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Abstract

Very high resolution satellite images allow automated
monitoring of road traffic conditions. Satellite surveillance
has several obvious advantages over current methods,
which consist of expensive single-point measurements made
from pressure sensors, video surveillance, etc., in/or close to
the road. The main limitation of using satellite surveillance
is the time resolution; the continuously changing traffic
situation must be deduced from a snapshot image. In
cooperation with the Norwegian Road Authorities, we have
developed an approach for detection of vehicles in Quick-
Bird images. The algorithm consists of a segmentation step
followed by object-based maximum likelihood classification.
Additionally, we propose a new approach for prediction

of vehicle shadows. The shadow information is used as a
contextual feature in order to improve classification. The
correct classification rate was 89 percent, excluding noise
samples. The proposed method tends to underestimate the
number of vehicles when compared to manual counts and
in-road equipment counts.

Introduction

The monitoring of traffic conditions is necessary for develop-
ment and maintenance of the road network. The current
primary source of traffic statistics is measurement stations
based on induction loops, which count vehicles that pass a
given point in the road system over time. The most important
information derived from these data is the Annual Average
Day Traffic (AADT), a measure of the traffic distribution during
a day at a specific point and averaged over a year. Neverthe-
less, this methodology has evident shortcomings due to the
very limited geographical coverage of such a system. The
necessary funding of covering the entire road network with
such in-road counters is far from realistic, and alternatives are
needed. Very high resolution satellite images, like QuickBird
(0.6 m ground pixel resolution), may provide supplementary
information to the traditional ground based sensors used

for traffic monitoring. A satellite image covers large areas
instantaneously providing a possible source of snapshot road
traffic information. However, manual vehicle counting in
images covering large areas would be a tremendous effort.

A solution to this problem might be the use of an automatic
image analysis methodology i.e., pattern recognition tailored
to the detection of vehicles.

In cooperation with the local road authorities, the aim
of our study was to compare in-road measurements with
the traffic statistics that were estimated from automatic
counts in QuickBird images. In this paper, we present

Norwegian Computing Center, P.O. Box 114, Blindern
0314 Oslo, Norway (siri.oyen.larsen@nr.no).

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

the suggested approach for automated vehicle detection,
consisting of segmentation followed by feature extraction
and classification.

Extensive research has been performed on vehicle
detection in aerial imagery, (e.g., Burlina et al., 1997; Hinz,
2005; Schlosser et al., 2003; Zhao and Nevatia, 2001).
Recently, some research groups have also started to address
vehicle detection in very high resolution satellite images.

Hinz et al. (2005) exploit contextual information to
extract vehicle queues from QuickBird images of inner city
roads. They also identify single vehicles using the width
profile of the queues calculated from a gradient image. The
approach is restricted to detection of vehicles in queues,
and shows better results for dark vehicles than for bright
vehicles. Gerhardinger et al. (2005) evaluates an inductive
learning approach classification technique for vehicle
detection on QuickBird and Ikonos images acquired over
Baghdad, Iraq, with good results.

Jin and Davis (2004 and 2007) introduce a morphological
preprocessing algorithm followed by a morphological shared-
weight neural network classification of pixels into vehicle
and non-vehicle targets. Ikonos imagery from three cities in
Missouri is used for training and validation, with 85 percent
detection rates and few false detections. The training data is
derived from manual delineation of vehicles in the images.
Zheng et al. (2006) use a similar approach. Zheng and Li
(2007) also use morphological transformation of the image
to identify candidate vehicles, but then an artificial immune
system approach is used to create a set of templates called
antibodies for vehicle detection. The experimental data in
the two latter cases consist of QuickBird images of city
scenes, including roads and parking lots.

Sharma et al. (2006) present three different approaches
for vehicle detection in Ikonos images. Of these, the best
performance is obtained using a pixel-based Bayesian
Background Transformation approach, which requires the
existence of a high quality estimate of a background image.

Alba-Flores (2007) detects vehicles in Ikonos images of
U.S. one-way highway segments using two different thresh-
olding approaches; a multiple threshold approach, and Otsu’s
method for bright and dark objects separately. These methods
are tested on selected sections of the imaged highways that
must adhere to severe restrictions.

A recent study performed by Pesaresi et al. (2008)
addresses estimation of vehicle velocity and direction, exploit-
ing the fact that there is a time lag between the acquisition of
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the panchromatic and multi-spectral images. The vehicles are
found by rough manual selection of target points, followed by
automatic refinement of the location of the targets based on
morphology.

Common to all the previous research that we have seen
is that the methods have been developed for American
highways or roads in large urban environments around the
world. Our attempt is focusing on the difficulties related to
analysis under the conditions present at Norwegian roads.
Norway is a sparsely populated country, and roads are
typically narrow and often close to a forest on one or both
sides. A frequently encountered problem is that much of the
road is hidden by tree shadows. This problem is worst at
wide view angles from the satellite. Furthermore, the traffic
density is very low compared to published studies from
highways in other countries.

The work presented in our paper is building upon the
results of the ESA (European Space Agency) project “Road
Traffic Snapshot” which addresses a possible future service
for counting vehicles in satellite images and generating
traffic information based on these counts (Aurdal et al.,
2007; Eikvil et al., 2008). Some of the methods presented
here are advanced versions of the methods presented in
Eikvil et al. (2008). However, while their study site is the
City of Oslo, we attempt to take a further step towards
developing a robust vehicle detection method that handles
a wider range of imaging and traffic conditions as well as
road types than previous approaches.

Methods

Experimental Data

To be able to detect vehicles, satellite images of high
resolution are required. We have chosen the QuickBird
satellite with 0.6 m ground resolution in the panchromatic
band. The data consists of five satellite images from the
QuickBird image archive, and covers different parts of
Norway for the period between 2002 and 2006. Table 1
presents an overview of the data, including image size,
length of the extracted roads, and average traffic density.
All the images are acquired in the summer season, i.e.,
without snow covering the roads and with enough sunlight
to be able to detect vehicles. The selection of image data
for our study was made so that it represents a variation of
viewing and lighting conditions, i.e., the combination of
road direction, sun elevation, and view angle, which has
an important effect on how objects and shadows appear

in the image. The extracted roads represent typical Norwe-
gian traffic conditions; narrow roads, often close to a forest
on one or both sides, and low traffic density compared

to other countries. To give an impression of the given
conditions, a section of the Sollihggda image is shown in

Figure 1; the length of the road segment in the illustrated
area is 2.2 km. Traffic counts from in-road equipment
measured at the same times for the corresponding roads
were provided by the Norwegian Public Roads Administra-
tion and were used for comparison with the image analy-
sis based counts.

Preprocessing

Road masks are applied to the images in order to restrict
vehicle detection to roads. Thus, ideally, all pixels outside
the road are considered to be background pixels. As a first
approach, the road masks were generated automatically,
using vector data representing the mid-line of the road
accompanied with a parameter representing the width of the
road. A buffer mask was grown around the mid-line vectors.
However, the road width was not sampled densely enough
to yield an adequate representation of the road, and the
maximum width had to be applied to the entire road to
ensure not losing parts of the road surface. Furthermore,
rectification by manually selected reference points was
necessary. To avoid resampling of the image, the road mask
was rectified to match the image. For most of the images,
the match between the rectified mask and the image was not
satisfactory. Therefore, we make road masks by manual
digitalization. Gerhardinger et al. (2005) report on similar
problems using a vector layer representing road centerlines
and a standard buffer width throughout the road network.
Their good classification results were dependent on precise
vector data describing the road surfaces, and in the absence
of automatic procedures for extraction of road surface, they
derive road masks manually by digitizing on screen.

In addition to the road mask, a vegetation mask is
applied. Vegetation that may obstruct the view of parts of
the road includes the crowns of trees by the road side and
plants growing in-between different lanes. The vegetation
mask was derived from the multispectral information from
the same scene. The normalized difference vegetation index
(NDvI) is computed from the multispectral image after
resampling to the resolution of the panchromatic image
using cubic interpolation. We then find the appropriate
threshold from the application of Otsu’s algorithm (Otsu,
1979) to the resulting NDVI image, and use this to produce a
vegetation mask. In the end, the road and vegetation masks
are combined to produce a masked panchromatic image,
i.e., a panchromatic image where all vegetation and/or non-
road pixels are set to black (Figure 2).

Segmentation

The segmentation routine is based on Otsu’s method for
unsupervised threshold selection (Otsu, 1979). Given a gray
tone image with gray levels 1, . . . , L, Otsu’s method
divides the pixels into two classes with gray levels 0, .., k

TaBLE 1. EXPERIMENTAL DATA.THE TRAFFIC DENSITY GIVES THE AVERAGE NUMBER OF VEHICLES PER KM AT THE TIME OF IMAGE ACQUISITION
(CALCULATED BASED ON MANUAL COUNTS IN SOME OF THE EXTRACTED ROAD SEGMENTS)
Mean Mean
Image Length of Traffic Upper Sun Off nadir

Area Road Mask Density Date Time Left Elevation View

Location (km?) Road (km) (vhels/km) (mm.dd.yy) (UTC) Latitude Angle Angle

Bodg 32 RV80 9 - 07.21.03 10:32 67 43 4.4

Kristiansund 29 RV70 (inner city) 5,6 20,9 06.19.04 10:56 63 50 7.9
RV70 (outer city) 5,8 5,5

@sterdalen 59 RV3 31,4 1,4 08.10.04 10:39 62 43 7.3

Eiker 154 EV134 12,2 - 06.07.02 10:42 60 53 12.9
RV35 20,5 7,3

Sollihggda 52 EVi6 26,6 6,7 05.10.02 10:32 60 47 12.5

860 July 2009

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING



Figure 1. One part of the Sollihggda image. The white lines represent the borders of the road mask. In
this sub-image, 19 vehicles were observed, and the road segment is approximately 2.2 km.

and k+1, . . ., L, respectively. The threshold k is deter-
mined by computing the gray level histogram and selecting
the gray level that maximizes the between-class variance. In
the histogram of the masked panchromatic image (Figure 3)
the road (asphalt) pixels constitute the dominating mode.
(Background pixels are not included in the histogram). Dark
colored vehicles and other dark segments are represented by

a smaller peak in the histogram. The long tail in the high
intensity part of the histogram corresponds to the class of
bright segments on the road, appearing in a wide range of
intensities. Note that Otsu’s method may easily be extended
to the multi-class problem, e.g., finding two optimal thresh-
olds simultaneously. However, experiments showed that
using the three-class version of Otsu did not provide two

Figure 2. Vegetation covering parts of the road: (a) Panchromatic image, and
(b) masked (road and vegetation) panchromatic image.
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Figure 3. Image histogram.

thresholds that are able to make the desired separation
between the classes in our application. One reason is
perhaps the fact that the division line between the road
class and the bright segment class is very diffuse (the
histogram does not appear to be trimodal).

The panchromatic image is thresholded in two stages,
for dark and bright segments, respectively. Selection of
the right threshold is critical for obtaining a successful
segmentation; using a too strict threshold yields poorly
defined or fragmented segments, while less strict thresholds

tend to produce too many segments and include many
unwanted objects, such as road marks (see Figure 4). To
overcome this problem, we perform so-called hysteresis
thresholding. This is traditionally an edge detection
method, where the input image is thresholded with a higher
and a lower threshold, producing so-called strong and weak
edges. All the strong edges are kept in the output image,
while a weak edge is only kept if it is connected to a strong
edge. This method gives well-connected edges while
eliminating isolated, noisy edges. Similarly, we select a
strict and a less strict threshold at each stage (for segmenta-
tion of bright objects, the stricter threshold is the higher
one, while for segmentation of dark objects, the stricter
threshold is the lower one), and keep segments resulting
from the least strict threshold only if it contains a segment
resulting from the stricter threshold. Each threshold is
found by restricting the focus to a subset of the image
histogram. Let I,;, and I, denote the minimum and
maximum intensity values, greater than zero, that are
present in the image, and let u and o denote the mean and
standard deviation, respectively. We then define the
thresholds as follows:

Segmentation of dark objects:

¢ low threshold found by Otsu applied to the histogram on the
interval [L,;,, p — o]

e high threshold found by Otsu applied to the histogram on
the interval [I,;,, . — 0.50].

Segmentation of bright objects:

¢ Jow threshold found by Otsu applied to the histogram on the
interval [u + o, Ll
e high threshold is u + 30.

(gray tones as in (c)).

Figure 4. Segmentation steps: (a) masked panchromatic image, (b) result of stricter
dark and bright thresholds (dark threshold yield gray segments; bright threshold
yield white segments), (c) result of less strict dark and bright thresholds (graytones
as in (b)), (d) combined segmentation result (dark segments in darker gray, bright
segments in white, road in lighter gray), and (e) segments after pre-classification
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Feature Extraction

We have examined various features that describe the seg-
ments. The features are used to discriminate between different
types of objects, i.e., vehicles from other objects. The following
features were selected:

mean intensity of the object

mean gradient of the object (using the Sobel operator)
standard deviation of the intensity within the object

object length (defined as the length of the bounding box)
the object’s 1°* Hu moment (Maitra, 1979)

the spatial spread of the object (calculated using normalized
central moments of the object)

e object area

¢ object elongation

e distance to nearest vehicle shadow.

The first six features are used for statistical classification
by maximum likelihood. They were selected from a larger
set of features using statistical feature selection methods.
The object area and elongation are used in a rule-based pre-
classification step, where obvious non-vehicle segments are
discarded. The object area must neither be too large nor too
small. We also require that the elongation adheres to a given
interval. Furthermore, we assume that the mean intensity
value within the object is above or below preset thresholds,
and the object gradient must also obey a minimum threshold
value. Finally, dark segments that overlap the edge of the total
mask (i.e., the road and vegetation masks combined) are also
rejected during pre-classification. This is done because tree
(or building) shadows are frequently observed at the edge of
the road (Figure 5). Finally, the distance to nearest vehicle
shadow is used as a post-classification step, as described later.

Prediction of Vehicle Shadows

Many of the segments represent vehicles shadows. These are
of concern to us, because we need to separate them from the
vehicles during classification. Most of the bright vehicles cast
clearly visible vehicle shadows, while it is visually impossi-
ble to distinguish a dark vehicle from its shadow (Figure 6).
We have developed a new approach regarding the handling
of vehicle shadows. Our approach is based on using informa-
tion about the direction and elevation of the sun at the time
of image acquisition to predict shadows. This idea is not

Figure 5. A common sight on Norwegian highways:
shadows cast from trees. The white contour delineates
the edge of the road. Dark segments overlapping this
edge should be discarded.

new; Hinz (2005) carries out an accurate computation of a
car’s shadow projection based on date, daytime, and image
orientation parameters. However, the manner in which the
predicted shadows are used for vehicle detection differs
between Hinz’ approach and ours. Hinz is studying vehicle
detection in high-resolution aerial imagery, and incorporates
the predicted shadow into an explicit 3D vehicle model,
which is then used in a matching algorithm. On the other
hand, we predict a vehicle shadow mask, i.e., an image
containing segments that represent vehicle shadows. From

Figure 6. A bright and a dark vehicle in (a) panchromatic image and (b) segment
image. Note that we only see the vehicle shadow of bright vehicles. Also note that
the bright vehicle is fragmented into two bright segments.
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this mask, we estimate the distance to nearest shadow as one
of the features describing the object, i.e., during the feature
extraction step. This feature is then used for classification,
which is described in a separate section below.

The calculation of a shadow mask is carried out as
follows. Based on information about the sun direction, we first
calculate an image mask that indicates the expected shadow
zones of the vehicles that are found in the image. The expected
shadow zone of a bright object is a sector lying directly
opposite the object with respect to the direction of incoming
sunlight. The expected shadow zones of all the bright objects
in the image are found by dilation of a segmented image,
representing bright objects only (Figure 7b), with a structuring
element representing the expected shadow sector. The direc-
tion and length of the shadow sector are determined from the
two parameters sun azimuth and sun elevation, respectively.
These two parameters may vary between different images. We

use four different directions to estimate the direction of the
shadow zone, and we use a 90° wide zone, pointing north,
east, south, or west. For example, if the sun azimuth is
between 135° and 225°, the sun enters the image scene from
the south, and the expected shadow zone lies north of the
objects, so this is where to look for segmented dark objects that
could be shadows. The length of the shadow is given by the
average vehicle height divided by the tangent of the sun
elevation angle. For QuickBird images an average vehicle
height of 3 pixels = 1.8 meters is used. As an example, the
shadow structure element in Figure 7d would be used if the
expected shadow zone was four pixels (= 2.4m) long and
located north of the vehicle. Dilation of image I with image
(structure element) S is defined as

1S ={zI5zN1# O},

Figure 7. The entire vehicle shadow prediction process. The bright segments (b) are
dilated with the shape of the expected shadow zone (d), and the segments are then
subtracted from the dilation result, yielding an image of the expected shadow zones
only (e). Together with the distance map of bright segments (c), this decides which
dark segments (f) are vehicle shadows (g), and which are not (h).
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where S denotes reflection of S, defined as:

S = {xlx = —s, for s € S},

and S, denotes translation of S by (a vector) z (Gonzales and
Woods, 1992; page 519). The dilation result represents an
image of the bright objects together with their expected
shadow zones. The bright object segment image is subtracted
from the result of dilation, yielding an image representing
the expected shadow zones only (Figure 7e). This image is
then compared with a segmented image of dark objects

that lie close to a bright object. Wherever there is overlap
between these two images, the dark object is assumed to be
a shadow. The segmented image of dark objects that lie
close to a bright object was first found by calculating the
distance map to the bright segment image (Figure 7c), and
then combining this information with the dark segment
image (Figure 7f), keeping only the dark segments whose
distance to a bright segment is below a preset threshold
(Figure 7g). The result of this process is a shadow mask.
This mask is used to estimate the distance to the nearest
shadow, which is a feature that is calculated for each object
resulting from segmentation. Ideally, the shadow distance is
zero for objects that are true vehicle shadows, positive for
other dark objects, small for bright vehicles, and (relatively)
large for road marks and other bright segments that may be
confused with vehicles.

Classification
We use the well-known maximum likelihood method for
classification of segments into one of six classes:

. Bright car

. Dark car

. Bright truck

. Bright vehicle fragment

. Vehicle shadow

. Road mark (arrow shaped).

DU WN

The motivation behind the bright vehicle fragment class
is to include segments that belong to a bright vehicle, but fail
to capture the whole object. Bright colored cars are frequently
seen as two smaller fragments, probably due to the dark
interior of the car being visible through the front or rear
window (Figure 6). In other cases, the bright car is repre-
sented by one fragment only, usually due to bad contrast
which gives rise to a suboptimal segmentation. Bright trucks

have higher mean intensity and are larger than cars, thus a
separate class for large sized vehicles is defined. In our
experimental data, there are only a couple of examples of
heavy dark vehicles, hence no dark truck class is defined.
Two rather homogenous groups of non-vehicle objects are
observed on such a frequent basis that they have been given a
dedicated class of their own; heads of bright arrows painted
on the road (directions for traffic), and vehicle shadows. The
remaining objects do not fall into one specific class of shape
or intensity. These segments are defined to be noise objects
and include road marks of various geometric shape (other
than arrow), (parts of) bridges across the road, road signs by
the roadside or across the road, or shadows of these, (parts of)
roundabouts, erroneously segmented vehicle objects, grown
together in pairs, with road marks, or other objects (Figure 8).

We assume that the feature vectors within each class
are normally distributed, and that we have general covari-
ance matrices (correlated features). Furthermore, we assume
that the prior probability P(w,) of belonging to class « is
P(w,) = N,/ N, where N, is the number of training samples
from class k, and N is the number of training samples from
all the classes in total. Finally, we made experiments where
we introduced the possibility of rejecting a segment if none
of the class posterior probabilities were reasonably high.
The purpose of such an option is to exclude objects that do
not belong to any of the defined classes. However, we were
not able to see any difference in maximum probability for
such outlier objects, hence, we did not use this option in
the final algorithm.

Vehicle shadows are often confused with dark vehicles
and vice versa, even after application of the maximum
likelihood classifier. We therefore seek to reduce the
number of misclassifications between vehicle shadows by
revising the segments that are classified into one of these
classes. The post-classification is based on the distance
to nearest shadow feature, calculated from the vehicle
shadow mask, as described above. Specifically, dark
segments that are included in the shadow mask will have
zero shadow distance, hence the post-classification gives
all dark segments with zero shadow distance the label of
the shadow class. The shadow distance information is also
used to improve the classification of bright vehicle frag-
ments into road marks. These two classes share similar
shape and intensity features. However, while vehicle
fragments often cast a detectable shadow, road markings
do not. The classification of a road marking is changed to

Figure 8.
defined classes.

(a) through (c): Examples of noise segments, i.e., segments not belonging to any of the
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the inner city road in the Kristiansund image.

Figure 9. Final detection results. Detections are enclosed in white squares. The image shows part of

bright vehicle fragment if its distance to a shadow is less
than a (small) preset threshold given in pixel units. Final
detection results are illustrated in Figure 9.

Experiments

The main classification was applied to all segments charac-
terized as potential vehicles by the pre-classification routine.
The parameters for the normal distributions were estimated
using a training data set, consisting of sub-images of satellite
scenes from Bodg, Kristiansund, Eiker, and Sollihggda

(see Table 1). The segments were labeled manually, using
labels 1 through 6 for the respective classes. As some of

the segments represent objects of low contrast or cluttered
objects, labeling is not necessarily a straightforward task.
Aurdal et al. (2007) reported 83 percent agreement between
two individual, manual classifications. However, their
experiments were performed on images of inner city roads,
where cars appear closer to each other, and one expects
more clutter. Our experiments are mainly conducted on
highways with less traffic, although some city roads are
included. A total of 787 samples were used for training, of
which there were 123 belonging to class 1, 152 to class 2, 37
to class 3, 152 to class 4, 206 to class 5, and 117 to class 6.
Only segments belonging to one of the six classes were
included in the training set. For testing, we used a different
set of sub-images of satellite scenes from Kristiansund,
Eiker, Sollihggda, and @sterdalen, which altogether gave

372 test samples. The test set includes 73 noise samples
(segments not belonging to any of the defined classes),
because it is interesting to see whether these samples are
classified into vehicles or one of the non-vehicle classes.
The fraction of noise segments compared to the total number
of segments was 2 percent, 20 percent, 22 percent, and

30 percent, for Eiker, Sollihggda, Kristiansund, and
@sterdalen, respectively.

The classification results are shown in Table 2. The
correct classification rate, i.e., the fraction of correctly
classified segments, is 89 percent, excluding noise seg-
ments, i.e., segments not belonging to any class, as defined
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TABLE 2. CLASSIFICATION CONFUSION MATRIX
Given Label
Bright Dark Vehicle Road

True Label Vehicle  Vehicle  Shadow Mark SUM
Bright vehicle 127 0 0 12 139
Dark vehicle 0 67 10 0 77
Vehicle shadow 0 10 70 0 80
Road marking 0 0 0 3 3
Noise segments 17 16 18 22 73
SUM 144 93 98 37 372

above. The confusion matrix (Table 2) shows that 12 out
of 139 bright vehicles are classified as road marks. These
are typically small vehicle fragments with low mean
intensity compared to other bright vehicles. We also see
that 10 out of 77 dark vehicles are classified as vehicle
shadows. The vehicle omission error for the classification,
i.e., the fraction of vehicles that are omitted in the classifi-
cation compared to all the vehicles in the classification, is
10 percent. On the other hand, the vehicle commission
error, i.e., the fraction of non-vehicle segments that are
classified as vehicles compared to the total number of
vehicles in the classification, is 5 percent. However,
counting noise samples, the commission error is 20
percent. The noise samples constitute a very heteroge-
neous group of objects that do not adhere to a normal
distribution. The omission error is 7 percent, 8 percent,
11 percent, and 14 percent, for Eiker, Kristiansund,
Sollihggda, and Osterdalen, respectively. The correspon-
ding commission errors, including noise samples, are

9 percent, 11 percent, 22 percent, and 33 percent.

The main objective of our study is to develop method-
ology for reliable estimation of the amount of traffic on
certain roads, thus an important part of the validation is to
compare the vehicle counts from the satellite images
against manual counts. The manual counts were performed
by a person without knowledge about the results of the
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automatic counts. Each vehicle was marked in the image.
The validation approach consists of comparing the number
of vehicles found by manual inspection to the number of
vehicles found by the automatic algorithm. The degree of
consensus is also checked, i.e., the number of cars that was
found by both methods.

In-road equipment counts how many vehicles pass a
certain location during some period, which in our case is
one hour. In order to compare this number with the counts
made by our method, we must apply it to an image that
covers the road in an area surrounding the counting station.
We select a subset of the road so that the distance on each
side of the counting station is maximized, while at the same
time, no large road intersections are included. This is
necessary since we are going to compare the number of cars
in a snapshot in time to the number of cars during a one
hour period. The data which is available from the in-road
stations include the average vehicle speed. Thus, assuming
there is free flow of traffic (no queues) and traffic density is
uniformly distributed in the one hour interval, we may
predict the number of vehicles that could be expected to
appear on the given road segment in the image. This number
is not to be regarded as the true number of vehicles in the
image. However, the predicted number of vehicles from the
in-road sensor gives an idea about how well an image
(acquired in a snapshot in time) represents the average
traffic situation.

Six different in-road counting stations were used for
validation (two in Kristiansund, two in Sollihggda, one in
Eiker, and one in Osterdalen).

The validation results are summarized in Table 3; the
number of vehicles counted by the automatic algorithm,
the number of vehicles counted by manual inspection, the
number of vehicles that exists in both the automatic and the
manual counts, and finally, the number of vehicles that is
expected to be present in the image based on in-road counts,
merely as an interesting comparison. Fragments (class 4) that
belong together are counted as one vehicle. Similarly, class 3
(bright truck) has been trained to identify separate trailer
wagons. In cases where the truck is pulling two trailers, only
one vehicle is counted.

The estimated number of vehicles from in-road equip-
ment does not necessarily represent the truth about the
images, but comparing this number to our results is never-
theless interesting, as it gives an idea of how well it is
possible to monitor traffic using satellite observations. The
manual count is probably the number that is closest to the
true number of cars in the image. However, as mentioned
above, there are some ambiguities even when it comes to
manual counts.

Discussion

Our results indicate that the automatic vehicle detection
algorithm tends to underestimate the number of vehicles. In
those images where the automatic count is especially low
with respect to the manual count (Kristiansund #1 and 2,
Eiker, and Sollihggda #2), the degree of consensus is high.
By this we mean that the manual interpreter agreed that
most of the vehicles found by the algorithm were in fact
vehicles. On the other hand, in those images where the
automatic count is close to the manual count (@sterdalen
and Sollihggda #1), the degree of consensus is less, i.e., a
relatively large proportion of the segments that were labeled
as vehicles by the algorithm was not counted as vehicles by
the manual interpreter (Table 3). In these two images, there
are a fair number of tree shadows and road marks that are
incorrectly classified as vehicles.

The performance of both the segmentation and the
classification routine was especially good in the Eiker
image (2 percent noise segments). The elevation of the sun
at the time of image acquisition was higher in Eiker than
for the other locations (Table 1). This result may indicate
that such lighting conditions are advantageous, which
seems reasonable, considering, e.g., the fact that higher
sun elevation means shorter shadows. The lowest omission
and commission errors for the classification were obtained
for the Kristiansund and Eiker images. These are also the
images with highest traffic density. The lowest performance
was registered for the Usterdalen image, where the traffic
density is very low, and the imaged area consists mainly of
woods located next to the road. The density of the traffic is
presumably an important factor that affects the performance
of the vehicle detection procedure.

As noted for the classification results, most vehicles
are classified correctly, thus the main reason for underesti-
mation is believed to lie in the segmentation routine. Some
vehicles have very poor contrast and are hard to detect
by gray tone level thresholding. We also see examples of
vehicles that partly or fully lie in shadow (Figure 10).
Furthermore, some vehicles are lost since segments that
overlap the road edge are discarded. However, the opposite
strategy (not excluding road edge segments) leads to drastic
increase in false positives, as there is a large amount of
tree shadows along the type of roads that we are interested
in. In future work, alternative ways of removing tree
shadows should be considered. Tree shadows could
possibly constitute a separate class, although their size and
shape varies considerably.

Segments that do not belong to any of the six defined
classes also pose a great challenge to the automatic algorithm.
These segments include road marks of various shapes and

TABLE 3. VALIDATION RESULTS.THE COLUMN “AGREEMENT ” | NDICATE THE NUMBER OF VEHICLES THAT WERE FOUND BY BOTH THE AUTOMATIC
ALGORITHM AND THE PERSON WHO COUNTED VEHICLES MANUALLY . T HE RIGHTMOST COLUMN INDICATES HOW MANY VEHICLES ARE
EXPECTED TO BE PRESENT IN THE IMAGE IN A SNAPSHOT OF TIME GIVEN THE NUMBER OF VEHICLES THAT PASSED THE
IN-ROAD STATION DURING A ONE HOUR PERIOD AND THE LENGTH OF THE ROAD SEGMENT IN THE IMAGE

Number of Vehicles

Length of Time of Image Estimated from
Road Acquisition Automatic Manual In-road Count
Location Segment (m) (UTC) Count Count Agreement 10-11 UTC
Kristiansund # 1 1055 10:56 16 22 14 25
Kristiansund # 2 5775 10:56 18 32 17 27
@sterdalen 31779 10:39 43 44 30 51
Eiker 7836 10:42 39 57 36 57
SOllihlegda #1 7819 10:32 63 64 48 58
Sollihggda # 2 6139 10:32 26 30 24 38
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(d): Vehicles partly hidden behind trees/shadows.

Figure 10. The images show examples of vehicles that were counted manually, but not detected by the
automatic algorithm. (a) and (b): Vehicles that have low contrast to the local background, and (c) and

with high contrast, tree shadows, parts of road signs, bridges,
roundabouts, and so on; i.e., they constitute a highly hetero-
geneous group of segments that demand special treatment
when it comes to classification (Figure 8).

The segmentation step was developed using image data
from three locations with relatively good lighting condi-
tions. The hypothesis about the relationship between the
image histogram and the intensity classes was therefore too
optimistic. Studies of a larger set of images reveal that
variations in lighting conditions sometimes yield less
desirable results. Further research should be made in order
to adapt the segmentation algorithm to different lighting
conditions. An alternative that should be considered in the
future is to apply some sort of preprocessing filter to the
image in order to enhance the contrast of the vehicles
before segmentation. In Alba-Flores (2005) it is suggested to
apply a filter that assigns to each pixel the maximum or
minimum intensity value in a neighborhood of 3-by-3
pixels, before using Otsu’s threshold selection for bright or
dark objects, respectively.

Conclusions

The monitoring of traffic conditions is necessary for develop-
ment and maintenance of the road network. Deriving traffic
statistics involves estimating the Annual Average Day Traffic
(AADT), which is a measure of the traffic distribution during a
day at a specific point and averaged over a year. The current
method for obtaining data for AADT estimation is based on a
limited number of in-road counting stations with expensive
equipment. Counting vehicles from space, using satellite
imagery, may provide supplementary information about the
traffic situation and improved spatial coverage. We have
presented an automated approach for vehicle detection in
very-high-resolution satellite images. The method consists of
a segmentation step followed by object based feature extrac-
tion and classification. Improvements are needed before the
methodology can be used operationally, thus the presented
results are preliminary, and further work is ongoing. Accord-
ing to the Norwegian Public Roads Administration the results
are promising for the improved monitoring of the national
road system in the future.

Past research on automatic vehicle detection from
images has focused significantly on the use of aerial
imagery, although a few studies using satellite images have
been reported. In our study, we have aimed at making as
few assumptions as possible about the image data for
which the vehicle detection algorithm is to be applied.
Our contribution includes a proposed method for how to
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construct a vehicle shadow mask, i.e., a mask containing
dark segments that are likely to represent a shadow.
Vehicle shadows provide valuable information about the
segments, and should be exploited for detection purposes.
In our case, we have integrated the shadow information
during the classification step.

The proposed method finds image segments represent-
ing potential vehicles by looking for areas that are darker or
brighter than their surroundings. These segments are then
described using a set of features. The features are values that
represent various properties regarding the geometric shape
and the intensity contrast of the object. According to their
feature values, the classification gives each segment a label
that represents one of the six defined classes (Bright car,
Dark car, Bright truck, Bright vehicle fragment, Vehicle
shadow, or Road mark (arrow)).

Approximately 20 percent of the total number of
segments resulting from segmentation do not belong to any
class, and out of these segments, 28 percent are erroneously
classified as vehicles. However, in general, the suggested
approach underestimates the number of vehicles in the
image. Vehicles are usually missed due to local variations
in lighting conditions or obstructed view of the road due to
vegetation. The main source of non-vehicle segments that
are confused with vehicles is road segments, which (after
segmentation) come in a wide variation of shapes and
shades.

It is desirable to be able to discriminate a larger part of
the noise objects, i.e., objects that do not belong to any of
the defined classes. Perhaps we need to use specific features
that are able to separate outlier segments from the classes,
e.g., context-based features. Furthermore, a more thorough
pre-classification may exclude outliers on an early stage and
ease the task of statistical classification.

The proposed segmentation routine fails to capture
vehicles of very low contrast to the local background,
especially when the low contrast segments are only slightly
brighter than the road. Lowering the threshold for bright
segments may yield a lot more road marks to become
included as segments. Alternative methods that should be
tested include sophisticated region growing techniques,
where pixels of low contrast are expanded into regions
only if the resulting object meets certain requirements.
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