � invariance 3 70.30 −.109 −.107 −.258 −.259 −.252

Acceptable null, Model 0A
Model 2C vs. 1C: � invariance 3 38.14 −.314 −.300 −.137 −.129 −.132
Model 1C vs. 1B: � invariance 3 4.55 .111 .106 −.017 −.007 −.006
Model 1B vs. 1A: � invariance 3 70.30 −.219 −.210 −.253 −.254 −.253

Note. The ��2, distributed as a chi-square variate with �df, enables a statistical test of the difference in fit of the models compared. All
differences in practical fit index values were calculated to indicate the worsening of fit levels for the more restricted model. Thus, a negative
value indicates that the more restricted model had worse fit relative to the less restricted model, and a positive value indicates that the more
restricted model had better fit than did the less restricted model. TLI � Tucker–Lewis Index; RFI � Bollen (1986) relative fit index; NFI
� normed fit index; IFI � Bollen (1989a) incremental fit index; RNI � relative noncentrality index; CFI � comparative fit index.
a When RNI values fall between 0 and 1, RNI � CFI, which occurred for all models. In such cases, �RNI � �CFI. To conserve space, only
a single value for the �RNI and �CFI is reported.
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relatively unaffected by choice between the accept-
able and standard null models. The TLI and RFI were
greatly affected by choice of null model because the
two null models, Models 0C and 0A, had similar chi-
square values but rather different degrees of freedom,
leading to a large difference in the �2/df ratios for the
two models, which had predicted, sizeable effects on
fit index values. Conversely, because Models 0C and
0A had similar chi-square and estimated NCP values,
the NFI, IFI, RNI, and CFI were impacted very little
by choice of null model, as hypothesized.

Other single-sample research situations requiring
nonstandard null models. Many other single-sample
research situations requiring nonstandard null models
could be identified. To conserve space, we discuss
here a single example, specifically a growth curve
model fit to longitudinal data.4 Assume the presence
of five manifest variables, representing the scores on
a single measure administered at five points in time at
yearly intervals, leading to 5(5 + 3)/2 � 20 means on
and unique covariances among manifest variables.
The standard null model would have 2p � 10 param-
eter estimates, one each for the mean and for the
variance of each manifest variable.

Substantive growth curve models usually have two
latent variables: An Intercept factor reflecting general
level of scores (e.g., performance at the first time of
measurement), and a Growth factor representing
change across time. To identify an acceptable null
model more easily, one can delete the Growth factor
from the model, leaving only a single latent variable,
the Intercept factor. This “Intercept-only” model rep-
resents differences among individuals in their mean
level on the manifest variables but allows no growth
over time. Although an Intercept-only model is not
often considered in empirical work, the model is a
potentially reasonable model in some domains of in-
quiry. For example, in the study of personality during
adulthood, a researcher might posit that persons ex-
hibit substantial individual differences on a given per-
sonality attribute but that these individual differences
are very stable across time. One way of specifying
such a model is shown in Figure 2: (a) Following
standard conventions, the unit constant is represented
as a triangle, latent variables are represented as
circles, manifest variables are represented as squares,
directed paths (e.g., regression weights) are repre-
sented as straight, single-headed arrows, and nondi-
rected paths (e.g., variances or covariances) are rep-
resented as curved, doubled-headed arrows; (b) all
five manifest variables, V1 Time 1–V1 Time 5, load

on the Intercept factor with fixed loadings of 1.0; and
(c) the mean, 	1, and variance, �11, on the latent
variable and the residual variances of the five mani-
fest variables, �11–�55, are the parameters to be esti-
mated in the model. Thus, the Intercept-only model
has only seven parameter estimates. Because the stan-
dard null model has 10 parameter estimates, it is an
unacceptable null model for this application because
the standard null model cannot be nested within this
more restricted Intercept-only model. If the Intercept-
only model were the most restricted substantive
model for the data, then an acceptable null model
might have six parameter estimates: constrained equal

4 This research application was suggested by one of the
reviewers of a previous version of this article, and our pre-
sentation of this application borrows heavily from the re-
viewer’s description in the review.

Figure 2. An Intercept-only growth model for a single
manifest variable, V1, measured at five times of measure-
ment. � stands for unit constant, � for latent variable, � for
manifest variable, → for directed path, and ↔ for nondi-
rected path. Paths with coefficients fixed at unity are shown
with unit coefficients; each path with a parameter to be
estimated is labeled with a symbol for the parameter
estimate.
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means for the five manifest variables and separate
estimates of the residual variance of each manifest
variable. This acceptable null model could be speci-
fied by fixing to zero the variance on the Intercept
factor, �11, and leaving intact the remainder of the
model specification shown in Figure 2.

Furthermore, a “constrained Intercept-only” model
is a second substantive model that could be consid-
ered. This model would be specified by constraining
to equality the residual variances of the manifest vari-
ables, �11–�55, consistent with homogeneity of vari-
ance assumptions in many statistical models. This
constrained Intercept-only model has only three pa-
rameter estimates: 	1, �11, and the constrained-equal
�11–�55. Clearly, neither the standard null model with
10 parameter estimates nor the preceding null model
with 6 parameter estimates could be nested within this
more constrained substantive model. An acceptable
null model for this parameterization could be speci-
fied by fixing the variance on the Intercept factor,
�11, to zero, leaving two parameter estimates: the
mean on the Intercept factor, 	1, and the constrained-
equal residual variances of the manifest variables,
�11–�55. Because of the form of the latent growth
model shown in Figure 2, the parameter estimate re-
producing the means of manifest variables is esti-
mated in the � vector (cf. Equation 2), rather than in
the � vector. However, the two acceptable null models
described above yield nonzero estimates of the mean
and variance on manifest variables and constrain co-
variances among manifest variables to be null or zero,
satisfying key stipulations for an acceptable null
model. Because an acceptable null model must be
nested within the most restricted substantive model fit
to the data, the nature of the most restricted substan-
tive model would determine which of the two modi-
fied null models described above would be the ac-
ceptable null model for computing incremental fit
indices.

Multiple-Group Models

Factor analysis models. When multiple-group
modeling was first introduced (Jöreskog, 1971),
analyses were typically based only on covariance ma-
trices for each sample. Recent advances (e.g.,
Meredith, 1993) require the use of information about
manifest variable means in addition to their covari-
ances to test interesting models, such as models with
varying forms of factorial invariance and the infor-
mative substantive questions associated with them.

These models can be represented, by modifying Equa-
tion 2, as

�*g � (�g + �g �g) (�g + �g �g)� + �g �g �g�
+ �g, (14)

where all symbols are as defined above, and the g
subscript on each matrix indicates that the equation is
written for the gth group (g � 1, . . . , G).

Based on Thurstone (1947), Horn, McArdle, and
Mason (1983), and Meredith (1993), Widaman and
Reise (1997) identified four levels of factorial invari-
ance, represented as a nested sequence of models: (a)
the configural invariance model has the same pattern
of fixed and free loadings in � in each group but no
cross-group invariance constraints in any matrices and
is thus the least constrained model; (b) the weak fac-
torial invariance model is identical to the configural
invariance model, but invokes cross-group invariance
constraints on factor loadings in �; (c) the strong
factorial invariance model adds to the weak factorial
invariance model cross-group invariance constraints
on intercept terms in �; and (d) the strict factorial
invariance model adds to the strong factorial invari-
ance model cross-group constraints on unique factor
variances in 	.

The tree structure of models shown in Figure 1 can
be used to portray alternative multiple-group factor
analysis models if the constraints on parameter ma-
trices, which represented within-group invariance
constraints for Example 1, now represent cross-group
constraints. Thus, under Structure 0, all factor load-
ings in all groups are constrained to zero; under Struc-
ture 1, estimates of factor loadings are constrained to
invariance across groups; and under Structure 2, fac-
tor loadings are freely estimated within each group.
Similarly, under Structure A, intercept estimates in �
and unique variances in � are constrained to invari-
ance across groups; under Structures B and B�, cross-
group invariance constraints are relaxed on the � and
� matrices, respectively; and under Structure C, inter-
cept and unique variance parameters are freely esti-
mated within each group. Based on these stipulations,
Model 2C represents the configural invariance model,
Model 1C represents the weak factorial invariance
model, Model 1B represents the strong factorial in-
variance model, and Model 1A represents the strict
factorial invariance model.

The standard null model, Model 0C, is once again
inappropriate for calculating either statistical differ-
ence tests or incremental fit indices for the multiple-
sample models outlined above because the standard
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null model is not nested within the most constrained
of the competing models. Using covariances and
means in multiple groups, Model 0C has 2pG param-
eter estimates, or two parameter estimates (i.e., mean
and variance) for each indicator within each of the G
groups. However, under the strict factorial invariance
model, intercepts and unique factor variances for in-
dicators are constrained to invariance across groups.
Thus, the acceptable null model should include cross-
group invariance constraints on both unique factor
variances and intercepts for all manifest variables.
The verbal statement for this null model, with refer-
ence to Equation 14, is as follows: Each manifest
variable has positive variance, and these variances in
� are invariant across groups; each manifest variable
has an unknown mean, and these means in � are in-
variant across groups; and the manifest variables are
mutually uncorrelated (i.e., all parameters in �, �,
and � are constrained to zero in all groups). There-
fore, the optimal acceptable null model, Model 0A,
has 2p parameter estimates, rather than the 2pG pa-
rameter estimates automatically made under the inap-
propriate, standard null model.

Example 2: Data from Reise, Widaman, and Pugh
(1993). To illustrate a multiple-group model, we re-
analyzed data from Reise et al., who modeled means
on and covariances among five negative mood items
in samples of college students from China (N � 598)
and the US (N � 540). The means and variances on

and correlations among the five items are shown in
Table 4.

Using Equation 14, Reise et al. (1993) specified a
one-factor model on which all five items loaded and
justified model identification in detail. Briefly, if the
subscript 1 stands for the U.S. sample and subscript 2
for the Chinese, the factor variance in � was fixed to
unity in the U.S. sample (i.e., �1 � 1.0) and esti-
mated in the Chinese sample (i.e., �2 � free), the
first factor loading in � and the first intercept term in
� were constrained to invariance, and the factor mean
in � was fixed at zero in the U.S. sample (i.e., �1 �
0) and estimated in the Chinese sample (i.e., �2 �
free). Six models from the tree structure in Figure 1
were fit to the data, specified in the following fashion:

Model 2C: �1, �2; �1, �2; �1 � 0, �2;
�1 � 1.0, �2; �1, �2;

Model 1C: �1, �2; �1 � �2; �1 � 0, �2;
�1 � 1.0, �2; �1, �2;

Model 1B: �1 � �2; �1 � �2; �1 � 0, �2;
�1 � 1.0, �2; �1, �2;

Model 1A: �1 � �2; �1 � �2; �1 � 0, �2;
�1 � 1.0, �2; �1 � �2;

Model 0C: �1, �2; �1, �2;

Model 0A: �1 � �2; �1 � �2.

Table 4
Example 2: Correlations Among Five Manifest Variables, With Variable Means and Standard Deviations, in Two Samples,
From Reise, Widaman, and Pugh (1993)

Variable and sample

Variable

Nervous Worried Jittery Tense Distressed

Correlations
Nervous — .282 .320 .405 .386
Worried .577 — .223 .269 .411
Jittery .537 .411 — .191 .372
Tense .550 .533 .486 — .448
Distressed .471 .551 .417 .623 —

Variable means and standard deviations
MN

M 2.170 2.520 2.010 2.350 2.290
SD 1.120 1.220 1.090 1.190 1.250

Nanj
M 1.890 2.090 1.600 2.150 1.930
SD 0.930 1.110 1.010 1.040 1.120

Note. Correlations below the diagonal are for the Minnesota (MN) sample (N � 540), and correlations above the diagonal are for the Nanjing
(Nanj) sample (N � 598). In the Reise et al. (1993) article, covariances among the five items were incorrectly identified as correlations. In
the present table, the correlations among items are correctly reported, so all SEM results reported by Reise et al. and in Tables 5 and 6 of the
present article can be reproduced from values in this table.
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Moving from least to most restricted, Models 2C,
1C, 1B, and 1A represented, respectively, the config-
ural invariance and weak, strong, and strict factorial
invariance models. Given their patterns of constraint,
Models 2C, 1C, 1B, and 1A had 30, 26, 22, and 17
parameter estimates, respectively. Model 0C was the
standard null model, with �, �, and � fixed to zero
in both groups and a total of 20 parameter estimates:
5 in the � vector and 5 in the diagonal � matrix in
each group. Model 0A, the optimal acceptable null
model, had only 10 parameter estimates, invoking
cross-group equality constraints on elements in � and
elements on the diagonal of � because these con-
straints were invoked in Model 1A.

The chi-square values and fit statistics for each of
the models described above are shown in Table 5. In
the top half of Table 5, all values were calculated
using the standard null model, Model 0C. The most
restricted model, Model 1A, had fewer parameter es-
timates than the standard null model and also con-
tained cross-group equality constraints on elements in
the � and � matrices that were relaxed in the standard
null model. Thus, Model 0C was an improper com-
parison model because it could not be nested within
Model 1A. As a result, the incremental fit index val-
ues shown in the top half of Table 5 have no straight-
forward interpretation, are invalid, and should be dis-
regarded but are presented to allow comparison with
values computed using an acceptable null model.

In the bottom half of Table 5, all fit index values
were based on the acceptable null model, Model 0A,

which was nested within all four substantive models.
Both the chi-square and estimated NCP for Model 0A
were about 11% higher than those for Model 0C, so
NFI, IFI, RNI, and CFI values were all higher under
the acceptable null model than under the standard null
model, as predicted. In contrast, the �2/df ratio for
Model 0A (57.81) was smaller than that for Model 0C
(77.59). As a result, TLI and RFI values tended to be
lower using the acceptable null model. Indeed, all
eight TLI and RFI values for Models 2C through 1A
fell above the frequently used critical cutoff of .90
under the incorrect standard null model, but fully half
of these values failed to reach the .90 cutoff when the
acceptable null model was used. Thus, relying on the
TLI and RFI, use of the improper standard null model
implies that one can choose among several models
(2C–1A), each of which had adequate fit, whereas use
of the acceptable null model signals that several of the
substantive models fail to demonstrate minimally ad-
equate fit to the data.

The differences in incremental fit index values be-
tween models are shown in Table 6, with differences
based on the improper standard null model shown in
the top half of the table and those based on the ac-
ceptable null model shown in the bottom of the table
(cf. Footnote 3). Because the fit index values for the
NFI, IFI, RNI, and CFI were slightly higher under the
acceptable null model than under the standard null
model, the differences in fit for competing models
were either unchanged or slightly smaller under the
acceptable null model. The opposite pattern held for

Table 5
Example 2: Fit Indices for Structural Models Fit to the Reise, Widaman, and Pugh (1993) Data

Model
No.
est. df �2 �2/df NCP TLI RFI NFI IFI

RNI
and CFIa

Standard null, Model 0C
0C: Standard null 20 20 1,551.82 77.59 1,531.82 0 0 0 0 0
2C: Configural inv. 30 10 75.38 7.53 65.38 .915 .903 .951 .958 .957
1C: � inv. 26 14 89.99 6.42 75.99 .929 .917 .942 .951 .950
1B: � & � inv. 22 18 111.24 6.18 93.24 .932 .920 .928 .939 .939
1A: �, �, & � inv. 17 23 123.12 5.35 100.12 .943 .931 .921 .934 .935

Acceptable null, Model 0A
0A: Acceptable null 10 30 1,734.40 57.81 1,704.40 0 0 0 0 0
2C: Configural inv. 30 10 75.38 7.53 65.38 .885 .870 .957 .962 .961
1C: � inv. 26 14 89.99 6.42 75.99 .904 .889 .948 .956 .955
1B: � & � inv. 22 18 111.24 6.18 93.24 .909 .893 .936 .946 .945
1A: �, �, & � inv. 17 23 123.12 5.35 100.12 .923 .907 .929 .942 .941

Note. No. est. � the number of parameter estimates in the model; NCP � estimated noncentrality parameter; TLI � Tucker–Lewis Index;
RFI � Bollen (1986) relative fit index; NFI � normed fit index; IFI � Bollen (1989a) incremental fit index; RNI � relative noncentrality
index; CFI � comparative fit index; inv. � invariance.
a When RNI values fall between 0 and 1, RNI � CFI. This occurred for all models in this table; to conserve space, only a single value for
the RNI and CFI is reported.
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the TLI and RFI. For these fit indices, use of an ac-
ceptable null model led to somewhat lower overall
levels of fit and therefore to modestly larger differ-
ences between competing models. Despite these
changes, most differences shown in Table 6 were af-
fected little by choice of null model.

How Often Is a More Restricted Null
Model Needed?

Assuming we have made the case that a more re-
stricted null model is needed in certain research situ-
ations, one may wonder how often these situations
arise in practice. To answer this question, we re-
viewed all studies published during the year 2000 in
three selected American Psychological Association
(APA) journals to determine whether the issues raised
in this article would affect calculation of fit index
values. A total of 28 articles in the Journal of Per-
sonality and Social Psychology used SEM; of these,
11 used multiple-sample analyses, 8 presented analy-
ses of longitudinal data, and due to overlap, 13 of 28,
or 46%, used multiple-sample and/or longitudinal
analyses. In Developmental Psychology, only 4 ar-
ticles used SEM; 1 of these articles, or 25%, presented
analyses of longitudinal data. A total of 7 articles
published in Psychological Methods used SEM; of
these, 4 analyzed longitudinal data (one in a multiple-
group context), and 1 other article concerned psycho-
metric models. So, 5 of the 7 SEM articles published
in Psychological Methods, or 71%, contained analy-

ses that would be influenced by the need for an ac-
ceptable null model. Admittedly, some articles iden-
tified as potentially influenced by our considerations
did not report incremental fit index values, and others
did not use detailed constraints on means and/or re-
sidual variances in substantive models. Thus, these
articles might not, strictly speaking, require a revised
null model that is a restricted version of the standard
null model. However, as researchers become more
aware of the theoretical advantages of certain kinds of
models (e.g., growth curve models, multiple-group
models), particularly advantages associated with
highly constrained models (e.g., strict factorial invari-
ance), the need for more restricted null models will
only increase. At present, given our review of articles
published during the year 2000, at least one-third to
one-half of the articles using SEM that are published
in APA journals are likely to be affected by the choice
of an acceptable null model if maximally informative,
highly constrained substantive models are used.

Discussion

Incremental fit indices are often reported in empiri-
cal articles that present results analyzed using SEM.
Indeed, incremental fit indices are often given at least
as much weight as, or even more weight than, the
chi-square index of fit when evaluating the fit of a
structural model to data. This increased reliance on
incremental fit indices is justified on at least two
grounds. First, the chi-square index has increasing

Table 6
Example 2: Indices of Difference in Fit For Alternative Structural Models Fit to the Reise, Widaman, and Pugh
(1993) Data

Model comparison �df ��2 �TLI �RFI �NFI �IFI
�RNI

and �CFIa

Standard null, Model 0C
Model 2C vs. 1C: � invariance 4 38.00 .014 .014 −.009 −.007 −.007
Model 1C vs. 1B: � invariance 4 21.25 .003 .003 −.014 −.012 −.011
Model 1B vs. 1A: � invariance 5 11.88 .011 .011 −.007 −.005 −.004

Acceptable null, Model 0A
Model 2C vs. 1C: � invariance 4 38.00 .019 .019 −.009 −.006 −.006
Model 1C vs. 1B: � invariance 4 21.25 .005 .004 −.012 −.010 −.010
Model 1B vs. 1A: � invariance 5 11.88 .014 .014 −.007 −.004 −.004

Note. The ��2, distributed as a chi-square variate with �df, enables a statistical test of the difference in fit of the models compared. All
differences in practical fit index values were calculated to indicate the worsening of fit levels for the more restricted model. Thus, a negative
value indicates that the more restricted model had worse fit relative to the less restricted model, and a positive value indicates that the more
restricted model had better fit than did the less restricted model. TLI � Tucker–Lewis Index; RFI � Bollen (1986) relative fit index; NFI
� normed fit index; IFI � Bollen (1989a) incremental fit index; RNI � relative noncentrality index; CFI � comparative fit index.
a When RNI values fall between 0 and 1, RNI � CFI, which occurred for all models. In such cases, �RNI � �CFI. To conserve space, only
a single value for the �RNI and �CFI is reported.
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sensitivity to minor levels of model misfit as sample
size increases, supporting the rejection of models that
provide close, but not perfect, fit to the data (Browne
& Cudeck, 1993). Second, Monte Carlo investigations
have demonstrated that incremental fit indices exhibit
strong properties, including relative independence
from sample size, supporting their use as indices of
practical fit of models to data (e.g., Hu & Bentler,
1998).

The major aims of this article were to review criti-
cally the nature of the null model that is a crucial
component in the calculation of incremental fit indi-
ces and to investigate the consequences of using an
acceptably specified null model. For their calculation,
incremental fit indices require a null model to be
evaluated, so acceptable specification of the null
model is an important, yet often disregarded, issue.
Our consideration of the nature of the null model led
us to conclude that research situations in which the
standard null model is an inappropriate comparison
model are not uncommon. One incontrovertible char-
acteristic of an acceptable null model is that it be
nested within all competing substantive models, as
only then will incremental fit indices be interpretable
as reflecting improvement in fit over that of a null
model. However, the standard null model is not nested
within common psychometric models, such as models
for parallel or tau-equivalent tests, nor is it nested
within many state-of-the-art multiple-sample factor
analysis models. Moreover, we discussed in detail
only two problematic situations; additional examples
could easily be generated. If the standard null model
is not nested within competing substantive models,
incremental fit indices computed using the standard
null model will be incorrect, have no useful interpre-
tation, and should be disregarded. In such situations,
researchers must specify and estimate an acceptable
null model for the data and then use the fit statistics
(e.g., chi-square and degrees of freedom) for this null
model to calculate values for incremental fit indices.
(See the Appendix, which is available in the online
version of this article in PsycARTICLES, for SAS
code to calculate incremental fit indices.)

Fortunately, determining that a null model is nested
within competing substantive models is often fairly
straightforward. For analyses based on covariance
matrices, an acceptable null model usually contains
parameter estimates only in the � matrix; if both
means and covariances are used, an acceptable null
model will typically contain parameter estimates only
in the � and � matrices. In either case, the researcher

must verify that the most restrictive within-group and/
or between-group constraints on means and variances
made in any competing substantive model are also
invoked when specifying the null model. If this is
done and the null model represents manifest variables
as mutually uncorrelated, the resulting model will be
an acceptable null model.

The tree structure in Figure 1 highlights the pres-
ence of multiple potential null models (e.g. all four
models in the first column of the tree structure). De-
pending on the most restricted substantive model con-
sidered for a set of data, a single, optimal null model
should be selected. In our opinion, the optimal accept-
able null model is the least restricted null model that
is nested within the most restricted substantive model
considered for the data. Using this optimal null model
to compute fit indices for all competing substantive
models will ensure that the 0–1 continuum on which
incremental fit index values fall is defined in a uni-
form, globally consistent fashion.

Figure 1 also illustrates nesting relations based on
patterns of constraint among a common subset of
structural equation models. Of course, the tree struc-
ture in Figure 1 will not be adequate for all research
situations. Indeed, formulating a simple, understand-
able tree structure may be difficult for rather complex
models, such as multiple-group models for longitudi-
nal data with parallel test constraints for some indi-
cators. However, to the extent that it is possible, ar-
raying models in a tree structure is often a helpful
guide for ensuring that all necessary, and no unnec-
essary, within-group and/or between-group con-
straints in � and � are placed in the null model.

In some research applications, nesting relations
among models will be impossible to derive. For ex-
ample, neither Model 2A nor Model 1B in Figure 1 is
nested within the other, so computing differences be-
tween these models in their levels of statistical or
practical fit is not justified. However, if Model 0A
were used as the acceptable null model, then incre-
mental fit index values for the two models would fall
on a comparable metric, enabling comparisons be-
tween models with regard to their fit to the data. As
another example, consider the analysis of multitrait–
multimethod data. One set of nested models, from the
taxonomy developed by Widaman (1985), could be fit
using the linear factor analysis model, and a different
set of nested models could be fit using the multipli-
cative model proposed by Browne (1984). Here, the
linear factor analysis models might constitute one ma-
jor branch of a tree structure, and the multiplicative
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models would constitute a second major branch. Al-
though nesting relations could be derived for alterna-
tive models within each major branch, establishing
nesting relations among models from separate
branches might be impossible. If both of these major
branches were formulated as emanating from a com-
mon, shared acceptable null model, then incremental
fit index values would be on a comparable metric and
could be used to evaluate relative fit of models across
the two major branches, even if models had no nesting
relations.

In situations in which the standard null model is an
inappropriate comparison model, an acceptable null
model will be more restrictive, requiring within-group
and/or between-group constraints on elements in the �
and � matrices. As a result, an acceptable null model
will have fewer parameter estimates and therefore
more degrees of freedom than the standard null
model. Given this, we highlighted the effects on fit
index values if the overall chi-square, the �2/df ratio,
or the estimated NCP for an acceptable null model
differed substantially from comparable values for the
standard null model. In some research contexts (e.g.,
our Example 2), changes in fit index values arising
from use of an acceptable null model may be rather
small; in other research contexts (e.g., our Example
1), changes may be pronounced. At least two related
issues deserve attention. First, changes in absolute
levels of incremental fit index values under an accept-
able null model might necessitate revision of recom-
mendations concerning fit index cutoffs that reflect
adequate model fit (e.g., .90 vs. .95; Hu & Bentler,
1999). Second, recommendations might be different
for fit indices with a strong correction for model com-
plexity (i.e., the TLI and RFI) than for fit indices with
no such correction (i.e., the NFI, IFI, RNI, and CFI)
because these two classes of fit indices behaved rather
differently under altered specification of the null
model. Regardless of the magnitude of changes ac-
companying the use of an acceptable null model, in-
cremental fit index values have an interpretation only
if an acceptable null model is used in calculations.
Furthermore, the quality of research using SEM and
the quality of thinking about structural models will
only increase if researchers are held responsible for
the specification of an acceptable null model as well
as for specification of each competing substantive
model considered.

Our discussion of psychometric and multisample
analyses demonstrated that the user of SEM software
must be aware of the nature of the null model used in

automatic calculation of incremental fit indices and
often must beware of the values automatically printed
out by SEM software. The researcher should not pre-
sume that SEM software will always use an accept-
able null model when calculating incremental fit in-
dices. SEM programs attempt to provide user-friendly
procedures that allow easy fitting of standard models
to data. However, developers of SEM software cannot
be expected to anticipate every research context or to
ensure that their programs can adjust automatically
and appropriately to every one of the complex situa-
tions in which these models are applied. Several
modifications to current software might be consid-
ered. For example, software developers could follow
the lead of the Mx program (Neale, 1999). Mx is
perhaps unique in requiring the user to supply the
chi-square and degrees of freedom of the null model;
if these are not supplied by the user, the Mx program
will not provide values for any indices of practical fit.
Alternatively, programs could be written to be sensi-
tive to information provided by the user, allowing the
user either to specify the form of an acceptable null
model or to supply the chi-square and degrees of free-
dom of an acceptable null model. If the user supplied
either of these types of information, the program
could use the altered specification of the null model or
its fit statistics when computing indices of practical
fit, overriding the default use of the standard null
model. Any such changes would place explicit re-
sponsibility for specifying an acceptable null model
where it rightfully belongs—in the hands of the re-
searcher who specifies the competing substantive
models for the data.

The central message of our article is that the inves-
tigator must verify whether the standard null model
is appropriate for a particular research application.
If the standard null model is appropriate, as it
will be for many single-group analyses, the fit index
values automatically reported by SEM software will
be accurate. However, if the standard null model is
not an appropriate comparison model, then incremen-
tal fit index values reported automatically will be in-
correct, and an acceptable null model must be fit to
the data to enable the researcher to calculate incre-
mental fit index values correctly. We trust we have
sensitized researchers to the importance of this issue,
provided tools for determining the form of an accept-
able null model, and described clearly how a re-
searcher must proceed if an acceptable null model for
a set of data does not correspond to the standard null
model.
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Appendix 

SAS Code to Calculate Incremental Fit Indices 

Illustrated Using Data From Votaw (1948) 

 

options ls=96 pageno=1;

data orig;

input model $ 1-8 snullchi snulldf anullchi anulldf Mkchi Mkdf ;

*********************************************************************************;

* Results from SEM analyses of a given set of data are entered into an SAS data ;

* set in a fixed order for each model considered (see below following the ;

* “cards” statement). We illustrate this using analyses of the data from Votaw ;

* (1948), using information from Table 2 of Widaman & Thompson (2003) ;

* For example, for Model 1A, enter the following: ;

* Model1A (model name or identifier, using no more than 8 spaces) ;

* 272.49 (chi-square for the standard null model, or snullchi) ;

* 6 (degrees of freedom for the standard null model, or snulldf) ;

* 277.83 (chi-square for the acceptable null model, or anullchi) ;

* 12 (degrees of freedom for the acceptable null model, or anulldf) ;

* 115.27 (chi-square for the current substantive model, or Mkchi) ;

* 11 (degrees of freedom for the current substantive model, or Mkdf) ;

*********************************************************************************;

cards;

Model1A 272.49 6 277.83 12 115.27 11

Model1B 272.49 6 277.83 12 44.97 8

Model1C 272.49 6 277.83 12 40.42 5

Model2C 272.49 6 277.83 12 2.28 2
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;

data first; set orig; **************************************;

NCPk = Mkchi - Mkdf; * estimated NCP for Model k ;

NCPs = snullchi - snulldf; * estimated NCP for STD null model ;

Q0 = snullchi / snulldf; * STD null model: ratio of chi-sq /df ;

Qk = Mkchi / Mkdf; * Substan. model: ratio of chi-sq /df ;

TLI = (Q0 - Qk)/(Q0 - 1); * Tucker-Lewis Index (TLI), or NNFI ;

RFI = (Q0 - Qk)/(Q0); * Relative Fit Index (RFI) ;

NFI = (snullchi - Mkchi)/(snullchi); * Normed Fit Index (NFI) ;

IFI = (snullchi - Mkchi)/(snullchi - Mkdf); * Incremental Fit Index (IFI) ;

RNI = 1 - (NCPk / NCPs); * Relative Noncentrality Index (RNI) ;

CFI = 1 - (max(NCPk,0)/max(NCPk,NCPs,0)); * Comparative Fit Index (CFI) ;

**************************************;

proc print uniform; var model Mkchi Mkdf NCPk NCPs Q0 Qk;

title4 'VOTAW (1948) data: Fit Indices based on STANDARD NULL MODEL';

proc print uniform; var model TLI RFI NFI IFI RNI CFI;

data second; set orig; **************************************;

NCPk = Mkchi - Mkdf; * estimated NCP for Model k ;

NCPa = anullchi - anulldf; * estimated NCP for ACC null model ;

Q0 = anullchi / anulldf; * ACC null model: ratio of chi-sq /df ;

Qk = Mkchi / Mkdf; * Substan. model: ratio of chi-sq /df ;

TLI = (Q0 - Qk)/(Q0 - 1); * Tucker-Lewis Index (TLI), or NNFI ;

RFI = (Q0 - Qk)/(Q0); * Relative Fit Index (RFI) ;

NFI = (anullchi - Mkchi)/(anullchi); * Normed Fit Index (NFI) ;

IFI = (anullchi - Mkchi)/(anullchi - Mkdf); * Incremental Fit Index (IFI) ;

RNI = 1 - (NCPk / NCPa); * Relative Noncentrality Index (RNI) ;

CFI = 1 - (max(NCPk,0)/max(NCPk,NCPa,0)); * Comparative Fit Index (CFI) ;



Supplemental material 
Widaman & Thompson, Psychological Methods, Vol. 8, No. 1, 16–37 3 

**************************************;

proc print uniform; var model Mkchi Mkdf NCPk NCPa Q0 Qk;

title4 'VOTAW (1948) data: Fit Indices based on AN ACCEPTABLE NULL MODEL';

proc print uniform; var model TLI RFI NFI IFI RNI CFI;

run;

quit; 


