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Abstract: In recent years there has been an increase in the number of unmanned aerial vehicle (UAV) applications
intended for various missions in a variety of environments. The adoption of the more-electric aircraft has led to a
greater emphasis on electrical power systems (EPS) for safe flight through an increased number of critical loads being
sourced with electrical power. Despite extensive literature detailing the development of systems to detect UAV failures
and enhance overall system reliability, few have focussed directly on the increasingly complex and dynamic EPS. This
study outlines the development of a novel UAV EPS fault classification and diagnostic (FCD) system based on hidden
Markov models (HMM) that will assist and improve EPS health management and control. The ability of the proposed
FCD system to autonomously detect, classify and diagnose the severity of diverse EPS faults is validated with
development of the system for NASA’s advanced diagnostic and prognostic testbed (ADAPT), a representative UAV
EPS system. EPS data from the ADAPT network was used to develop the FCD system and results described within this
study show that a high classification and diagnostic accuracy can be achieved using the proposed system.
1 Introduction

The increasing trend of unmanned aerial vehicle (UAV) deployment
for a variety of missions can mainly be attributed to the promise of
reduced costs and reduced risk to human operators [1]. However,
eliminating the function of pilot from unmanned aircraft and
replacing it with completely autonomous flight control complicates
a number of issues, such as vehicle reliability. UAVs rely on a
robust and intelligent control system that monitor and anticipate
problems occurring in the flight dynamics, as well as
compensating for communication time delays.

A UAV reliability investigation undertaken by the US Department
of Defence [2] showed that the major sources of failure can mainly
be divided into power/propulsion system flight control,
communication and human/ground subsystems. Owing to the
power system being integral to UAV reliability, the proper
management of its health is imperative to UAV affordability,
mission availability, operational efficiency and their acceptance
into civil airspace.

Electrical systems are a critical aspect of UAV power systems,
particularly with the advent of the more-electric aircraft [3].
On-board electrical loads include crucial subsystems such as
avionics, propulsion, life support and environmental controls.
UAV electrical power systems (EPS) operate in harsh
environments and are characterised by physically compact
topologies, where high-density generation provides energy to
power electronics interfaced loads. Within the EPS, a diverse
range of failure modes exist that have varying effect on network
reliability; a major challenge is the design of fault tolerant control
systems that can quickly detect and diagnose both critical and
degraded faults to ensure robust health management and reliable
operation. Previously, systems based on advanced diagnostic
techniques [4–6] have been utilised for this purpose, although,
generally, there has been limited focus on the EPS.

This research proposes the development of an EPS fault
classification and diagnostic (FCD) system based on HMM that
has the ability to accurately detect, classify and assess the impact
of UAV network faults. The application of HMM to the EPS
domain has previously been researched; Abdil-Galil et al. [7]
investigated their implementation to the classification of power
quality disturbances and Suxiang et al. [8] utilised them for the
diagnosis of power transformer faults. The main value identified in
these applications included the inherent scalability and potential to
simultaneously infer the probability of multiple system state
hypotheses. The proposed FCD system evaluates their applicability
to UAV EPS and how their use can supplement health
management and fault tolerant control.

This paper outlines the development and operation of the FCD
system, where the operation can be divided into two separate stages:

† Stage 1 – Classification of EPS network state.
† Stage 2 – Diagnosis of fault severity through parameter
calculations.

This two stage system has the capacity to autonomously
discriminate between a variety of potential system conditions and
quantify the severity of any fault occurrence using EPS data. Both
outputs of the system are vital elements in the control and
monitoring of the network that provide key information regarding
network behaviour. The application of the proposed system was
verified with data collected from a subset of NASA’s advanced
diagnostic and prognostic testbed (ADAPT) network, the
ADAPT-Lite (ADL) network [9].

The paper opens by presenting background information on; the
ADL network and ADL data; the challenges associated with
classifying EPS faults; related work, and an introduction to HMM.
The following section outlines the proposed FCD system applied
to the ADL network and Section 4 presents operational results of
the system. Future work is explained in Section 5 and the paper is
concluded in Section 6.
2 Background

2.1 ADAPT-lite system

The NASA ADAPT [9] is a unique facility that is designed to test,
measure, evaluate and help mature diagnostic and prognostic
health management technologies. The ADAPT system is
representative of the topology of an EPS vehicle system in that it
1/creativecommons.org/



Fig. 1 Schematic of ADL Network on which the proposed FCD system is validated
provides energy generation/conversion, energy storage, power
distribution and power management functions.

For the purpose of this paper, the FCD system is applied to a
subset of the ADAPT system, the ADL network. A schematic of
the ADL network is shown in Fig. 1. It includes a single battery,
two AC loads and one DC load. An inverter converts DC power
from the battery into AC to power the two AC loads. The single
DC load is powered directly from the 24 V battery. Sensors
throughout the network monitor voltage, current, temperature and
switch positions. The circuit breakers (CBs) are nominally closed.
The network has a non-redundant power configuration of the EPS
that supports mission and vehicle critical loads.

The FCD system was designed and tested using data from the
ADL network. The data was publicly available and distributed by
Fig. 2 Outline of faults injected into ADL network

Faults are characterised by their mode, location and severity. For brevity, only the power sourc
illustrated

2 This is an open access article published by the IET under the Cre
the Second International Diagnostic Competition (DXC’10) [9].
The data involved individual controlled experiments undertaken on
the ADL network with each experiment detailing sensor readings
for all sensors within the network. Each experiment covered
roughly four minutes of time, with sensor readings detailed every
100 ms. Within a number of the experiments, failure scenarios
were injected into the network. Only one failure was present
during each experiment, meaning multiple failures within the
network are not considered.

The injected failure scenarios are characterised by the location of
the fault and the fault mode. Faults are injected to all components
within the ADL network, including sensors. Fault modes include
‘abrupt’, ‘intermittent’ and ‘incipient’. The severity of the injected
fault was either network ‘critical’ or ‘degraded’. ADL fault
e current sensor data for various fault modes and severities occurring at an AC load are
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characteristics are illustrated in Fig. 2. With the occurrence of critical
faults, the UAV mission is no longer sustainable and abort
recommendations should be provided; with degraded faults
occurring, the network can still support critical loads and no abort
recommendations need be provided. The data enabled the
development and operation of the FCD system to include both
network state classification and a diagnosis of fault severity.

2.2 Diagnostic challenges of EPS

The complex and dynamic nature of EPS leads to a number of
challenges in attempting to accurately diagnose the occurrence of
system faults and correctly initiate network recovery options to
optimise reliable operation. The first of these challenges involves
the number of mode inducing components such as relays, CB’s
and loads leads to a large range of network mode possibilities
having to be considered [4]. Secondly, transients introduced into
the system by mode inducing components throughout nominal
switching periods, means the implementation of simple threshold
based monitoring systems is an inadequate solution, because of the
high false positive rates the transients would induce. In addition,
the failure of system components and sensor noise distortion can
lead to system state uncertainty. Furthermore, a diversity of EPS
faults produces a range of fault onset periods, ranging from
seconds for switch based faults, to days or weeks for source based
faults. These challenges highlight the necessity to develop robust
monitoring systems that can handle EPS state uncertainty as well
as detect faults that manifest over differing time periods and have
varying impact on network reliability.

2.3 Related work

The challenge of detecting and diagnosing EPS anomalies is a
widely researched area [10, 11]. Generally, the techniques that are
developed in an attempt to address this problem fall within two
categories: non-model based and model based. Non-model based
methods typically involve limit or trend checking [12], the
installation of special sensors [13] and the development of expert
systems [14] that implement the knowledge of diagnostic experts
to determine the implication that observed symptoms have on
network state.

The model based approach [15] usually concerns the development
of models which capture nominal behaviour – these come in a
number of different forms, including signal processing [16],
statistical [17] and causal [18]. Fault detection and diagnosis is
achieved through the generation of residuals, that is, differences
between measurements and the expected normal behaviour. Within
this paper, a statistical, multiple model based technique is
employed – this approach involves the use of system data to
develop separate state-space models that correspond to both
nominal and fault conditions. Diagnosis then involves probabilities
being assigned to each model, given observational data. Similar
systems have been developed using interacting multiple models of
Kalman filters [19, 20].

Regarding UAV’s specifically, the majority of fault diagnosis is
centred on assessing hardware faults in the flight control surfaces
and sensors, and the failure of communication links to the control
station; Cork et al. [21] and Bateman et al. [22] focussed efforts
on identifying failures and implementing a reconfiguration of the
control system to bring the aircraft to a normal state, or, in the
worst case, abort the mission. Most of these techniques are based
on parameter estimation for residual generation [23], data driven
artificial neural networks [24] and mathematical models such as
petri nets [25].

With respect to UAV EPS fault diagnosis, and the ADL in
particular, Mengshoel et al. [4], used Bayesian networks, a form
of causal model, to represent sensors which were compiled to
arithmetic circuits to determine network diagnoses. Wilson et al.
[5] used causal dependency graphs of fault causes and fault effect
propagation paths to detect system faults and Narasimhan et al. [6]
used a Hybrid Diagnostic Engine framework where behavioural
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and transitional models formed a basis for diagnosing changes in
the operating modes of ADL components. A number of these
techniques are based on graphical representations of the networks
being modelled and successful implementations of such systems
depend upon proper selection of the type of network structure. The
utilisation of diagnostic systems based on HMM, as proposed in
this paper, could overcome this modelling issue as the there is no
requirement for network structures to be specified; instead, HMM
use data to learn model parameters that statistically describe
certain conditions.

Their ability to provide probabilistic reasoning under uncertainty
and solve classification problems associated with time series input
data under minimal computational burden makes them a
potentially attractive solution for UAV EPS fault detection,
classification and diagnosis.

Traditional applications of HMM are in areas such as speech,
handwriting and gesture recognition [26–28]. Recently, HMMs
have been applied to classifying patterns in process trend analysis
[29], anomaly detection in nuclear reactor cores [30], machine
condition monitoring [31, 32] and classifying electrical grid
distribution network line disturbances [7, 33]. Rabiner [28]
provides a comprehensive introduction to HMM.
2.4 Hidden Markov models

The ADL sensor data is an example of multivariate time series data
where non-stationary periods define the presence of fault conditions.
The ability to determine the latent physical state responsible for such
changes in the data is the main goal of fault classification. Relating
observational data to latent variables is a fundamental concept of
HMM. This relationship involves non-stationary periods in the
data representing transitions between latent states and, conversely,
stationary periods in the data representing some form of latent
state. It is therefore vital to have the capability to model data in a
way that certain temporal aspects are explicit. Modelling the
distribution of the ADL data and then detecting shifts in its
characteristics would enable such changes to become explicit.

There are a number of distribution functions that can be used for
modelling the probability distribution of observed variables.
Typically, the simplest function applied for continuous density
observations assume Gaussian distributions per latent state [34].
Considering the multidimensional nature of the ADL data,
approximating the distribution with a single Gaussian function
would provide an overgeneralised fit [35]. A solution to this is to
approximate the unknown density with a mixture of simple density
functions. The general form of a variable x of dimension d using
M mixture components is given by

P(x) =
∑M
i=1

P(ui)Pi(x|ui) (1)

where θi are the parameters of the ith simple density used as a
mixture component. The most widely used mixture model is the
Gaussian mixture model (GMM) [30], where each base
distribution is a Gaussian with parameters θi = {μi, ∑i) comprising
the mean vector μi and covariance ∑i. The likelihood of an
observation for each mixture component is given by
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Changes in observation distribution can be detected by testing which
base mixture component returns the highest likelihood for a given
observation where each distribution comprising the GMM
represents a latent class conditional density [34]. The relationship
between latent states and observational data is illustrated in Fig. 3.

This example shows both the ’hidden’Markov temporal dynamics
and the GMM representation of the observation space. A Markov
model is a state based model that assumes the presently active
3Commons Attribution License (http://creativecommons.org/



Fig. 3 Illustration of relationship between latent states and observational
data that form HMM

Data (right-hand side) is modelled by a GMM (left-hand side). Shifts in dominant
mixture distributions indicate hidden state transitions
state has been generated solely by the previous n states it has been in,
where n is the model order. A HMM abstracts time series observation
data into a state based form and uses a first order Markov chain to
model the dynamics of the hidden state sequence [30].

The observations in Fig. 3 are current sensor data from a load
resistance offset fault within the ADL network; the GMM has two
base densities representing the distribution of the data. Regions in
the data where the current remains constant can be modelled by a
single mixture component which in turn can be mapped to certain
states within the hidden sequence.

At fault onset, current magnitude increases; the increase in current
corresponds to a change in the most likely mixture component
represented by the increased current value, resulting in a change of
state in the HMM.

Inference of the state evolution in a HMM for a given observation
period can be undertaken using a number of different methods [34].
A maximum a posteriori (MAP) estimation infers the most probable
state sequence in chain structured models; in the context of HMM,
the MAP estimation is known as Viterbi decoding [36]. The
Viterbi algorithm (VA) computes

s∗ = argmax p s1:T |x1:T
( )

s1:T
(3)

The VA enables the optimum underlying system state sequence, s*,
to be inferred across the observation period, x1:T, where all possible
state sequences, s1:T, are considered. In Fig. 3, it can be inferred from
the data that the ADL is in a nominal state until the point in time
where the change in current magnitude enhances the likelihood of
the network being in a faulted state.

An additional property of HMM concerns the probability of their
statistical parameters yielded through training. These are a measure
of how well a model has fitted the training examples presented to
it through its parameters. A framework that contains multiple
HMM permits the classification of candidate observation
4 This is an open access article published by the IET under the Cre
sequences by inferring the probability of the sequence being
generated by a given model. This measure can be used to select
the model which returns the highest likelihood and in doing so
allows it to be classified with a label associated with that model.

In this application, a series of HMM are trained based on different
input data sets, each representing different system conditions. New
data is classified by applying it to each of the models, with the
model returning highest probability of generating the data assumed
to be the closest match and therefore the most likely condition of
the system.
3 FCD system outline

The operation of the FCD system proposed by the authors, and
illustrated in Fig. 4, is split across two stages – Stage 1 classifies
the network condition, and, once the network condition has been
classified, Stage 2 diagnoses the severity of any fault that may
have occurred. In this section, an overview of FCD operation and
development is provided. This overview highlights the system’s
ability to differentiate between a number of EPS network
conditions and identify both critical and degraded modes of ADL
network operation.

3.1 System operation

3.1.1 Stage 1 – Fault classification: A framework of multiple
trained HMM corresponding to separate conditions within the
ADL network enables the classification of candidate system data.
A total of 15 conditions, described in Table 1, are modelled within
the framework. A decision on network state is made by primarily
calculating the log-likelihood [28] of the input data, given each
model’s trained statistical parameters; classification then involves
selecting the labelled model that returns the highest log-likelihood.

3.1.2 Stage 2 – Fault severity diagnosis: Stage 2 operates on
the basis that a fault has been classified from Stage 1 of the system;
hence, if a nominal state has been classified after Stage 1, there is no
requirement for the implementation of severity diagnosis. However,
in the event of a fault being classified, it is necessary to diagnose
fault severity to determine the impact the presence of the classified
fault has on the reliable operation of the UAV.

Calculating fault parameters enables the severity of any ADL fault
to be quantified. Fault parameter calculation algorithms (FPA) were
developed that use the models’ optimal state sequence, calculated
using the VA, to determine the parameters. The set of parameters
required for the quantification of fault severity is dependent on the
mode of fault that has been classified. Hence, three separate FPA’s
were developed corresponding to the three modes of fault (abrupt,
intermittent and incipient) within the ADL network, as outlined in
Table 1.

As an example of operation, if FC1 is classified after Stage 1, the
optimal state path for the particular HMM of this fault condition will
be calculated and then, considering FC1 relates to an abrupt fault
mode, the FPA for calculating parameters for an abrupt fault
would be initialised. The algorithms essentially utilise the optimal
state path sequence to detect points in time where the state of the
system changes. Deciphering points of state changes enables
parameters to be calculated.

After fault parameters have been calculated, the severity of the
fault can be determined. In the case of UAV operation,
information on the criticality of EPS faults occurring is necessary
to determine the impact the fault may have on vehicle and mission
reliability.

3.2 System development

3.2.1 Data preparation: Machine learning is critically dependent
on the quality and volume of training data and the selection of
features that are presented to the learning algorithms [28]. Training
a model on inappropriate data will result in an inadequate
IET Electr. Syst. Transp., pp. 1–9
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Fig. 4 Outline of two-stage FCD system applied to the ADL network
representation of the generalised behaviour of the modelled
condition, and produce a model that will perform poorly at the
inference stage. Extracting unique signatures for each condition is
integral to FCD system development, especially when attempting
to discriminate between a large set of network conditions.
Consequently, to attempt to provide each HMM with the best data
representation of condition behaviour, several processes were
undertaken to prepare the data.

Firstly, capturing the dependencies that existed within the
multivariate ADL data throughout certain conditions was
Table 1 Conditions modelled within the FCD system
There are 15 conditions in total – 1 nominal and 14 fault conditions. Note
that Sensor Stuck and Failed Off faults are akin to abrupt faults. Also, the
FPA utilised for each condition is detailed. For clarity, Abrupt fault mode
FPA is titled #I, Intermittent fault mode FPA is titled #II and incipient mode
FPA is titled #III.

Network conditions modelled Condition
#

FPA
#

no fault nominal 1 N/A
DC load faults DC load abrupt resistance

offset
FC1 I

DC load intermittent resistance
offset

FC2 II

DC load incipient resistance FC3 III
AC load faults AC load abrupt resistance

offset
FC4 I

AC load intermittent resistance
offset

FC5 II

AC load incipient resistance FC6 III
fan load failed off FC7 I

inverter faults inverter failed FC8 I
voltage sensor
faults

stuck FC9 I
intermittent FC10 II
incipient FC11 III

current sensor
faults

stuck FC12 I
intermittent FC13 II
incipient FC14 III
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necessary to eliminate any redundant information being used
during model training, and to reduce the dimension of the
observation space. This can be achieved through a simple analysis,
such as variable plotting, or through a more formalistic approach,
such as principal component analysis [37].

Also, in order to align to a notionally common scale, the data for
fault conditions was normalised. However, for nominal conditions,
normalisation would convert the data to the common scale and
any sensor noise would be undesirably magnified. Accordingly,
the absolute deviation of the nominal data was extracted to
maximise the constancy associated with nominal conditions.
De-noising of the data was also undertaken using wavelet analysis
[38]. These processes, being applied to a current sensor within the
ADL network during an intermittent fault and under nominal
conditions, are illustrated in Fig. 5.

As a result of the preparation, the data applied to each HMM for
model training were feature vectors describing sensor data for a
variety of sensors sensitive to the specific network condition being
modelled.

3.2.2 Model selection: Modelling the observation space of
HMM with a GMM captures non-stationary intervals through
changes in dominant mixture distribution and thus changes in
latent state. However, the degree to which non-stationary periods
are measured depends upon the number of mixtures that represent
the distribution because of the fact that some non-stationary
behaviour is absorbed into changes within the dominant mixture
component as opposed to changes between distributions.

Although increasing the number of states and mixture components
will implicitly capture a finer degree of non-stationary behaviour, the
computational complexity of the model will increase. This modelling
flexibility poses the problem of determining the cardinality of
parameters, for example, how many states to use and how many
mixture components will be present in the observation model. The
quantity of training data also has to be considered with respect to
learning the parameters of the models and whether the set of
5Commons Attribution License (http://creativecommons.org/



Fig. 5 Illustration of data preparation undertaken prior to model training

Raw data was de-noised using wavelet analysis. For data describing nominal conditions, preparation involved calculating the absolute deviation before model application; for fault
condition data, a normalisation process was applied
training data is sufficient to specify a set of parameters that suitably
model the condition.

When fitting HMM to data using the expectation maximisation
(EM) learning algorithm [39], increasing the cardinality of states
and mixture components will increase the likelihood of the trained
parameters. The problems associated with increasing the likelihood
of trained parameters are that models become over fitted to the
training examples presented to them. Over fitting [35] is a
phenomenon in which the models learn features pertinent only to
the training set, and which will therefore perform poorly at
inferring new, unseen data. A solution to overcome such problems
is to introduce terms in the model selection criteria that punish
model complexity, but still take into account the model fit.

One such technique that considers model likelihood but retains a
term to punish model complexity is Bayesian information criterion
(BIC), which is defined formally as

BIC(X , u) =
∑N
n=1

logP(xn|u)−
Nm

2
logN (4)

where X is the training data set, θ is the maximum likelihood estimate
of the model, N is the dimension of the training set and Nm is the
number of degrees of freedom (parameters) of the model.
Minimising the BIC value will optimise the number of parameters
in terms of both model fit and complexity. Consequently, for each
of the 15 modelled conditions within the ADL network, BIC was
used in determining model selection.

The relatively limited volumes of training data, particularly with
regards to fault conditions, meant the number of model parameters
considered was limited [28]. Accordingly, when developing the
HMM, BIC ratings for each of the models were calculated by
increasing the number of states from 2 through to 5 and training
files, describing each condition, from 1 through to 5. Table 2
shows optimal models for selected conditions, chosen by
minimising the model BIC. The log-likelihood details the degree
to which the parameters of the HMM describe the training files
presented, with a value closer to zero detailing a higher model fit.
The BIC considers all model elements, and determines if there is
Table 2 Optimal HMM parametrisation

Network condition
model #

Training
examples

States Log
likelihood

BIC

1 5 3 −2732.3 5526
FC2 2 4 −3346.8 6804
FC4 2 2 −1815.6 5704
FC6 3 3 −2831.7 3646

6 This is an open access article published by the IET under the Cre
the necessity to either increase or decrease cardinality. Table 2
highlights the state variability among selected models within the
framework, where some modelled conditions require a greater
number of states to achieve model optimality, compared with others.

3.2.3 Parameter calculation algorithm development:
Considering the FPAs are based around the determination of
optimal state sequence within HMMs, and that each condition
model has a variable number of states, there is a requirement to
establish how these states should be interpreted. The workings of
the FPAs assume that the initial state within the state sequence
represents the nominal network state. The fault parameters are
calculated on the basis that diversions from this initial state are
changes from a nominal to a fault state. This is illustrated in
Fig. 6, which shows current sensor data for an AC Load
Fig. 6 Example of optimal state sequence when ADL intermittent fault data
is applied to a four state intermittent fault HMM

IET Electr. Syst. Transp., pp. 1–9
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Table 3 Fault parameters required for determination of fault severity

FPA I –Abrupt mode
fault

FPA II-Intermittent mode
fault

FPA III –Incipient
mode fault

time of fault onset time of fault onset time of fault onset
power offset power offset drift gradient

average time in fault
state

average time not in fault
state
intermittent resistance fault and the associated optimal sequence
within the related four state HMM of that condition.

The state sequence begins in State 1, and, at fault onset, the state
sequence changes. Whilst in a fault condition, the state sequence
alters between States 3 and 4. However, when in a nominal
condition, the state sequence returns to State 1. The algorithms
utilise the times of state transitions to extract fault parameters from
the system data. The severity of any fault occurring can be
determined through the extraction of the parameters.

Table 3 outlines the parameters calculated by each of the three
FPA’s.

4 FCD system operational results

Operational testing validates the FCD systems ability to detect the
occurrence of, classify and diagnose the severity of ADL faults.
Testing was undertaken with the application of ADL data to the
FCD system. 129 test cases, separate to the training cases, were
applied – within each case, the types of fault present as well as
fault severity was labelled, thus enabling the accuracy of the
system to be measured.

4.1 Classification accuracy

The classification results of the system are outlined in Table 4. These
results show that the classification system was 95.3% accurate at
discriminating between the 15 network conditions. This equates to
six misclassifications out of the 129 test cases presented to the
system. Out of the six misclassifications, four of these are
attributed to the misclassification of incipient faults. In all six test
cases that were misclassified, the network was classified to be in a
nominal condition.

4.2 Fault severity diagnosis accuracy

The diagnostic results of the system are also presented in Table 4.
Severity diagnostic accuracy is based on the ability of the system
to accurately calculate the fault parameters with these parameters
determining the severity of the fault to the network – severity can
be either network critical or network degraded. Table 4 highlights
both the calculation accuracy of the fault parameters and the
accuracy of the diagnostic decision.
Table 4 FCD operational testing results

Fault location Fault mode # Tests Classification accuracy, % F

nominal N/A 20 100
DC loads abrupt 9 100

intermittent 8 87.5
incipient 7 85.7

AC loads abrupt 9 100
intermittent 8 100
incipient 8 87.5

fan failed off 2 100
inverter failed off 2 100
voltage sensors stuck 5 80

intermittent 5 100
incipient 4 75

current sensors stuck 14 100
intermittent 14 100
incipient 14 92.8
total 129 95.3

IET Electr. Syst. Transp., pp. 1–9
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Fault Parameters were deemed accurate if they were within ±5%
of the actual parameters. In the majority of fault test cases, the
calculation of parameters was accurate. For abrupt and intermittent
faults, the calculation accuracies were high. The main instance
where accuracy was not sufficiently high was when calculating
parameters for incipient faults, which, in some cases was as low as
64.28%. The relatively low value of 89.89% for parameter
calculation accuracy can mainly be accredited to the inaccuracies
of incipient parameter calculations.

The diagnostic decision accuracy in determining fault severity was
99%. Out of the 129 test cases, there was only one instance where the
severity of the fault was misdiagnosed.
4.3 Discussion

The test results validate that the FCD system can utilise system data
to classify and diagnose fault severity with high accuracy. During
fault instances where data was misclassified, the system was
classified into a nominal condition; hence, there was no
requirement to diagnose fault severity and the FCD system
concluded that no critical condition had manifested. Despite the
fact that the system had misclassified six fault instances, in five
cases, the faults that had developed were minimal, and the
network could indeed maintain reliable operation.

The majority of misclassified faults and inaccurately calculated
fault parameters were accredited to incipient fault conditions, with
the majority of inaccuracies concerning the time of fault onset as
opposed to the magnitude of drift gradient. This suggests that it is
necessary to increase the number of hidden states when modelling
incipient conditions because, particularly in cases where there is a
marginal drift from nominal behaviour in sensor readings, HMM
with higher state variances were not detecting shifts within the
data and hence fault onset. Examination of state sequence
evolution when fault data was applied to incipient fault models
showed that there was a delay between network fault onset and the
model inferring a change in network state. Increasing the number
of states would enhance sensitivity to slight changes in data, albeit
with a trade off with model complexity.

Consideration also has to be given to the volume of available
training data. A drawback of data driven multiple model
approaches is that, compared with cases involving nominal
condition data, there is significantly less data available describing
fault conditions. This lack of data can result in fault condition
models being over fitted with poor performance when inferring
new instances of the same condition. In the case study presented
in this paper, the BIC was used to optimise each HMM based on
various parameters, including the number of training cases
available. Test results have shown that the abrupt and intermittent
fault models accurately inferred test cases, even though some
models were trained using only two separate examples. The
incipient fault models however, were not as accurate despite being
provided with similar numbers of training examples. The solution
to improving the performance of incipient fault models by
ault parameter calculation accuracy, % Diagnostic decision accuracy, %

N/A 100
100 100
100 100
71.4 85.7
100 100
91.6 100
81.25 100
100 100
100 100
100 100
100 100
50 100
100 100
100 100
64.28 100
89.89 99
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increasing the number of hidden states is dependent on the number of
training cases available. Without more training examples, increasing
the number of hidden states will simply result in a model over fitted
to the select training examples. Such issues highlight that, while
increasing the volume of data will lead to a better generalisation
within all fault models, certain fault conditions are more
dependent on the quantity of training cases for accurate inference
of unseen data.

Overall, results have shown that the FCD system can detect and
classify a range of network faults as well as measure the impact
such faults will have on network reliability. There is a wide range
of distinct conditions within UAV EPS networks, and, it is
imperative that system dynamics are monitored and evaluated
throughout a mission cycle. The development of the proposed
FCD system using ADL data has shown that it has the ability to
determine and quantify complex system dynamics from network
data and that it has the potential to aid system monitoring and
reliability enhancement.
5 Future work

The work reported in this paper represents the initial steps towards
developing the FCD system based on HMM for application to
UAV EPS. Further development would comprise extending the
system for online application to EPS data. This expansion would
involve the appropriate partitioning, or windowing, of the EPS
data; windowed data covering a certain period of time would be
input to the FCD system. The system would classify the network
condition and, if required, diagnose the severity of any fault
present over the time period. Network status would be updated
when data covering the next windowed time period is input.

The system could also be updated to handle multiple network
faults. The inclusion of a threshold within the likelihood
classification framework would enable the detection of multiple
failures. Presently, there is significant discrepancy between the
likelihood of one fault model and the rest because the ADL data
only describes a single fault. In the event of multiple faults,
theoretically, the likelihood of multiple models will be similarly
high. A likelihood threshold would determine whether there is
enough evidence to suggest the presence of multiple faults.
6 Conclusions

The purpose of this paper was to outline a two stage HMM based
FCD system that would detect, classify and determine the impact
of EPS faults within UAV. The ability of the system to aid health
management through the detection of degraded and critical faults,
the discrimination between a number of fault types and locations,
and the determination of fault parameters and the risk their
occurrence poses to system reliability has been validated with
development of the system for NASA’s ADL network. Tests using
ADL data proved that the system can operate with high accuracy,
even with limited volumes of training data used throughout
development. Despite the relatively simple application described
within this paper, the system can be used as a framework to
progress and apply to increasingly elaborate networks and fault
conditions. Operationally there would be a requirement for data
acquisition, through multiple sensor deployment, within such
networks that would facilitate the FCD system to aid the
understanding of complex UAV EPS behavioural dynamics
throughout mission cycle, and enable support in enhancing both
vehicle and mission reliability.
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