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Abstract

The target of this study is to observe some of the algebraic structures of a single valued neutrosophic

set. So, we introduce the concept of a neutrosophic submodule of a given classical module and investigate

some of the crucial properties and characterizations of the proposed concept.
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1 Introduction

Neutrosopy is a branch of philosophy introduced by Smarandache in 1980. It is the basis of neutrosophic

logic, neutrosophic probability, neutrosophic set and neutrosophic statistics. While neutrosophic set general-

izes the fuzzy set, neutrosophic probability generalizes the classical and imprecise probability, neutrosophic

statistics generalizes the classical and imprecise statistics, neutrosophic logic however generalizes fuzzy logic,

intuitionistic logic, Boolean logic, multi-valued logic, paraconsistent logic and dialetheism. In the neutro-

sophic logic, each proposition is estimated to have the percentage of truth in a subset T , the percentage

of indeterminacy in a subset I, and the percentage of falsity in a subset F. The use of neutrosophic the-

ory becomes inevitable when a situation involving indeterminacy is to be modeled since fuzzy set theory

is limited to modeling a situation involving uncertainty. From scientific and engineering point of view, the

definition of neutrosophic set was specified by Wang et al.[11] which is called a single valued neutrosophic

set. The single valued neutrosophic set is a generalization of classical set, fuzzy set, intuitionistic fuzzy set

and paraconsistent set etc.

The introduction of neutrosophic theory has led to the establishment of the concept of neutrosophic algebraic

structures. Vasantha Kandasamy and Florentin Smarandache [6] for the first time introduced the concept

of algebraic structures which has caused a paradigm shift in the study of algebraic structures. Single valued

neutrosophic set is also applied to algebraic and topological structures (see [1, 2, 3, 7, 8, 9]). Çetkin and Aygün

[4] proposed the definitions of neutrosophic subgroups [3] and neutrosophic subrings [4] of a given classical

group and classical ring, respectively. In this paper, as a continuation of the studies [3] and [4], we present

the concept of neutrosophic submodules and also we investigate crucial properties and characterizations of

the proposed concept.

∗Corresponding author.

E-mail address: vcetkin@gmail.com
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2 Preliminaries

In this chapter, we give some preliminaries about single valued neutrosophic sets and set operations, which

will be called neutrosophic sets, for simplicity.

Definition 2.1 [10] A neutrosophic set A on the universe of X is defined as A = {< x, tA(x), iA(x), fA(x) >

, x ∈ X} where tA, iA, fA : X →]−0, 1+[ and −0 ≤ tA(x) + iA(x) + fA(x) ≤ 3+.

From philosophical point of view, the neutrosophic set takes the value from real standard or non standard

subsets of ]−0, 1+[. But in real life applications in scientific and engineering problems it is difficult to use

neutrosophic set with value from real standard or non-standard subset of ]−0, 1+[. Hence throughout this

work, the following specified definition of a neutrosophic set known as single valued neutrosophic set is

considered.

Definition 2.2[11] Let X be a space of points (objects), with a generic element in X denoted by x. A single

valued neutrosophic set (SVNS) A on X is characterized by truth-membership function tA, indeterminacy-

membership function iA and falsity-membership function fA. For each point x in X, tA(x), iA(x), fA(x) ∈
[0, 1].

A neutrosophic set A can be written as

A =

n∑
i=1

< t(xi), i(xi), f(xi) > /xi, xi ∈ X.

Example 2.3[11] Assume that X = {x1, x2, x3}, x1 is capability, x2 is trustworthiness and x3 is price. The

values of x1, x2 and x3 are in [0, 1]. They are obtained from the questionnaire of some domain experts, their

option could be a degree of ”good service”, a degree of indeterminacy and a degree of ”poor service”. A is

a single valued neutrosophic set of X defined by

A =< 0.3, 0.4, 0.5 > /x1+ < 0.5, 0.2, 0.3 > /x2+ < 0.7, 0.2, 0.2 > /x3.

Since the membership functions tA, iA, fA are defined from X into the unit interval [0, 1] as tA, iA, fA : X →
[0, 1], a (single valued) neutrosophic set A will be denoted by a mapping defined as A : X → [0, 1]×[0, 1]×[0, 1]

and A(x) = (tA(x), iA(x), fA(x)), for simplicity.

Definition 2.4 [8, 11] Let A and B be two neutrosophic sets on X. Then

(1) A is contained in B, denoted as A ⊆ B, if and only if A(x) ≤ B(x). This means that tA(x) ≤
tB(x), iA(x) ≤ iB(x) and fA(x) ≥ fB(x). Two sets A and B is called equal, i.e., A = B iff A ⊆ B and

B ⊆ A.

(2) the union of A and B is denoted by C = A ∪ B and defined as C(x) = A(x) ∨ B(x) where

A(x) ∨ B(x) = (tA(x) ∨ tB(x), iA(x) ∨ iB(x), fA(x) ∧ fB(x)), for each x ∈ X. This means that tC(x) =

max{tA(x), tB(x)}, iC(x) = max{iA(x), iB(x)} and fC(x) = min{fA(x), fB(x)}.

(3) the intersection of A and B is denoted by C = A ∩ B and defined as C(x) = A(x) ∧ B(x) where

A(x) ∧ B(x) = (tA(x) ∧ tB(x), iA(x) ∧ iB(x), fA(x) ∨ fB(x)), for each x ∈ X. This means that tC(x) =

min{tA(x), tB(x)}, iC(x) = min{iA(x), iB(x)} and fC(x) = max{fA(x), fB(x)}.

(4) the complement of A is denoted by Ac and defined as Ac(x) = (fA(x), 1− iA(x), tA(x)), for each x ∈ X.

Here (Ac)c = A.
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Proposition 2.5[11] Let A,B and C be the neutrosophic sets on the common universeX. Then the following

properties are valid.

(1) A ∪B = B ∪A,A ∩B = B ∩A.

(2) A ∪ (B ∪ C) = (A ∪B) ∪ C,A ∩ (B ∩ C) = (A ∩B) ∩ C.

(3) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C), A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

(4) A ∩ ∅̃ = ∅̃, A ∪ ∅̃ = A,A ∪ X̃ = X̃, A ∩ X̃ = A, where t∅̃ = i∅̃ = 0, f∅̃ = 1 and tX̃ = iX̃ = 1, fX̃ = 0.

(5) (A ∪B)c = Ac ∩Bc, (A ∩B)c = Ac ∪Bc.

Definition 2.6 Let A and B be two neutrosophic sets on X and Y , respectively. Then the cartesian

product of A and B which is denoted by A × B is a neutrosophic set on X × Y and it is defined as

(A×B)(x, y) = A(x)×B(y) where A(x)×B(y) = (tA×B(x, y), iA×B(x, y), fA×B(x, y)), i.e.,

tA×B(x, y) = tA(x) ∧ tB(y), iA×B(x, y) = iA(x) ∧ iB(y) and fA×B(x, y) = fA(x) ∨ fB(y).

Definition 2.7 [3] Let A be a neutrosophic set on X and α ∈ [0, 1]. Define the α-level sets of A as follows:

(tA)α = {x ∈ X | tA(x) ≥ α}, (iA)α = {x ∈ X | iA(x) ≥ α}, and (fA)
α = {x ∈ X | fA(x) ≤ α}.

Definition 2.8 [3] Let g : X1 → X2 be a function and A,B be the neutrosophic sets of X1 and X2,

respectively. Then the image of a neutrosophic set A is a neutrosophic set of X2 and it is defined as follows:

g(A)(y) = (tg(A)(y), ig(A)(y), fg(A)(y)) = (g(tA)(y), g(iA)(y), g(fA)(y)),∀y ∈ X2 where

g(tA)(y) =


∨
tA(x), if x ∈ g−1(y);

0, otherwise
, g(iA)(y) =


∨
iA(x), if x ∈ g−1(y);

0, otherwise
,

g(fA)(y) =


∧
fA(x), if x ∈ g−1(y);

1, otherwise.

And the preimage of a neutrosophic set B is a neutrosophic set of X1 and it is defined as follows:

g−1(B)(x) = (tg−1(B)(x), ig−1(B)(x), fg−1(B)(x)) = (tB(g(x)), iB(g(x)), fB(g(x))) = B(g(x)),∀x ∈ X1.

3 Neutrosophic submodules

In this section, we define the concept of a neutrosophic submodule of a given classical module over a ring

and also investigate its elementary properties and characterizations. Throughout this paper, R denotes a

commutative ring with unity 1.

Definition 3.1 Let M be a module over a ring R. A neutrosophic set A on M is called a neutrosophic

submodule of M if the following conditions are satisfied:

(M1)A(0) = X̃, i.e.,

tA(0) = 1, iA(0) = 1, fA(0) = 0.

(M2)A(x+ y) ≥ A(x) ∧A(y), for each x, y ∈ M i.e.,

tA(x+ y) ≥ tA(x) ∧ tA(y), iA(x+ y) ≥ iA(x) ∧ iA(y) and fA(x+ y) ≤ fA(x) ∨ fA(y).
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(M3)A(rx) ≥ A(x), for each x ∈ M, r ∈ R, i.e.,

tA(rx) ≥ tA(x), iA(rx) ≥ iA(x) and fA(rx) ≤ fA(x).

The collection of all neutrosophic submodules of M is denoted by NSM(M).

Example 3.2 Let us take the classical ring R = Z4 = {0, 1, 2, 3}. Since each ring is a module on itself, we

consider M = Z4 as a classical module. Define the single valued neutrosophic set A as follows:

A = {< 1, 1, 0 > /0+ < 0.6, 0.3, 0.6 > /1+ < 0.8, 0.1, 0.4 > /2+ < 0.6, 0.3, 0.6 > /3}.

It is clear that the neutrosophic set A is a neutrosophic submodule of the module M.

Definition 3.3 Let A,B be neutrosophic sets on M. Then their sum A + B is a neutrosophic set on M,

defined as follows:

tA+B(x) = ∨{tA(y) ∧ tB(z) | x = y + z, y, z ∈ M},

iA+B(x) = ∨{iA(y) ∧ iB(z) | x = y + z, y, z ∈ M},

fA+B(x) = ∧{fA(y) ∨ fB(z) | x = y + z, y, z ∈ M}.

Definition 3.4 Let A be a neutrosophic set on M, then −A is a neutrosophic set on M, defined as follows:

t−A(x) = tA(−x), i−A(x) = iA(−x) and f−A(x) = fA(−x), for each x ∈ M.

Definition 3.5 Let A be a neutrosophic set on an R-module M and r ∈ R. Define neutrosophic set rA on

M as follows:

trA(x) = ∨{tA(y) | y ∈ M, x = ry}, irA(x) = ∨{iA(y) | y ∈ M, x = ry} and frA(x) = ∧{fA(y) | y ∈
M, x = ry},

Proposition 3.6 If A is a neutrosophic submodule of an R-module M, then (−1)A = −A.

Proof Let x ∈ M be arbitrary.

t(−1)A(x) =
∨

x=(−1)y

tA(y) =
∨

y=−x

tA(x) = tA(−x) = t−A(x).

Since similarly i(−1)A(x) = i−A(x) and f(−1)A(x) = f−A(x), for each x ∈ M , the following is valid,

(−1)A = (t(−1)A, i(−1)A, f(−1)A) = (t−A, i−A, f−A) = −A.

Proposition 3.7 If A and B are neutrosophic sets on M , with A ⊆ B, then rA ⊆ rB, for each r ∈ R.

Proof It is straightforward by the definition.

Proposition 3.8 If A is a neutrosophic set on M, then r(sA) = (rs)A, for each r, s ∈ R.

Proof Let x ∈ M and r, s ∈ R be arbitrary.

fr(sA)(x) =
∧

x=ry

fsA(y) =
∧

x=ry

∧
y=sz

fA(z) =
∧

x=r(sz)

fA(z) =
∧

x=(rs)z

fA(z) = f(rs)A(x).

By the similar calculations the other equalities are obtained, so

r(sA) = (tr(sA), ir(sA), fr(sA)) = (t(rs)A, i(rs)A, f(rs)A) = (rs)A.

Proposition 3.9 If A and B are neutrosophic sets on M , then r(A+B) = rA+ rB, for each r ∈ R.

Proof Let A and B are neutrosophic sets on M , x ∈ M and r ∈ R.
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ir(A+B)(x) =
∨

x=ry

iA+B(y)

=
∨

x=ry

∨
y=z1+z2

(iA(z1) ∧ iB(z2))

=
∨

x=rz1+rz2

(iA(z1) ∧ iB(z2))

=
∨

x=x1+x2

((
∨

x1=rz1

iA(z1)) ∧ (
∨

x2=rz2

iB(z2)))

=
∨

x=x1+x2

(irA(x1) ∧ irB(x2)) = irA+rB(x).

The other equalities are obtained similarly.

Hence, r(A+B) = (tr(A+B), ir(A+B), fr(A+B)) = (trA+rB , irA+rB , frA+rB) = rA+ rB.

Proposition 3.10 If A is a neutrosophic set on M, then trA(rx) ≥ tA(x), irA(rx) ≥ iA(x) and frA(rx) ≤
fA(x).

Proof It is straightforward by the definition.

Proposition 3.11 If A and B are neutrosophic sets on M , then

(1) tB(rx) ≥ tA(x), for each x ∈ M, if and only if trA ≤ tB .

(2) iB(rx) ≥ iA(x), for each x ∈ M, if and only if irA ≤ iB .

(3) fB(rx) ≤ fA(x), for each x ∈ M, if and only if frA ≥ fB .

Proof (1) Suppose tB(rx) ≥ tA(x), for each x ∈ M, then trA(x) =
∨

x=ry,y∈M

tA(y). So, trA ≤ tB .

Conversely, suppose trA ≤ tB is satisfied. Then trA(x) ≤ tB(x), for each x ∈ M. Hence, tB(rx) ≥ trA(rx) ≥
tA(x), for each x ∈ M (by Proposition 3.10).

(2) and (3) are proved in a similar way.

Proposition 3.12 If A and B are neutrosophic sets on M , then

(1) trA4sB(rx+ sy) ≥ tA(x) ∧ tB(y),

(2) irA4sB(rx+ sy) ≥ iA(x) ∧ iB(y),

(3) frA4sB(rx+ sy) ≤ fA(x) ∨ fB(y), for each x, y ∈ M, r, s ∈ R.

Proof It is proved by using Definition 3.3, Definition 3.5 and Proposition 3.10.

Proposition 3.13 If A,B,C are neutrosophic sets on M, then the followings are satisfied for each r, s ∈ R;

(1) tC(rx+ sy) ≥ tA(x) ∧ tB(y), for all x, y ∈ M if and only if trA+sB ≤ tC .

(2) iC(rx+ sy) ≥ iA(x) ∧ iB(y), for all x, y ∈ M if and only if irA+sB ≤ iC .

(3) fC(rx+ sy) ≤ fA(x) ∨ fB(y), for all x, y ∈ M if and only if frA+sB ≥ fC .

Proof It is proved by using Proposition 3.12.

Theorem 3.14 Let A be a neutrosophic set on M and r, s ∈ R. Then

(1) trA ≤ tA ⇔ tA(rx) ≥ tA(x), irA ≤ iA ⇔ iA(rx) ≥ iA(x) and frA ≥ fA ⇔ fA(rx) ≤ fA(x), for each

x ∈ M.
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(2) trA+sA ≤ tA ⇔ tA(rx+ sy) ≥ tA(x) ∧ tA(y),

irA+sA ≤ iA ⇔ iA(rx+ sy) ≥ iA(x) ∧ iA(y),

and frA+sA ≥ fA ⇔ fA(rx+ sy) ≤ fA(x) ∨ fA(y).

Proof The proof follows from Propositions 3.11 and 3.13.

Theorem 3.15 Let A be a neutrosophic set on M. Then A is a neutrosophic submodule of M if and only

if A is a neutrosophic subgroup of the additive group M , in the sense of [3], and satisfies the conditions

trA ≤ tA, irA ≤ iA and frA ≥ fA, for each r ∈ R.

Proof Proof is clear from the definition of a neutrosophic subgroup in [3], and Theorem 3.14.

Theorem 3.16 Let A be a neutrosophic set on M . Then A ∈ NSM(M) if and only if the following

properties are satisfied:

(i) A(0) = X̃.

(ii) A(rx+ sy) ≥ A(x) ∧A(y), for each x, y ∈ M, r, s ∈ R.

Proof. Let A be a neutrosophic submodule of M and x, y ∈ M . From the condition (M1) of Definition 3.1,

it is obvious that A(0) = X̃. From (M2) and (M3), the followings are true,

tA(rx+ sy) ≥ tA(rx) ∧ tA(sy) ≥ tA(x) ∧ tA(y),

iA(rx+ sy) ≥ iA(rx) ∧ iA(sy) ≥ iA(x) ∧ iA(y) and

fA(rx+ sy) ≤ fA(rx) ∨ fA(sy) ≤ fA(x) ∨ fA(y). for each x, y ∈ M, r, s ∈ R.

Hence,

A(rx+ sy) = (tA(rx+ sy), iA(rx+ sy), fA(rx+ sy))

≥ (tA(x) ∧ tA(y), iA(x) ∧ iA(y), fA(x) ∨ fA(y))

= (tA(x), iA(x), fA(x)) ∧ (tA(y), iA(y), fA(y))

= A(x) ∧A(y).

Conversely, suppose A satisfies the conditions (i) and (ii). Then it is clear by hypothesis A(0) = X̃.

tA(x+ y) = tA(1.x+ 1.y) ≥ tA(x) ∧ tA(y)

iA(x+ y) = iA(1.x+ 1.y) ≥ iA(x) ∧ iA(y)

fA(x+ y) = fA(1.x+ 1.y) ≤ fA(x) ∨ fA(y).

So, A(x+ y) ≥ A(x) ∧A(y) and the condition (M2) of Definition 3.1 is satisfied.

Now let us show the validity of condition (M3).By the hypothesis,

tA(rx) = tA(rx+ r0) ≥ tA(x) ∧ tA(0) = tA(x)

iA(rx) = iA(rx+ r0) ≥ iA(x) ∧ iA(0) = iA(x)

fA(rx) = fA(rx+ r0) ≤ fA(x) ∨ fA(0) = fA(x), for each x, y ∈ M, r ∈ R.

Therefore, (M3) of Definition 3.1 is satisfied.

Theorem 3.17 If A and B are neutrosophic submodules of a classical module M , then the intersection

A ∩B is also a neutrosophic submodule of M .

6



Proof Since A,B ∈ NSM(M), we have A(0) = X̃, B(0) = X̃.

tA∩B(0) = tA(0) ∧ tB(0) = 1

iA∩B(0) = iA(0) ∧ iB(0) = 1

fA∩B(0) = fA(0) ∨ fB(0) = 0.

Hence (A ∩B)(0) = X̃ and we obtain the condition (M1) of Definition 3.1 is satisfied.

Let x, y ∈ M, r, s ∈ R. By Theorem 3.16, it is enough to show that

(A ∩B)(rx+ sy) ≥ (A ∩B)(x) ∧ (A ∩B)(y), i.e.,

tA∩B(rx + sy) ≥ tA∩B(x) ∧ tA∩B(y), iA∩B(rx + sy) ≥ iA∩B(x) ∧ iA∩B(y) and fA∩B(rx + sy) ≤ fA∩B(x) ∨
fA∩B(y).

Now we consider the truth-membership degree of the intersection,

tA∩B(rx+ sy) = tA(rx+ sy) ∧ tB(rx+ sy)

≥ (tA(x) ∧ tA(y)) ∧ (tB(x) ∧ tB(y))

= (tA(x) ∧ tB(x)) ∧ (tA(y) ∧ tB(y)) = tA∩B(x) ∧ tA∩B(y).

The other inequalities are proved similarly. Hence, A ∩B ∈ NM(M).

A nonempty subset N of M is a submodule of M if and only if rx+ sy ∈ N for all x, y ∈ M, r, s ∈ R.

Proposition 3.18 Let M be a module over R. A ∈ NSM(M) if and only if for all α ∈ [0, 1], α-level sets

of A, (tA)α, (iA)α and (fA)
α are classical submodules of M where A(0) = X̃.

Proof Let A ∈ NSM(M), α ∈ [0, 1], x, y ∈ (tA)α and r, s ∈ R be any elements. Then tA(x) ≥ α,

tA(y) ≥ α and tA(x) ∧ tA(y) ≥ α. By using Theorem 3.16, we have tA(rx+ sy) ≥ tA(x) ∧ tA(y) ≥ α. Hence

rx+ sy ∈ (tA)α. Therefore (tA)α is a classical submodule of M for each α ∈ [0, 1].

Similarly, for x, y ∈ (iA)α, (fA)
α we obtain rx + sy ∈ (iA)α, (fA)

α for each α ∈ [0, 1]. Consequently,

(iA)α, (fA)
α are classical submodules of M for each α ∈ [0, 1].

Conversely, let (tA)α be a classical submodules of M for each α ∈ [0, 1]. Let x, y ∈ M , α = tA(x) ∧ tA(y).

Then tA(x) ≥ α and tA(y) ≥ α. Thus, x, y ∈ (tA)α. Since (tA)α is a classical submodule of M , we have

rx+ sy ∈ (tA)α for all r, s ∈ R. Hence, (tA)(rx+ sy) ≥ α = tA(x) ∧ tA(y).

Similarly we obtain (iA)(rx+ sy) ≥ iA(x) ∧ iA(y).

Now we consider (fA)
α. Let x, y ∈ M , α = fA(x) ∨ fA(y). Then fA(x) ≤ α, fA(y) ≤ α. Thus x, y ∈ (fA)

α.

Since (fA)
α is a submodule of M , we have rx + sy ∈ (fA)

α for all r, s ∈ R. Thus (fA)(rx + sy) ≤ α =

fA(x) ∨ fA(y).

It is also obvious that A(0) = X̃. Hence the conditions of Theorem 3.16 are satisfied.

Proposition 3.19 Let A and B be two neutrosophic sets on X and Y , respectively. Then the following

equalities are satisfied for the α-levels.

(tA×B)α = (tA)α × (tB)α, (iA×B)α = (iA)α × (iB)α and (fA×B)
α = (fA)

α × (fB)
α.

Proof Let (x, y) ∈ (tA×B)α be arbitrary. So,
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tA×B(x, y) ≥ α ⇔ tA(x) ∧ tB(y) ≥ α

⇔ tA(x) ≥ α and tB(y) ≥ α

⇔ (x, y) ∈ (tA)α × (tB)α.

(iA×B)α = (iA)α × (iB)α is proved in a similar way.

Let (x, y) ∈ (fA×B)
α be arbitrary. Hence,

fA×B(x, y) ≤ α ⇔ fA(x) ∨ fB(y) ≤ α

⇔ (fA(x) ≤ α, fB(y) ≤ α

⇔ (x, y) ∈ (fA)
α × (fB)

α.

Theorem 3.20 Let A,B ∈ NSM(M). Then the product A×B is also a neutrosophic submodule of M .

Proof We know that direct product of two submodules is a submodule. So, by Proposition 3.18 and

Proposition 3.19, we obtain the result.

Proposition 3.21 Let A and B be two neutrosophic sets on X and Y , respectively and g : X → Y be a

mapping. Then the followings hold:

(i)g((tA)α) ⊆ (tg(A))α, g((iA)α) ⊆ (ig(A))α, g((fA)
α) ⊇ (fg(A))

α.

(ii)g−1((tB)α) = (tg−1(B))α, g−1((iB)α) = (ig−1(B))α, g−1((fB)
α) = (fg−1(B))

α.

Proof (i) Let y ∈ g((tA)α). Then there exists x ∈ (tA)α such that g(x) = y. Hence tA(x) ≥ α. So,∨
x∈g−1(y)

tA(x) ≥ α, i.e., tg(A)(y) ≥ α and y ∈ (tg(A))α. Hence g−1((tB)α) = (tg−1(B))α. Similarly, we obtain

other inclusions.

(ii)

(tg−1(B))α = {x ∈ X : tg−1(B)(x) ≥ α}
= {x ∈ X : tB(g(x)) ≥ α}
= {x ∈ X : g(x) ∈ (tB)α}
= {x ∈ X : x ∈ g−1((tB)α)} = g−1((tB)α)

The other equalities are obtained in a similar way.

Theorem 3.22 Let M,N be the classical modules and g : M → N be a homomorphism of modules. If B

is a neutrosophic submodule of N , then the preimage g−1(B) is a neutrosophic submodule of M .

Proof By Proposition 3.21 (ii), we have g−1((tB)α) = (tg−1(B))α, g
−1((iB)α) = (ig−1(B))α, g−1((fB)

α) =

(fg−1(B))
α.. Since preimage of a submodule is a submodule, by Proposition 3.18 we obtain the result.

Corollary 3.23 If g : M → N is a homomorphism of modules and {Bj : j ∈ I} is a family of neutrosophic

submodules of N , then g−1(∩Bj) is a neutrosophic submodule of M .

Theorem 3.24 Let M,N be the classical modules and g : M → N be a homomorphism of modules. If A is

a neutrosophic submodule of M , then the image g(A) is a neutrosophic submodule of N .

Proof By Proposition 3.18, it is enough to show that (tg(A))α, (ig(A))α, (fg(A))
α are submodules of N for

all α ∈ [0, 1].

Let y1, y2 ∈ (tg(A))α. Then tg(A)(y1) ≥ α and tg(A)(y2) ≥ α. There exist x1, x2 ∈ M such that tA(x1) ≥
tg(A)(y1) ≥ α and tA(x2) ≥ tg(A)(y2) ≥ α. Then tA(x1) ≥ α, tA(x2) ≥ α and tA(x1) ∧ tA(x2) ≥ α. Since A

is a neutrosophic submodule of M , for any r, s ∈ R, we have tA(rx1 + sx2) ≥ tA(x1) ∧ tA(x2) ≥ α. Hence,

8



rx1 + sx2 ∈ (tA)α ⇒ g(rx1 + sx2) ∈ g((tA)α) ⊆ (tg(A))α

⇒ rg(x1) + sg(x2) ∈ (tg(A))α ⇒ ry1 + sy2 ∈ (tg(A))α.

Therefore, (tg(A))α is a submodule of N . Similarly, (ig(A))α, (fg(A))
α are classical submodules of N for each

α ∈ [0, 1]. By Proposition 3.6, g(A) is a neutrosophic submodule of N .

Corollary 3.25 If g : M → N is a surjective module homomorphism and {Ai : i ∈ I} is a family of

neutrosophic submodule of M , then g(∩Ai) is a neutrosophic submodule of N .

4 Conclusion

Modules over a ring are a generalization of abelian groups (which are modules over Z) [5]. From the

philosophical point of view, it has been shown that a neutrosophic set generalizes a classical set, fuzzy set,

interval valued fuzzy set, intuitionistic fuzzy set etc. A single valued neutrosophic set is an instance of

neutrosophic set which can be used in real scientific and engineering problems. Therefore, the study of single

valued neutrosophic sets and their properties have a considerable significance in the sense of applications

as well as in understanding the fundamentals of uncertainty. So, as a continuation of the studies [3, 4],

we decided to introduce the concept of a neutrosophic submodule and examine its elementary properties.

Consequently, this study is concerned with carrying over to neutrosophic modules various concepts and

results of neutrosophic subgroup theory concerned in [3].
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