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Abstract: We report anumerical and analytical study of mode field patterns
and mode coupling in planar waveguide-coupled square microcavities,
using two-dimensiona (2-D) finite-difference time-domain (FDTD) method
and k-space representation. Simulated mode field patterns can be identified
by k-space modes. We observe that different mode number parities permit
distinctly different mode field patterns and spectral characterigtics.
Simulation results suggest that k-space modes that nearly match the
waveguide propagation mode have a relatively high coupling efficiency.
Such preferential mode coupling can be modified by the mode number

parity.
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1. Introduction

Planar waveguide-coupled microcavities (u-cavities) in the form of circular ring and disk [1-
4], racetrack [5], and square [6,10,11,13] have been attracting considerable interest for
channel add-drop applications in wavelength-division multiplexed (WDM) networks.
Lightwave can be partially confined by total internal reflection (TIR) at the p-cavity
sidewalls, so that optical resonances can be excited when the cavity round-trip lightwave is
wavefront-matched with the input-coupled lightwave. The shortcoming of the conventional
circular p-cavities is that the short interaction length between the curved cavity sidewall and
the laterally coupled straight waveguides imposes sub-micrometer air-gap spacing for
evanescent coupling. Recently, a number of research groups have proposed square p—cavities
that have high-Q resonances and long interaction length along the entire flat cavity sidewalls
as an alternative resonator to ease the air-gap spacing tolerance [6-11,13]. Multimodes of
square p—cavities, which are attributed to k-space modes of the cavity with mirror-like
boundaries [7,8], have been experimentally demonstrated by Gaussian beam coupling [7,8]
and by prism coupling [9].

Planar waveguide-coupled square and rectangular p—cavities have also been investigated
analytically using coupled mode theory by modeling the cavity as a singlemode standing wave
resonator [6] and directional coupler segment [11], and numerically by finite-difference time-
domain (FDTD) [6] and mode expansion method [10,11]. In this paper, we, on the other
hand, consider square p—cavities as multimode resonators. We model and analyze (i) the
multimode resonances of square p—cavities and (ii) the mode coupling between the sguare
yu—cavity and the laterally coupled waveguides. Multimode spectra and mode field patterns of
planar waveguide-coupled square p-cavity channel add-drop filters are numerically simulated
using two-dimensional (2-D) FDTD method. We interpret the FDTD results by means of k-
space modes of a discrete square p—cavity with mirror-like boundaries [7]. Simulated mode
field patterns can be modeled by the interference of degenerate pairs of k-space modes.
Simulation results show that k-space modes that nearly match the waveguide modes can in
general be preferentially input-coupled.

2. Planar waveguide-coupled sguar e p-cavities
2.1 k-space modes of discrete square cavities
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Fig. 1. Schematic of a planar waveguide-coupled square p-cavity channel add-drop filter.

Figure 1 shows a schematic layout of the planar waveguide-coupled sgquare p-cavity channel
add-drop filter. A sgquare p-cavity of sidewall length a is laterally coupled with two parallel
singlemode waveguides of width w. The cavity sidewall and the waveguide sidewall are
separated with an air-gap distance g. In order to simulate the refractive index contrast
between silicon and air, both singlemode waveguides and square p-cavity have a refractive
index n = 3.5 while the background refractive index is 1. The singlemode waveguide mode
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has a propagation constant 3, a discrete transverse k-vector component ¥, and a mode angle ¢
= tan™ (B/x). The waveguide mode k-vector is denoted as Kwg-

Resonances of the high refractive-index contrast square cavity can be approximated by k-
space modes, assuming the cavity field amplitude drops to zero at the cavity sidewall [7,8].
The k-vector (ky, ky) in the square cavity can be discretized as ky = mynt/a and ky = myn/a with
(nk)? = k& + k,* , where m, and m, are integers, and k is the vacuum propagation constant
[7]. We denote the square cavity modes as (m,, my). We can calculate the vacuum resonant
wavelength A = 2na/ (m,® + m,?)" and the corresponding mode angle 6 = tan™(m,/m,) [7].
For modes that have 4-bounce ray orbits, the TIR confinement requires 6, < 6 < 90°-6; [7],
where 6. is the TIR critical angle. It has been recognized that (my, my) and (my, m,) modes
have the same A, and thus (m,, m,) and (m,, m,) modes are degenerate, while they have 6 and
90°-6 mode angles [7]. We define the mode number M = m,+ m,. Modes with the same M
values have the same integer number of wavelengths in wavefront-matched round-trip path
lengths[7].

2.2 k-space mode field patterns

The mode field pattern of a (m,, m,) mode can be given as follows,
Emmy(X, ) €™ = A €' sin(menx/a) sin(mymy/a), 6h)

where we have chosen the origin at a square cavity corner (Fig. 1), o is the mode angular
frequency, and A is the field amplitude. Here, we consider only the electric field polarization
in the z direction (out-of-plane), and therefore the field is essentially scalar in a 2-D plane.
The mode field pattern is a 2-D standing wave along both the x and y directions, with m, the
number of field extrema along the x direction and m, the number of field extrema along the y
direction. Since (my, m,) and (m,, m,) modes are degenerate, the resonant field pattern at
wavelength A at (my, my) mode (or A a (my, my) mode) can be considered as the superposition
of the degenerate pairs (neglecting other accidental degeneracy) as follows,

Emmy(X, ) €' = A €' sin(m,nx/a) sin(mymy/a)
+ B €9 sin(mynx/a) sin(myry/a), 2

where B is the amplitude of (my,m,) mode, and § is the relative phase between degenerate
modes.

3. FDTD simulated spectra

We employed a commercially available 2-D FDTD photonic design tool [14] to simulate the
device transmission characteristics. A 5.17-fs Gaussian pulse centered a vacuum wavelength
1.55 um with fundamental slab waveguide mode profile was launched into the input port (Fig.
1). Spectral responses of the filter were obtained from the throughput, drop and add ports. We
adopted a 15-nm spatial grid-size and a 0.02-fs temporal step. The spectral resolution was =
0.08 nm —0.16 nm. A perfectly matched layer (PML) of reflectivity 10° with a thickness of
1.5 uminthey direction and of 0.5 um in the x direction was used to absorb stray field at the
simulation window boundaries. Mode field patterns were obtained by launching a
continuous-wave (CW) at resonant wavelengths.

Figure 2 shows the FDTD simulated throughput (blue), drop (green) and add (red dashed
line) spectra of a planar waveguide-coupled square p-cavity filter with a = 2.2 um, w = 0.2
um and g = 0.2 um. The polarization is TM (E-field L the plane). By choosing a to be 2.2
um, we limit the number of modes in the multimode square p—cavity [6,10,11]. It is entirely
feasible to fabricate square p—cavities of this size using standard photolithography.
Multimode resonances are clearly discerned from the spectra. The resonance at A = 1446.5
nm (denoted as (7,9),, mode) has the highest Q = 1,600 and a coupling efficiency = 74%.
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Fig. 2. FDTD simulated throughput (blue), drop (green) and add (red dashed line) spectra
(normalized with input intensity) of a planar waveguide-coupled square p—cavity filter. a=2.2
um, w= 0.2 um, g = 0.2 um and TM-polarized. The dominant resonances in the throughput
spectrum are indexed as (my, m,) modes according to the corresponding mode-field patterns.
The indexed (my, m,) modes are clustered according to the integer number of wavelengths M.

In order to identify the simulated resonances as (m,, m,) modes, we simulated their mode
field patterns with time evolution. Either by counting the number of extrema along the x and
y directions of the simulated mode field patterns or by comparing the ssimulated field patterns
to the calculated mode field patterns using Eq. (2), we labeled the resonances by (m,, m,) the
mode numbers and & the relative phase between the degenerate modes. When one of the
degenerate modes is preferentially coupled, we label the resonance by the dominant (m,, my)
mode. When the degenerate pairs are similarly coupled, we label the resonance by (my, m,)s,
where the subscript denotes the estimated relative phase 6. Figure 2 depicts the (my, my)
mode numbersfor all the dominant resonances.

4. Resonant field patterns
4.1 Odd M resonances
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Fig. 3. FDTD simulated odd M (=15) mode field patterns of a planar waveguide-coupled
square p-cavity filter at (6,9) mode (A = 1538 nm). a = 2.2 um, w = 0.2 um, g = 0.2 um and
TM-polarized. (a) t = to, (b) t = to*+T/8, (C) t = to*+T/4, (d) t = tc+3T/8 and (€) t = to+T/2.
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Modes of different parity (odd or even) of M turn out to have distinctly different mode field
patterns and spectral characteristics. Figures 3(a) — (€) show an example of the smulated odd
M (=15) mode field patterns at A = 1538 nm ((6,9) mode), evolving in time t within
approximately a half period T/2, where T = A/c, and c is the vacuum speed of light. The
approximation int and T is only limited by the simulation frame rate. Figure 3(a) shows the
mode field pattern at an arbitrary initial timet =t,. There exists 6 field extrema along the x
direction and 9 field extrema along the y direction. Figures 3(b) — (€) show the mode field
patterns at t = t,+ T/8, T/4, 3T/8, and T/2. The mode field pattern evolves as a 2-D standing
wave and varies only in field amplitude. The mode field patterns enable us to identify this
resonance as (6,9) mode.
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Fig. 4. FDTD simulated odd M (=15) mode field patterns of a planar waveguide-coupled
square p-cavity filter at (7,8) mode (A = 1562.5 nm). a=2.2 um, w= 0.2 pm, g = 0.2 um and
TM-polarized. (@)t =1ty (b)) t=to+ T/6, () t=to+ T/4, (d)t=1t,+ 2T/6and (e) t = to + T/2.
Calculated mode field patterns of a discrete square cavity using Eq. (2) with A = 0.7 for (7,8)
mode, B = 0.3 for (8,7) mode, and & = n/2. (f) wt =0, (g) ot = 21/6, (h) ot = /2, (i) ot =
4m/6 and (j) ot =m.

Figures 4(a) — (e) illustrate another set of simulated odd M (=15) mode field patterns at
1562.5 nm, evolving in time t within approximately a half period T/2. Figure 4(a) shows the
mode field pattern at an arbitrary initial timet =t,. There exists 7 field extrema along the x
direction and 8 field extrema along the y direction. We identify this as (7,8) mode.
Interestingly, at t = to+ T/4 (Fig. 4(c)), the mode field pattern appears as a weak field pattern
with 8 field extrema along the x direction and 7 field extrema along the y direction. This
suggests the co-existence of the degenerate (8, 7) mode with an estimated relative phase 6 =~
/2.

Att=ty+ T/2 (Fig. 4(€)), the mode field pattern returns to a pronounced (7,8) mode with
approximately r phase difference from that at t =ty (Fig. 4(a)). Figures 4(b) and (d) show the
mode field patternsat t = to+ T/6 and t = to+ 2T/6. It is evident that the preferentially coupled
(7,8) mode and the degenerate (8,7) mode interfere with each other. The result is a
superposition of standing waves that appears to oscillate between each degenerate mode.
Figures 4 (f) — (j) show the calculated mode field patterns of a discrete square cavity using Eq.
(2), with A = 0.7 for (7,8) mode, B = 0.3 for (8,7) mode and & = /2, a wt = (f) 0, (g) 2n/6, (h)
w/2, (i) 4m/6, and (j) ©. We find a good agreement between the simulated and calculated mode
field patterns. Hence, we labeled the resonance by its dominant (7,8) mode. Similarly, we
identified (5,10) modes at 1492.2 nm.
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We remark that all (6,9), (7,8) and (5,10) modes (odd M) display field extrema at the
sguare p-cavity corners, as shown in Figs. 3 and 4, and thus the modes can be lesky at the
sharp cavity corners. This is consistent with the simulated spectra (Fig. 2) that these modes

have relatively low Q values (= 300).
4.2 Even M resonances
4.2.1 Vortex field patterns
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Fig. 5. FDTD simulated even M (=16) mode field patterns of a planar waveguide-coupled
square p-cavity filter. a=2.2 um, w=0.2 um, g = 0.2 um and TM-polarized. (&) (7,9), mode
(A = 1446.5 nm), (b) (6,10), mode (A = 1417.1 nm), (c) (7,9)o mode (A = 1454.5 nm) and (d)
(8,8) mode (A = 1461.2 nm). Calculated mode field patterns of a discrete square cavity using
Eqg. (2) with A = B. (€) (7,9), mode, (f) (6,10) . mode, (g) (7,9)o mode and (h) (8,8) mode. The
dashed-line box in (b) and (f) denotes a“vortex.”

For even M modes, we observe that the (m,, my) and (m,, m,) degenerate pairs tend to
interfere with 8 = m or 0 with A = B. Figures 5(a) and (b) show examples of the simulated
even M (=16) mode field patterns at A = 1446.5 nm and A = 1417.1 nm. We have not shown
the time evolution because these patterns evolve in time approximately as standing waves and
only the field amplitude varies. By matching Figs. 5(a) and (b) with patterns obtained from
Eq. (2), we identified these two resonances as (7,9), and (6,10),. Figures 5(e) and (f) show
the calculated mode field patterns of (7,9), and (6,10),, of a discrete square cavity, using Eq.
(2) with A = B and & = . The calculations demonstrate an excellent agreement with the
simulated patterns.

Figure 5(a) depicts a characteristic zero field amplitude a the cavity center that is
surrounded by cross-like wavefronts [6,10-13]. We denote this characteristic mode field
pattern as a “vortex.” The number of vortices appears in an even M mode depends on |m,-my .
Figure 5(a) shows one vortex with |m,-my| = 2. Figure 5(b) shows five vortices (denoted by
the dashed-line box) with |m,-my| = 4. We found more complex arrangement of vortices (not
shown) at modes with |m,-my| = 6.

We remark that the even-M (my, m,), mode field patterns have zero field amplitude at the
square cavity corners, as exemplified in Figs. 5(@) and (b). Thus, the cavity corner leakage
problem can be aleviated, which permits relatively high Q values (>1000), as shown in Fig. 2.
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4.2.2 0-7 mode splitting

Figure 5(c) shows the simulated even M (=16) mode field pattern at A = 1454.5 nm (denoted
as (7,9), mode). By comparing the simulated mode field pattern to the calculated mode field
pattern, as shown in Fig. 5(g), we identified this mode as (7,9), with A = B and 6 = 0. Based
on the mode field time evolution (not shown here), (7,9), mode field pattern is approximately
a standing wave.

We remark that the even-M (m,, my), mode field pattern has field extrema at the square
cavity corners, as exemplified in Fig. 5(c). Hence, the even-M (my, m,), modes can be leaky,
and thus reduce the cavity Q. Thisis consistent with the observation that (7,9), mode has a
relatively low Q (as compared with (7,9),, mode), as shown in Fig. 2.

According to the k-space model, (7,9) and (9,7) modes should degenerate at the same
wavelength. Surprisingly, the simulated even-M (m,, my), modes are red-shifted compared
with the even-M (my, my), modes (e.g., (7,9)o mode at A = 1454.5 nm and (7,9), mode at A =
1446.5 nm), as shown in Fig. 2. We term this unexpected red-shift between §=0and d ==
even-M modes as “0-t mode splitting.” We attribute the mode splitting to the fact that & = 0
modes have leaky field at the square cavity corners, and thus require an additional phase shift
to satisfy the boundary condition at the cavity corners.

4.2.3 (m, = m,) modes

Figure 5(d) shows the simulated even M (=16) mode field pattern at A = 1461.2 nm (denoted
as (8,8) mode). There exigts 8 field extrema along both the x and y directions. The mode
field pattern evolves approximately as a standing wave. Therefore, we identify this to be (8,8)
mode. Under the influence of the neighbor (7,9), mode, the field amplitude along one
diagona is enhanced. Figure 5 (h) shows the calculated (8,8) mode field pattern.

For m, = m, modes (e.g. (8,8) modes), the mode degenerate with itself (neglecting
accidental degeneracy). The mode angle 6 = 45° corresponds to the closed ray orbits in a
square cavity. Intuition based on ray optics suggests that © = 45° modes should be long-lived
and high-Q because of the closed ray orbits. However, (8,8) modes do not have particularly
high Q values or a large coupling efficiency, as shown in Fig. 2. This inconsistency between
the ray opticsintuition and the simulated spectrum can be partialy attributed to the mode field
patterns of (m, = my) modes. (my, = my) mode field patterns have mode field extrema at the
cavity corners (Figs. 5 (d) and (h)), and thus (my = m,) modes are lesky and can be low Q.

5. Waveguide pr eferential mode coupling

Figure 6 shows the calculated (my, m,) modes of a discrete square cavity of a = 2.36 um
between spectral range A = 1.4 um and 1.6 um. The y-axis is the mode angle 6. Only the
modes that satisfy 6. < 8 < 90°6, are represented (0. = 16.6° for n = 3.5). Each dot represents
an (m,, my) mode. The filled dots represent dominant modes identified from the simulated
spectra (Fig. 2). In order to approximately account for TIR phase shifts at the waveguide-
coupled square cavity sidewalls, k-space modes are calculated from a dlightly larger square
cavity. K-space mode wavelengths are in good agreement with FDTD simulated resonance
wavelengths (Fig. 2). The modes of the same M values are distributed along various parabola
curves [8]. The dashed line depicts the calculated slab waveguide (w = 0.2 um) fundamental
mode angle ¢ (Fig. 1) for various wavelengthsin TM polarization [15].

When the lightwave is evanescently input side-coupled to the sguare p-cavity, it is
conceivable that the input-coupled wavefront should have a preferential spatial overlap and be
coupled to (m,, my) mode angle 6 that is near ¢. Consequently, cavity modes with 6 in the
neighborhood of ¢ can have a higher coupling efficiency and become dominant modes, while
modes with 0 farther from ¢ have alower coupling efficiency.
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Fig. 6. Calculated k-space (m,, my,) modes (filled and open dots) of a discrete square cavity of
a =236 um. The y-axis is the mode angle 6 and the x-axis is the wavelength . Only the
modes that satisfy 6. < 6 < 90°-0. are represented (6. = 16.6° for n = 3.5). The modes of the
same M values are distributed along various parabola curves. The dominant modes in Fig. 2
are represented by filled dots. The dashed line shows the waveguide fundamental mode angle
o (w=0.2um) in TM polarization.

It is generally valid that k-space modes that are closer to the waveguide mode (Fig. 6)
have higher coupling efficiencies, as shown in Fig. 2. For example, (6,10), (7,9), (6,9) and
(7,8) modes are the closest modes to the waveguide mode and have the highest coupling
efficiencies among neighboring modes. In contrast, resonances (8,8) and (5,10) modes are
farther from the waveguide mode and display alower coupling efficiency.

For odd M modes, we observe that degenerate modes with 6 = ¢ are preferentialy
coupled over their degenerate partners. We observe from the simulated mode field patterns
(Figs. 3 and 4) that (6,9), (7,8) and (5,10) modes are dominant over degenerate modes (9,6),
(8,7) and (10,5). However, for even M modes, the preferential mode coupling can be
modified and extended to the mode that has a degenerate partner close to the waveguide
mode, e.g. (9,7) and (10, 6) modes are still significantly coupled when (7,9) and (6,10) modes
are very close to the waveguide mode.

6. Conclusion

In summary, we have employed 2-D FDTD method to systematically study the mode field
patterns and the mode coupling of a planar waveguide-coupled sgquare p-cavity channel add-
drop filter. We demonstrated that the simulated resonances can be represented by k-space
modes of a discrete square cavity. Resonant field patterns can be described by the
interference of degenerate k-space modes. With different mode number parities, mode field
patterns and spectral characteristics are distinctly different. We observe that cavity modes
that have mode angles close to the waveguide mode angle are in general preferentialy input
coupled. However, the degree of preferential mode coupling can be modified by different
mode number parities. We are currently fabricating planar waveguide-coupled square p-
cavity filters on silicon-based substrates to experimentally demonstrate some of the concepts
discussed in this work [13]. Further numerical and analytical studies will focus on the
distinction between different mode number parities.
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