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Abstract 
Detecting buildings in remotely sensed data plays an impor-
tant role for urban analysis and geographical information sys-
tems. This study proposes a hierarchical approach for extract-
ing buildings from very high resolution (9 cm GSD (Ground 
Sampling Distance)), multi-spectral aerial images and 
matched DSMs (Digital Surface Models). There are three steps 
in the proposed method: first, shadows are detected with a 
morphological index, and corrected for NDVI (Normalized Dif-
ference Vegetation Index) computation; second, the NDVI is in-
corporated using a top-hat reconstruction of the DSM to obtain 
the initial building mask; finally, a graph cut optimization 
based on modified superpixel segmentation is carried out to 
consolidate building segments with high probability and thus 
eliminates segments that have low probability to be buildings. 
Experiments were performed over the whole Vaihingen data-
set, covering 3.4 km2 with around 3000 buildings. The pro-
posed algorithm effectively extracted 94 percent of the build-
ings with 87 percent correctness. This demonstrates that the 
proposed method achieved satisfactory results over a large 
dataset and has the potential for many practical applications. 

Introduction
The identification and localization of buildings in an ur-
ban area is very important for planning, building analysis, 
automatic 3D reconstruction of building models and change 
detection (Qin and Gruen, 2014). The development of very 
high resolution (VHR) remote sensing images (Qin et al., 2013) 
creates a possible avenue to sense individual buildings in 
an urban scenario, e.g., Ikonos with 1-meter resolution, or 
Worldview with 0.5-meter resolution. Sensors with even 
higher resolution are in the planning stages (e.g., Geoeye-2 
and Worldview-3 with 0.3-meter resolution). However, 
this increasing level of detail does not necessarily facilitate 
building detection with an improved accuracy (Huang and 
Zhang, 2011). Indeed, more detailed image contents actually 
increase spectral ambiguities in remotely sensed images, such 
as symbol patterns on the road, and big vehicles. Therefore, 

researchers have devoted a lot of effort toward using multi-
source data and designing better detection strategies to 
increase the building detection rate. 

Multispectral images provide shadow information as 
primitives for building locations. Furthermore, shadow 
information are especially effective in single image based 
methods (Huang and Zhang, 2012; Ok, 2013; Ok et al., 2013). 
Meanwhile, NDVI data extracted from a multispectral image 
can be used as vegetation indicators to eliminate trees. Vector 
features such as parallel lines and corner junctions reveal 
the characteristics of rectangular buildings, which have been 
investigated and used to develop single-image based methods 
for building detection (Lin and Nevatia, 1998; Sirmacek and 
Unsalan, 2011; Sirmacek and Unsalan, 2010; Sirmaçek and 
Unsalan, 2009). 

Lidar (Light Detection and Ranging) point clouds provide 
height information for a ground scene and are used for build-
ing detection. By subtracting the DTM (Digital Terrain Model) 
from the DSM (Digital Surface Model), a nDSM (normalized 
DSM) can be computed to obtain off-terrain points for build-
ing detection (Weidner and Förstner, 1995). In addition, the 
multi-return characteristics of lidar provide useful informa-
tion to eliminate the vegetation for point clouds based meth-
ods (Ekhtari et al., 2008; Meng et al., 2009), to increase the 
accuracy of building detection. 

Both multispectral image and lidar point clouds have their 
advantages and deficiencies. Complex algorithms based on 
a single image usually have assumptions concerning build-
ing distribution and sometimes are only able to detect certain 
types of buildings. For example, methods based on feature 
point extraction from a single image are only able to detect 
isolated buildings with regular patterns, and methods relying 
on parallel lines are not able to detect dome roofs. As com-
pared to multi-spectral images, lidar point clouds provide ac-
curate height information, but less accurate boundaries. There 
are also null values for lidar point clouds due to occlusion and 
specular reflection from water surfaces on the roofs. Therefore, 
integration of both sources is a possible direction for improv-
ing building detection accuracy as well as robustness.

There has been a spate of integrated methods proposed in 
the literature. Rottensteiner et al. (2007) and Rottensteiner et 
al. (2005) proposed a supervised classification-based building 
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extraction framework: it fused features extracted from the 
nDSM and multispectral images such as strength and direct-
ness with the Dempster-Shafer algorithm (Shafer, 1976), 
with a final morphology operation performed to eliminate 
small segments. However, parameter tuning in the method 
is dependent on an estimation of wooded areas, and is not 
able to detect buildings smaller than 30 m2. Adopting this 
same supervised approach, Lu et al. (2006) fused a matched 
DSM, a NDVI of the multispectral image and modeled the edges 
as features and inserted this data into the Dempster-Shafer 
algorithm, and then the building class was taken as the final 
output. Nevertheless, this algorithm is strongly dependent on 
the features extracted in early processing stages, and missed 
buildings will not be recovered in the classification step.

Instead of extracting information from all over the image, 
Turlapaty et al. (2012) first obtained an initial test dataset 
by truncating a DSM by a threshold, and then fused image 
block-based features such as mean, variance, skewness, etc. 
into a SVM (Support Vector Machine) classifier to separate the 
building pixels from non-building pixels in the initial test 
data. This method can effectively reduce false positives, but it 
cannot handle ground scenes in high relief.

Meng et al., (2012) generated building candidates using 
a multi-directional ground filter on lidar data to obtain bare 
ground points, and then NDVI was employed to remove trees. 
Finally a supervised C4.5 decision tree analysis (Quinlan, 
1993) was performed to separate building pixels from non-
building pixels. However, about 2.55 percent of tree pixels 
were identified as buildings, which might have been due to 
the low NDVI values of vegetation under the shadow.

The aforementioned methods are mostly based on super-
vised classification. They aim to extract the primitives of each 
class in a fuzzy way, fusing different types of source data. How-
ever, inappropriate feature selection, underestimation of urban 
classes, and insufficient training samples affect the building 
detection results (Durrieu et al., 2007). Therefore, some re-
searchers have developed hierarchical approaches, which aim 
to exclude non-building area/pixels in a step-wise fashion.

Chen et al., (2012) proposed a hierarchical approach for 
building detection with a combination of nDSM and multi-
spectral images: initial building segments were generated by 
truncating both nDSM and NDVI sequentially, and final build-
ing masks were determined by a set of rules considering the 
region size and the spatial relation between trees and build-
ings. However, their method relied on the quality of the nDSM, 
which preferably uses an accurate DTM, unfortunately not 
generally available for many areas. Based on nDSM and NDVI, 
Grigillo et al. (2011) obtained the initial building mask in the 
same manner as (Chen et al., 2012), they eliminated vegeta-
tion under the shadows with low NDVI values by truncating 
areas with low homogeneity. This method works well when 
trees are isolated, but building boundaries are affected when 
surrounded by trees. Awrangjeb et al. (2010) proposed an 
iterative way to extend high probability to low probability 
building masks based on line primitives and the height in-
formation. Nevertheless, this method estimated a DTM as the 
approximate DSM, which failed to detect buildings with high 
variation in terrain relief.

Semantic information such as shadows can be included in 
hierarchical approaches. In single image based approaches, 
shadows provide an active clue for possible locations of the 
off-terrain objects (Ok, 2013; Ok et al., 2013). When height 
information is available, shadows hide the spectral signature 
of some trees, which results in false positives (identifies trees 
as buildings) (Grigillo et al., 2011). However, there are only a 
few algorithms that consider this problem.

In most of the hierarchical building detection methods, the 
initial building masks were obtained by step-wise exclusion 
of non-building pixels using NDVI and nDSM. However, there 

were still non-building pixels identified as buildings due to 
inappropriate thresholds or truncation rules, and the initial 
building mask need further refinement (Chen et al., 2012; Rot-
tensteiner et al., 2005). Most of the algorithms attributed the 
refinement to a morphology operator or region-size filter on 
the binary mask (Meng et al., 2012; Meng et al., 2009; Rotten-
steiner et al., 2005). Such methods are effective ways to clean 
the building mask, but can erroneously remove small build-
ings. Therefore, the refinement of the building mask must 
consider the original spectral and height information. 

The graph cuts algorithm (Vicente et al., 2008) is a power-
ful optimization tool for solving binary or multiple labeling 
problems in a connected graph. In this context, the refinement 
of building masks can be transformed to a binary problem, 
where building and non-building pixels/segments are re-
garded as nodes in connected graphs. It is possible to deploy 
height and spectral information as weighting constraints in 
the graph, thus achieving better performance.

Therefore, we propose a hierarchical method aiming to 
integrate the spectral and height information through a graph 
cut optimization framework for building detection. The 
proposed method will first generate an initial building mask 
hierarchically by considering the shadow problem and off-
terrain object extraction, and thus refine the initial mask with 
graph cut optimization. The rest of the sections are organized 
as follows: the next section presents the general methodologi-
cal consideration of how the proposed algorithm is going to 
tackle the aforementioned limits. The subsequent section 
presents the proposed building detection algorithm in detail. 
In the next subsequent section, two experiments with the 
Vaihingen dataset (Cramer, 2010) are presented, along with 
detailed analysis and discussion. The final section concludes 
the paper by discussing the pros and cons of the new method 
and further improvements that can be made. 

Overall Methodological Considerations
Due to some of the limitations discussed in the first sec-
tion, the proposed algorithm will do three things: (a) extract 
buildings under shadows while eliminating the ambiguities 
of vegetation found under the shadow area when possible, 
(b) extract building candidates without the use of a DTM, and 
(c) integrate the original height and spectral information for 
building mask refinement, so as to prevent small buildings 
from being excluded. Therefore, we accordingly proposed this 
algorithmic strategy as follows:

• For shadows in high resolution images, some still con-
tain weak spectral responses. Thus, we can still recover 
part of the information by stretching the histograms 
in the corresponding areas. Since the main purpose is 
to recover the NDVI under the shadow, we stretch the 
histogram of both the “Saturation” and “Lightness” 
channel of the HSL (Hue, Saturation, Lightness) color 
space: stretching the “Lightness” recovers the illumina-
tions and stretching the “Saturation” ensures that inter-
relation among each color bands.

• 2D grey level based morphology top-hat reconstruc-
tion is commonly used to identify the peak area of a 2D 
function. This is considered to be a typical feature of 
off-terrain objects in the DSM. By selecting an appropri-
ate radius in accordance with the DSM resolution, these 
top hats can be efficiently detected. To provide build-
ing-orientated, top-hat reconstruction, the NDVI can be 
embedded for truncating non-building top-hats.

• Small buildings normally have different color when 
compared to the surrounding roads/bare soils/grasses, 
thus spectral connectivity between the segments and 
the background (non-building pixels) can be used to 
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strengthen the potential building pixels/segments, and 
filter out possible non-building pixels/segments which 
have similar spectral response and height in relation to 
the surrounding environment. 

Hence, our proposed building detection algorithm has 
three steps: (a) shadow detection and auto-color equalization 
of the shadow areas, (b) Top-hat reconstruction of the DSM 
combining NDVI for initial building mask generation, and (c) 
Graph cut optimization based on superpixel segmentation for 
initial building mask refinement, with height filtering as post-
processing. The proposed workflow is shown in Figure 1; 
each step will be introduced in detail in the following section.        

The Proposed Building Detection Algorithm
Shadow Detection and Auto-color Correction

Shadow Detection
The shadow is regarded as a common feature class in remote 
sensing images of an urban scenario. On one hand, it is a solid 
evidence of the off-terrain objects, but on the other hand, 
objects in the shadow area (Huang et al., 2013), such as build-
ings and vegetation, can be occluded and missed. Therefore, 
in the methods combining multispectral and height informa-
tion, the problem of missed vegetation in the shadows occurs 
frequently: trees in the shadow area are identified as off-ter-
rain candidates, and their NDVI values are not strong enough 
for them to be identified and eliminated. Therefore, our major 
goal is to recover information from under the shadow, in 
order to compute the NDVI more comprehensively.

The most prominent indicator of a shadow is low lumi-
nance. Based on this fact, many shadow detection approaches 
(Chen et al., 2007; Dare, 2005; Huang and Zhang, 2012; Liu 
et al., 2011; Tsai, 2006) have been proposed. In this study, we 
adopt an effective morphology shadow index (MSI) similar to 
that proposed by Huang and Zhang (Huang and Zhang, 2012), 
but with modifications for computational efficiency and effec-
tiveness. It adopts morphology top-hat reconstruction based 

on the brightness image (computed by taking the maximal 
spectral response of each multispectral channel), to detect 
dark blobs as the shadow areas. It is particularly effective in 
urban areas, where the scale of the shadows is attributed to 
the buildings and trees, which can be assumed to be within 
a certain range. Different from MSI proposed by Huang and 
Zhang (2012), which adopts multi-scale structural elements 
for morphology reconstruction, we use a fixed radius of the 
multi-directional lines and combine them in a single structur-
al element, to achieve both computational efficiency and accu-
rate results. Moreover, instead of performing shadow detection 
on the brightness image, we perform shadow detection on the 
first channel of a PCA (Principal Component Analysis) trans-
formed image (P1 image), since it not only has high intra-pixel 
variance, but also high inter-pixel variance (Jolliffe, 2005). 

To determine the shadow mask on the multispectral image, 
it is critical to set the threshold for the shadow index, and this 
varies with the image. In urban scenes with many off-terrain 
objects, shadow and non-shadow areas are the major domain of 
luminance. Therefore, we adopt unsupervised K-mean clus-
tering to separate the P1 image into two clusters, and take the 
mean of the centroid values of the two clusters as the threshold.  

Auto-Color Correction 
As described in the previous section, the main aim of shadow 
correction is to compute the NDVI more completely. Due to the 
local micro-environment in an urban scene, the illumination 
varies at different locations. Therefore, the correction needs to 
be done in each local shadow to maximize the intra-variance of 
the color. The per-pixel shadow mask is segmented using a fast 
segmentation with 4-neighborhood connectivity (Davies, 2004), 
and the auto-color correction is performed for each segment. 

To maintain the relative relations of the multispectral 
bands, we treat the near infrared band, red band, and green 
band as the normal R,G,B band and transform it in to HSL col-
or space (Joblove and Greenberg, 1978), and then a histogram 
stretching (Awrangjeb et al.) is performed on the lightness and 
saturation for each shadow object:

Figure 1. The work flow of the proposed algorithm.
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where S and L stand for “Saturation” and “Lightness,” 
respectively. After HS (histogram stretching), the image is 
transformed back to RGB space from the HSL space. The ad-
vantage of HS on saturation and lightness is that it enhances 
the luminance of the shadow area without changing the color 
information of the original band. Figure 2 shows the detected 
shadow and the shadow-corrected images. In Figure 2d and 
2e, it could be seen clearly that shadow area on the left side of 
the building is recovered, with trees and grasses more visible 
in this area. The NDVI of the shadow corrected area in Figure 
2e shows that the vegetation under this area reveals much 
higher response than that in Figure 2d, leading to more com-
plete identification of the vegetation. It should be noted that 
not only shadow areas covering vegetation can be recovered, 
but that the shadow on the buildings are corrected as well, 
which provides more information for the following super-
pixel segmentation. Thus, the NDVI can be computed based on 
the shadow-corrected multispectral image.

Top-hat Reconstruction on DSM Combining NDVI
Mathematical Morphology is recognized as a powerful tool for 
digital image processing, especially for binary/grey level shape 
analysis (Soille, 2007). Opening and closing operations infer 
the spatial relations in the image space and provides useful 
information about the local area. Binary morphology operators 
have been extended to grey level images (Vincent, 1993), and 
one of the most useful components is morphology reconstruc-
tion, where a mask image J can be reconstructed as BJI from 
the marker image I by finding the peaks of I which are marked 

by J. By subtracting BJI from the image mask J, the peaks of J 
overlaying on I can be extracted, namely top-hat extraction. 
The marker image I is usually generated by grey level erosion 
through a pre-defined structural element e; therefore a top-hat 
reconstruction Te

J of a grey level image J is computed as follows:

 
T J Bj

e
J j e= − ( )ε ,  

(2)

where ε(j,e) is the grey level morphology erosion, which is 
defined as follows:

 ε(j,e)(i,j) = min{J(a,b)|, e(a – i, b – j) = 1} (3)

Having assumed that the buildings dominate the bright region 
of remote sensing images, Huang and Zhang (2011) adopted 
top-hat reconstruction for the brightness of images for build-
ing detection. However, this method cannot handle dark 
roofs and bright trees. Therefore, we adopt the same concept 
of top-hat reconstruction on the DSM. The structural element 
is formed by combining multi-direction lines with a fixed 
radius, which is more efficient than “disk-shaped” structural 
element used in the previous method. The radius of the struc-
tural element is estimated as the radius of the circumcircle of 
the largest buildings in the scene, which is dependent on the 
resolution of the data source. An increasing radius beyond the 
circumcircle of the largest buildings will not bring more cor-
rect detection, but more computational time.

Since the extracted top-hats from the DSM contain the off-
terrain segments, a common strategy is to impose NDVI con-
straints on the extracted results to eliminate the vegetation. 
However, one deficiency of top-hat reconstruction is that it 

(a) (b) (c)

(d) (e)
Figure 2. Shadow detection and object-wise auto-color correction: (a) original image, (b) detected shadow objects with grey color cod-
ing, (c) color-corrected image, (d) enlarged view of the a shadow area in original image in the white box and the corresponding ndvi, 
and (e) enlarged view of the color-corrected image in the white box and the corresponding ndvi.
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cannot detect buildings that have at least one side connected 
to a slope or to trees with similar height. Therefore, to avoid 
such cases, we propose that the top-hat reconstruction should 
be combined with NDVI truncation during the calculation, in-
stead of a post truncation on the top-hats. Thus we implement 
the NDVI truncation into the erosion process as follows:

ε J e i j
J a b e a i b j i j T

J i j

h, ,
min , , , , ,

,
( )( ) =

( ) − −( ) ={( ) ( ) <1 if NDVI

(( )





 otherwise.
 

(4)

where Th is the NDVI threshold (in our case it is 0.2), and then 
the top-hat reconstruction combined with NDVI can be com-
puted by replacing  with: 

 'Te
J = J – BJ~ε(j,e) (5)

Figure 3 shows a comparison between a post truncation 
on the extracted top-hat and the NDVI truncation during the 
extraction process. The urban scene shown in Figure 3 is situ-
ated in a sloped area, with dense vegetation between build-
ings and terrain. It can be seen in the white box marked in 
Figure 3, a post-truncation misses buildings due to the dense 
canopy, while the NDVI truncation during the reconstruction 
process extracts more top-hats from buildings. It can also 
been seen that Figure3b shows more non-building structures, 
which are caused by isolated grounds surrounded by trun-
cated trees. These non-buildings structures are highly aniso-
metric and can be easily removed by subsequent building 
mask refinement. Figure 3c shows the used multi-direction 
structural element, and the advantage of this is that it requires 
less computation time than normal disk-shaped element and 
it maintains highly similar results as those of the normal disk-
shaped structural elements.

Graph Cut Optimization Based on the Superpixel Segmentation
The top-hat reconstruction of DSM combined with the NDVI 
provides the coarse height of each pixel relative to the ground, 
and with a given threshold (we use 1-meter in our experi-
ments), the initial binary building mask can be obtained.

There are still many non-building pixels in the initial mask, 
e.g., low terrain reliefs (such as low-rise parking lots) on the 
ground, isolated tree pixels that failed to be truncated by the 
NDVI, and remaining tree segments hidden under the shadows 
which were not corrected. To eliminate these non-building 
segments, the most popular methods are morphology opening/

closing operations and a region-size filter. Morphology open-
ing and closing operations aim to eliminate isolated segments, 
and in the meantime fill up missing segments inside a region. 
A region-size filter aims to delete isolated pixels that are small-
er than a given region size. However, both of the two methods 
only perform the operation on the binary mask of the building 
candidates, and can erroneously eliminate small buildings. 

It should be noted that the urban objects are strongly 
related to their surrounding environment, and color and 
height difference between these objects are good indicators to 
separate them. For example, low terrain reliefs share the same 
spectral response with the surrounding ground, as well as 
similar heights; the remaining tree pixels have similar colors 
and heights as the surrounding tree pixels which have been 
eliminated in previous steps. Small isolated buildings usually 
have distinguishable colors and heights separating them from 
the surrounding grasses and ground. This context forms strong 
primitives for the final optimization of the building mask.

Graph Cut Optimization
Graph cut optimization (Vicente et al., 2008) can be adopted 
to elaborate the connectivity contexts: pixels that have similar 
color and height must belong to the same categories (in this 
case, it is either building pixels or non-building pixels). The 
classic graph cuts algorithm tries to minimize a cost function 
in the following form:

 C(X) = ∑p∈v Dp(xp) + α∑(pq)∈E Upq(xp, xq) (6)

where (V, E) is a general graph; V is the vertex set, and E is 
the edge set. Dp(xp) is the node cost, and xp = 0 in the binary 
case. Upq(xp, xq) is the smooth term that defines the neighbor-
hood relationship for each edge. A large value for Upq(xp, xq) 
means a high penalty for the value of xp and xq, and vice 
versa; α controls the weight of the smooth term in the overall 
cost C(X). The minimization of the cost function can be then 
transformed to a max-flow/min-cut problem (Boykov and 
Kolmogorov, 2004). 

In our context, we define xp = 1 as being a building pixel/
segment, and xp = 0 as a non-building pixel/segment. Graph 
cut optimization solves  for each node to minimize the total 
cost C(X). D(xp) is regarded as the cost of a building pixel/
non-building pixel, and Upq(xp, xq) can be defined according to 
the color and height difference: 

(a) (b) (c)
Figure 3. (a) Post-ndvi truncation on the top-hats and the used structural element, (b) top-hats reconstruction ndvi truncation during 
the top-hat reconstruction, and (c) multi-direction linear structural element with 20 directions.

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING September  2014  41



 

U x x
I I h h ifx x

otherwise
pq p q

p q p q p q,
,

,
( ) =

− −( ) − − − =





1 1

0

β β

 

(7)

where I and h indicates the color and the height for the node, 
and both of them are normalized to [0,1] (the color is normal-
ized for each individual channel). β is a weight parameter 
controlling the contribution of the height and spectral term, 
and β∈[0,1]. In our experiment, we set β = 0.5 to share the 
contribution of spectral and height term equally. Graph cuts 
can be performed in a per-pixel fashion, where each pixel 
represents a node, and the 4-connectivity/8-connectivity 
relationships can be used to build up the edges of the graph. 
However, problems arise for the per-pixel graph cuts:

• It is difficult to find a good indicator to describe the 
probability of a pixel being a building pixel with 
unsupervised approaches, since there is no a priori 
information of the building colors. If using height as 
the indicator, the short buildings/low buildings will be 
eliminated due to low probability. The most reliable 
information is the initial building mask, thus the prob-
ability is either 0 or 1.

• An image/DSM grid can easily go up to tens of thou-
sands of megapixels, and therefore the computational 
complexity will be tremendous for the graph-based 
algorithms.

• A per-pixel operator can be easily affected by noise, 
which may result in irregular building boundaries.

Graph Cuts on Modified Superpixel Segmentation
To address the problems stemming from pixel-based graph 
cuts, we perform graph cut optimization on the superpixel 
segments (Achanta et al., 2012). This has several advantages: 
The initial cost can be computed by analyzing the statistics 
from the initial building mask inside the superpixels, to pro-
duce a more robust probability measurement; thus segments 
are more robust to noise, and follow the image boundary well; 
it is more efficient to solve the graph cuts problem in seg-
ments than in a per-pixel fashion. 

Superpixel segmentation is an image over-segmentation 
technique that groups connected pixels with similar color. It 
adopts a K-mean clustering method over local regions of ini-
tially well-distributed seed points. It iteratively groups pixels 
with the Euclidean distance of the 5D vector constructed by R, 
G, B components and 2D geometric positioning in the image 
space (pixel position):

 
G I I x xS k i

M
S k i= − + −

 
(8)

where Ik and Ii are the color (in our case, we use the CIELAB 
color space) of the kth seeds and pixels in its local region, and 
xk and xi represent the respective image coordinates. M and S 
controls the compactness of the resulting superpixels. A small 
M/S value results in less compact but more boundary-aware 
superpixels, and vice versa.

To obtain more meaningful segments, we incorporate the 
height information for superpixel segmentation as an addi-
tional channel:

 
G I I x x h hS k i

M
S k i k i= − + − + −( )

 
(9)

where h indicates the corresponding height of the pixel, and it 
is scaled to the same order of magnitude as the color channels. 
One essential parameter is the size S of the superpixels, used 
to determine the number of initial seeds N. The number of su-
perpixels can be estimated as (ImageWidth × ImageHeight/S), 

which needs to be adjusted according to the image resolution. 
Thus, S should be small enough to cover small buildings and 
large enough for efficient computation. After obtaining the 
superpixels, we compute their connectivity based on neigh-
borhood relations. For each superpixel, we compute its color 
and height by averaging all the pixels inside it. 

For the per-pixel graph cuts, it is difficult to define the 
probability of being building pixels. However with the super-
pixel segments, we can compute the probability of a super-
pixel d P(a) directly from the initial building mask :

 P(d) = Meant∈d (T(t)) (10)

where T(t) is either 0 or 1, and P(d) is computed by calculat-
ing the percentage of the building pixels in a superpixel d. 
Therefore, we can compute the initial cost D(xp) of each node 
p in Equation 6 as:

 

D x P p

D x P p

p

p
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and the smooth term Upq(xp,xq) can be computed according to 
Equation 7. Figure 4 shows the graph cuts results based on 
the superpixel segments. 

Graph cut optimization eliminates most of the non-build-
ing segments, including the small tree segments, low terrain 
reliefs and small segments on the ground. However, some 
large shadows attached to buildings might be wrongly identi-
fied as part of the buildings, because these shadows failed to 
be corrected due to very weak spectral response, and these 
areas are either low terrain reliefs or trees.  

Therefore, to eliminate these wrongly identified areas 
without affecting shadow areas covering the roofs, we adopt 
a height filter on these shadows: we use a fast region-growing 
method to segment the resulting building masks, and compare 
it with the detected shadow area in the first step. The average 
heights of the shadow areas are then compared to their adja-
cent building segments: if the difference is larger than a given 
threshold (e.g., 10 meters), the shadow areas in the building 
segment will be eliminated. 

Unlike morphology/region-size filtering methods, which 
perform a pure operation on the binary mask of the building 
candidates graph cut optimization explores the connectiv-
ity between the building candidates and non-building pixels 
with their spectral and height similarity. It can be seen in 
Figure 4f that very small buildings are kept, while larger non-
building candidates are erased.

Experiment and Discussion
An experiment was conducted on the Vaihingen test dataset, 
which was captured over Vaihingen in Germany (Cramer, 
2010) with aerial camera. This dataset contains different 
scenarios: inner city, high rises, and residential areas. The 
DSM and orthophoto were generated by INPHO 5.3 software. 
In this section, we first evaluate the proposed algorithm with 
the three test sites by comparing the extracted buildings with 
the reference data, and then compare the whole dataset with 
the manually sketched building masks on the orthophoto. 
The performance of the proposed algorithm is measured with 
the following three metrics (Rottensteiner et al., 2012) for the 
three test datasets, which were computed as follows for (1) 
Completeness, (2) Correctness, and (3) Kappa coefficient (KC):

 1. Completeness = TP / (TP + FN)
 2.  Correctness = TP / (TP + FP)
      3. KC = , M = (PD × PG + ND × NG)/(Npix × Npix) (12)
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where TP, FP, FN are true positive, false positive and false 
negative, respectively. Npix denotes the number of pixels in 
the area of interest, and PD, PG, ND, NG are the number of 
detected positives, number of positives for the reference data, 
number of negatives detected, and number of negatives for the 
reference data, respectively. 

Experiment 1-Vaihingen Test Sites 
The three test areas (Figure 5a, 5b, and 5c) consist of different 
urban scenes. Since the proposed algorithm is a pixel-based 
approach, therefore the evaluation is conducted in the pixel 
domain. The building detection results of the proposed algo-
rithm are shown in Figure5d, 5e, and 5f).

Table 1 shows the statistical results for the three datasets. 
According to (Mayer et al., 2006), a building detection system 
should have completeness value larger than 70 percent, and 
a correctness value larger than 85 percent. Our results on 
this dataset fulfilled this requirement, 90.4 percent and 91.67 
percent, respectively. It can be seen that there are still some 
omission errors on results of the test dataset, which are main-
ly caused by vegetation on the roofs, as well as the matching 
errors. We compared the results of the proposed approach 
with the results published on the ISPRS website (ISPRS, 2013), 
and the proposed method yields state-of-the-art results.

Experiment 2 - The Whole Vaihingen Dataset
An evaluation of the test dataset is a good way to validate 
algorithms, but appraisal of the robustness and practicability 
of a method relies on its performance on large dataset. For 
example, there are no dome shaped roofs in the test areas, and 
the terrains of the three test areas are relatively flat. Therefore, 
we tested the proposed algorithm on the whole dataset (Figure 
6a), which covers approximately 3.4 km2 with 20,250 × 21,300 
pixels in the orthophoto, containing over 3,000 buildings. The 
computation was made by dividing the whole dataset into 
small tiles, with the same set of parameters adopted for each 
tile. It can be seen in Figure 6b that the whole area varies in 

height, there are some buildings sitting on a slope, and irregu-
lar shaped buildings and round buildings can also be seen in 
the whole dataset. Figure 6c illustrates the extraction results 
of the whole dataset, demonstrating that our algorithm can ef-
fectively detect these irregularly shaped buildings, as well as 
buildings located on slopes. By a comparison with the manu-
ally sketched reference, the proposed algorithm achieved 94.2 
percent completeness and 87.5 percent correctness over the 
whole scene, and this demonstrates its robustness and practi-
cal potential. Most of the errors come from deep slopes, where 
top-hat reconstruction fails to extract the building patches, 
and some of the errors happen on building roofs under vegeta-
tion, which are eliminated by NDVI truncation.

Parameter Analysis 
There are several tunable parameters in the proposed algo-
rithm: the truncation height Thei for generating the initial mask; 
the radius r of the morphology top-hat operator; cell size S 
(pixels) of the superpixel segmentation. Normally, the con-
nectivity weight α of the graph cuts should be adjusted for dif-
ferent scenarios, due to the scale of different initial cost. Since 
the initial cost is computed from the initial binary mask, there 
is less variation in the initial values than normal cases. So α is 
fixed as 0.5 in our algorithm for all the experiments. 

Thei should be small enough to keep short buildings, but 
large enough to get rid of possible disturbances. In our experi-
ments, we set Thei as 1-meter for the truncating threshold. For 

(a) (b) (c)

(d) (e) (f)
Figure 4. Graph cut optimization for the building mask refinement: (a) initial building mask, (b) superpixel over-segmentation, (c) 
initial cost, (d) Graph cut optimization, (e) height filter, and (f) detected buildings.

Table 1. building deTecTion ResulT of The ThRee TesT aReas

Test dataset Completeness Correctness KC

1  0.9027 0.9126 0.8442

2 0.9407 0.9033 0.9044

3 0.8846 0.9277 0.8663

Overall 0.9039 0.9166 0.8746
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steep areas, it should be small to capture small top-hats (e.g., 
0.5-meter), and relatively large for the flat areas (e.g., 2-meters).

As described in the previous section, r should be set as 
the approximate value of the largest building radius, which is 
directly dependent on the image resolution. When r becomes 
larger, the computational load will increase. Figure 7a shows 
the influence of r on completeness, correctness, and kappa coef-
ficient. It can be seen that the resulting KC is very low when r = 
50, and it becomes stable from r = 100. This is mainly because 
50 is a smaller than the building scale, which fails to detect top-
hats from large buildings. There are slight drops of KC when r 
changes towards 500, but these drops are not significant. There-
fore, r is relatively robust for the proposed algorithm.

Similar to r, the cell size of superpixel segmentation is also 
dependent on the resolution of the image. S represents the 
granularity of the superpixel. Figure 7b shows the relation-
ship between S and the final results. We can see that  plays 
an important role in the final result. As S increases from 300, 
the KC gradually decreases, but correctness remains relatively 
stable. This means that increasing granularity will not cause 
more false positives, but rather reduce the true positives. 

Figure 7c shows the impact of the spectral and height 
terms; we fix the other parameters with β varying from 0 to 1. 
When β = 0, the connectivity of superpixels considers spectral 
information only, while it considers the height information 
with β = 1. It can be seen from the Figure 7c that the peak of 
KC is obtained when β = 0.7, while in general, the KC is rela-
tively stable with the change of β. 

Computational Complexity 
The computation process of the proposed method is com-
prised of three major components: (a) morphology top-hat 
reconstruction, (b) superpixel segmentation, and (c) graph-cut 
optimization. For other computations such as NDVI computa-
tion and height-filtering, they are very fast (less than a second 
for a 5,000 × 5,000 pixel images) since each pixel only needs 
to be operated for one time. 

The most time-consuming part is the morphology top-hat 
reconstruction, since it requires a iterative solution. With a 
fast hybrid algorithm as described in (Vincent, 1993), one 
could achieve the fastest performance. In our experiment, the 
top-hat reconstruction of a 5,000 × 5,000 pixel image usually 
takes about 30 seconds with an Intel Xeron® Processor with 
3.10 GHz. The top-hat reconstruction should be computed for 
two times (one is for the initial building mask generation, and 
the other one is for the MSI computation). 

As described in Achanta et al. (2012), the complexity of 
the superpixel segmentation is practically  with respect to 
the number of pixels, and in our experiment, it usually takes 
about 40 seconds to segment an 5,000 × 5,000 pixel color im-
age with 20,000 superpixels. 

The graph cut algorithm has a low-order polynomial com-
plexity, and the computation time will increase dramatically 
with increasing number nodes. In our experiments, the nodes 
are referred to the superpixels, the number of which is much 
less than the number of pixels. It only takes around four sec-
onds for a graph containing 20,000 nodes. 

(a) (b) (c)

(d) (e) (f)
Figure 5. The building detection results of the proposed algorithm: (a, b, c) three test areas in the ispRs benchmark, and (d, e, f) the 
detection results. TP: True positive; FP: False Positive; FN: False Negative. The reader may refer to (Rottensteiner et al., 2013) for the 
state-of-the-art results.
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(a)

(b)

(c)

Figure 6. Building detection on the whole Vaihingen dataset: (a) The orthophoto, (b) the matched dsm, and (c) the detection result.

(a) (b)

(c)
Figure 7. The effect of the parameters of the proposed method: (a) the influence of r, (b) the influence of S and (c) the influence of β.
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Therefore, the computation time of the proposed methods 
takes around two minutes for a 5,000 × 5,000 pixel image, 
which could meet the requirements of most of the applica-
tions and is easy to be applied with large datasets.

Conclusions
The current trend in building detection combines the mul-
tispectral and height information to achieve more accurate 
results. However, most of these algorithms do not make the full 
use of the information concerning shadow areas. Especially in 
the final separation of building and non-building pixels in mul-
tispectral images, few algorithms make use of the connectivity 
between the building candidates and the non-buildings pixels. 
This study proposed a hierarchical building detection method 
that aims to make full use of the information about the color, 
height, and the connectivity of urban segments in the whole im-
age. The contribution of this paper lies in the following aspects:

 1. An object-based shadow correction scheme was 
proposed to recover information from the shadows to 
compute the NDVI more comprehensively.

 2. A morphology top-hat reconstruction of a DSM com-
bined with a NDVI scheme was adopted to extract the 
initial building mask, instead of requiring external DTM 
for nDSM computation.

 3. A graph cut algorithm based on modified superpixel 
segmentation was adopted to fuse the height and 
multispectral information from DSM and multispectral 
images. This approach takes into account the connec-
tivity of superpixel segments found all over the image 
to effectively eliminate non-building segments and re-
tains small buildings that may be erased by traditional 
morphology/region-size filtering methods. 

A comparative study was performed on bench mark data. 
The experimental results from the proposed method achieved 
a state-of-the-art level of performance for accuracy and preci-
sion. An experiment was performed on the whole Vaihingen 
dataset which contains over 3,000 buildings varying in shape 
and size. The proposed algorithm achieved 94.2 percent com-
pleteness, 87 percent correctness, with a KC of 0.898, reveal-
ing the practical potential of the proposed algorithm.

This study has provided an automatic workflow for build-
ing extraction. It can effectively extract 94 percent of the 
buildings found in a typical urban environment, but there are 
also several points that need to be improved in the future:

 1. Since the proposed method relies purely on the 
DSM and the generated orthophoto, extracted build-
ing boundaries are dependent on the quality of the 
orthophoto and the DSM. Therefore, better matching 
algorithms with higher quality around the edges are 
planned. In addition, better lidar sensors that produce 
point clouds with clearer edges are expected and will 
be included for better results.

 2. The extraction of the initial mask of a building is 
based on the top-hat morphology reconstruction. One 
deficiency in top-hat reconstructions is that it cannot 
handle buildings that are connected to slopes. There-
fore, top-hat reconstruction considering buildings in 
sloped areas is also planned as a future improvement 
in the proposed algorithm. Moreover, more automated 
parameter tuning for truncating thresholds will be 
investigated to improve the robustness of the proposed 
method for more challenging datasets.
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