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Set theory, it has been contended,1 developed from its beginnings through
a progression of mathematical moves, despite being intertwined with pro-
nounced metaphysical attitudes and exaggerated foundational claims that
have been held on its behalf. In this paper, the seminal results of set theory
are woven together in terms of a unifying mathematical motif, one whose
transmutations serve to illuminate the historical development of the sub-
ject. The motif is foreshadowed in Cantor’s diagonal proof, and emerges
in the interstices of the inclusion vs. membership distinction, a distinction
only clarified at the turn of this century, remarkable though this may seem.
Russell runs with this distinction, but is quickly caught on the horns of his
well-known paradox, an early expression of our motif. The motif becomes
fully manifest through the study of functions f : P(X ) → X of the power
set of a set into the set in the fundamental work of Zermelo on set theory.
His first proof in 1904 of his Well-Ordering Theorem is a central articulation
containing much of what would become familiar in the subsequent develop-
ment of set theory. Afterwards, the motif is cast by Kuratowski as a fixed
point theorem, one subsequently abstracted to partial orders by Bourbaki
in connection with Zorn’s Lemma. Migrating beyond set theory, that gen-
eralization becomes cited as the strongest of fixed point theorems useful in
computer science.

Section 1 describes the emergence of our guiding motif as a line of de-
velopment from Cantor’s diagonal proof to Russell’s Paradox, fueled by the
clarification of the inclusion vs. membership distinction. Section 2 engages
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the motif as fully participating in Zermelo’s work on the Well-Ordering
Theorem and as newly informing on Cantor’s basic result that there is no bi-
jection f : P(X )→ X . Then Section 3 describes in connection with Zorn’s
Lemma the transformation of themotif into an abstract fixed point theorem,
one accorded significance in computer science.

§1. Cantor’s diagonal proof to Russell’s paradox. Georg Cantor in [1891]
gave his now famous diagonal proof, showing in effect that for any set X the
collection of functions from X into a two-element set is of a strictly higher
cardinality than that of X . Much earlier in [1874], the paper that began
set theory, Cantor had established the uncountability of the real numbers
by using their completeness under limits. In retrospect the diagonal proof
can be drawn out from the [1874] proof, but in any case Cantor could now
dispense with its topological trappings. Moreover, he could affirm “the
general theorem, that the powers [cardinalities] of well-defined sets have no
maximum.”
Cantor’s diagonal proof is regarded today as showing how the power set
operation leads to higher cardinalities, and as such it is the root of our
guiding motif. However, it would be an exaggeration to assert that Cantor
himself used power sets. Rather, he was expanding the 19th Century concept
of function by ushering in arbitrary functions. His theory of cardinality was
based on one-to-one correspondence [Beziehung], and this had led him to
the diagonal proof which in [1891] is first rendered in terms of sequences
“that depend on infinitely many coordinates”. By the end of [1891] he did
deal explicitly with “all” functions with a specified domain L and range
{0, 1}; regarded these as being enumerated by one super-function φ(x, z)
with enumerating variable z; and formulated the diagonalizing function
g(x) = 1 − φ(x, x). In his mature presentation [1895] of his theory of
cardinality Cantor defined cardinal exponentiation in terms of the set of
all functions from a set N into a set M , but such arbitrary functions were
described in a convoluted way, reflecting the novelty of the innovation.2

2Cantor wrote [1895, §4]: “ . . . by a ‘covering [Belegung] of N with M ,’ we understand
a law by which with every element n of N a definite element of M is bound up, where one
and the same element ofM can come repeatedly into application. The element ofM bound
up with n is, in a way, a one-valued function of n, and may be denoted by f(n); it is called
a ‘covering function [Belegungsfunktion] of n.’ The corresponding covering of N will be
called f(N ).”
A convoluted description, one emphasizing the generalization from one-to-one correspon-

dence [Beziehung]. Arbitrary functions on arbitrary domains are now of course common-
place in mathematics, but several authors at the time referred specifically to the concept of
covering, most notably Zermelo [1904] (see Section 2). Jourdain in the introduction to his
English translation [1915, p. 82] of Cantor’s [1895, 1897] wrote: “The introduction of the
concept of ‘covering’ is the most striking advance in the principles of the theory of transfinite
numbers from 1885 to 1895 . . . .”
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The recasting of Cantor’s diagonal proof in terms of sets could not be car-
ried out without drawing the basic distinction between ⊆, inclusion, and ∈,
membership. Surprisingly, neither this distinction nor the related distinction
between a class a and the class {a} whose sole member is a was generally
appreciated in logic at the time of Cantor [1891]. This was symptomatic of
a general lack of progress in logic on the traditional problem of the copula
(how does “is” function?), a problem with roots going back to Aristotle.
The first to draw these distinctions clearly was Gottlob Frege, the greatest
philosopher of logic since Aristotle. Indeed, the inclusion vs. membership
distinction is fundamental to the development of logic in Frege’s Begriff-
sschrift [1879], and the a vs. {a} distinction is explicit in his Grundgesetze
[1893]. These distinctions for sets are also basic for Cantor’s theory of car-
dinality and are evident from the beginning of his [1895], starting with its
oft-quoted definition of set [Menge].3

Of other pioneers, Ernst Schröder in the first volume [1890] of his major
work on the algebra of logic held to a traditional view that a class is merely
a collection of objects (without the { }, so to speak), so that inclusion and
membership could not be clearly distinguished and e.g., the existence of a null
class was disputable. Frege in his review [1895] of Schröder’s [1890] soundly
took him to task for these shortcomings.4 Richard Dedekind in his classic
essay on arithmeticWas sind und was sollen die Zahlen? [1888, §3] used the
same symbol for inclusion and membership and subsequently identified an
individual a with {a}.5 In a revealing note found in his Nachlass Dedekind
was to draw attention to the attendant danger of such an identification and
showed how this leads to a contradiction in the context of his essay.6

3While we use the now familiar notation {a} to denote the class whose sole member is
a, it should be kept in mind that the notation varied through this period. Cantor [1895]
wroteM = {m} to indicate thatM consists of members typically denoted by m, i.e., m was
a variable ranging over the possibly many members of M . Of those soon to be discussed,
Peano [1890, p. 192] used éa to denote the class whose sole member is a. Russell [1903,
p. 517] followed suit, but from his [1908] on he used é‘a. It was Zermelo [1908a, p. 262] who
introduced the now familiar use of {a}, having written just before: “The set that contains
only the elements a, b, c, . . . , r will often be denoted briefly by {a, b, c, . . . r}.”
4Edmund Husserl in his review [1891] of Schröder’s [1890] also criticized him for not

distinguishing between inclusion and membership (cf. Rang-Thomas [1981, p. 19] and the
beginning of Section 2 below).
5For a set [System] S and transformation [Abbildung] φ : S → S , Dedekind [1888, §37]

defined K to be a chain [Kette] iff K ⊆ S and for every x ∈ K , φ(x) ∈ K ; for any A ⊆ S ,
he [1888, §44] then defined Ao to be the intersection of all chains K ⊇ A. In the crucial
definition of “simply infinite system”, one isomorphic to the natural numbers, Dedekind
[1888, §71] wrote N = 1o, where 1 is a distinguished element of N . Hence, we would now
write N = {1}o.
6See Sinaceur [1971]. In the note Dedekind proposed various emendations to his essay

to clarify the situation; undercutting a comment in the essay ([1888, §2]) he pointed out
the necessity of having the empty set [Nullsystem]. He also mentioned raising these issues,
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Giuseppe Peano in his essay [1889] distinguished inclusion and member-
ship with different signs, and it is to him that we owe “∈” for membership.
In the preface he warned against confusing “∈” with the sign for inclusion.
However, at the end of part IV he wrote, “Let s be a class and k a class
contained in s ; then we say that k is an individual of class s if k consists of
just one individual. Thus,” and proceeded to give his Formula 56, which in
modern terms is:

k ⊆ s → (k ∈ s ↔ (k 6= ∅ & ∀x ∈ k∀y ∈ k(x = y))) .

Unfortunately, this way of having membership follow from inclusion under-
cuts the very distinction that he had so emphasized. For example, suppose
that a is any class, and let s = {a}. Then Formula 56 implies that s ∈ s .
But then s = a, and so {a} = a. This was not intended by Peano; in [1890,
p. 192] he carefully distinguished between a and {a}.7

The equivocation between inclusion and membership in the closing years
of the 19th Century reflected a traditional reluctance to comprehend a col-
lection as a unity andwas intertwinedwith the absence of the liberal, iterative
use of the set formation { } operation. Of course, set theory as a mathe-
matical study of that operation could only develop after a sharp distinction
between inclusion and membership had been made. This development in
turn would depend increasingly on rules and procedures provided by axiom-
atization, an offshoot of the motif being traced here (see Section 2).

The turn of the century saw Bertrand Russell make the major advances
in the development of his mathematical logic. As he later wrote in [1944]:
“The most important year in my intellectual life was the year 1900, and the
most important event in this year was my visit to the International Congress
of Philosophy in Paris.” There in August he met Peano and embraced his
symbolic logic, particularly his use of different signs for inclusion and mem-
bership. During September Russell extended Peano’s symbolic approach to
the logic of relations. Armed with the new insights Russell in the rest of
the year completed most of the final draft of The Principles of Mathematics
[1903], a book he had been working on in various forms from 1898. How-
ever, the sudden light would also cast an abiding shadow, for by May 1901

quaint as this may now seem, in conversation with Felix Bernstein on 13 June 1897 and with
Cantor himself on 4 September 1899. However, the emendations were never incorporated
into any later editions of [1888].
7Having a such that a = {a} can serve certain technical purposes. For W. V. Quine

[1940, p. 136] such a are the individuals for a theory of sets, now known as Mathematical
Logic. Paul Bernays [1954] based a proof of the independence of the Axiom of Foundation
on such a. For Ernst Specker [1957] such a serve as the atoms of his Fraenkel-Mostowski
permutation models for independence results related to the Axiom of Choice. Since Dana
Scott [1962] “Quinean atoms” a = {a} have figured in the model-theoretic investigation of
Quine’s best known set theory, New Foundations; see Forster [1995, Chapter 3].
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Russell had transformed Cantor’s diagonal proof into Russell’s Paradox.8 In
reaction he would subsequently formulate a complex logical system of orders
and types in Russell [1908] which multiplied the inclusion vs. membership
distinction many times over and would systematically develop that system
in Whitehead and Russell’s Principia Mathematica [1910–3].
Soon after meeting Peano, Russell prepared an article singing his praises,
writing [1901, p. 354] of the symbolic differentiation between inclusion and
membership as “the most important advance which Peano has made in
logic.”9 At first, it seems anomalous that Russell had not absorbed the basic
inclusion vs. membership distinction from either Frege or Cantor. However,
Russell only became fully aware of Frege’s work in 1902.10 Also, Russell had
rejected Cantor’s work on infinite numbers when he had first learned of it in
1896 and came to accept it only after meeting Peano.11

Much can be and has been written about Russell’s predisposition in 1900
to embrace Peano’s “ideography” and Cantor’s theory, both in terms of
Russell’s rejection a few years earlier of a neo-Hegelian idealism in favor

8See Garciadiego [1992] and Moore [1995] for the evolution of Russell’s Paradox.
9Russell had first mentioned Peano in a letter dated 9 October 1899 to the philosopher

Louis Couturat. There Russell had expressed agreement with Couturat’s review of Peano’s
work, the main thrust of which was Couturat’s contention [1899, pp. 628–9] that Peano’s
introduction of ∈ was an unnecessary complication beyond Schröder’s system of logic.
Russell’s [1901] was meant to be a counterpart to Couturat [1899], though it was never
published. See Moore’s comments in Russell [1993, pp. 350–1].
Years later, Russell [1959, pp. 66–7] wrote: “The enlightenment that I derived from Peano

came mainly from two purely technical advances of which it is very difficult to appreciate
the importance unless one has (as I had) spent years in trying to understand arithmetic
. . . The first advance consisted in separating propositions of the form ‘Socrates is mortal’
from propositions of the form ‘All Greeks are mortal’ [i.e., distinguishing membership from
inclusion] . . . neither logic nor arithmetic can get far until the two forms are seen to be
completely different . . . The second important advance that I learnt from Peano was that a
class consisting of one member is not identical with that one member.”
On this last point however, Russell of The Principles [1903] was not so clear; see the

discussion of the book toward the end of this section.
10Frege does not appear in Russell’s reading list through March 1902,What shall I read?

[1983, p. 347ff.]. Russell’s first and now famous letter to Frege of 16 June 1902, informing
him of an inconsistency in his mature system, starts: “For a year and a half I have been
acquainted with your Grundgesetze der Arithmetik, but it is only now that I have been able to
find the time for the thorough study I intended to make of your work.”
11See Moore [1995, §3]. Russell in a letter to Jourdain of 11 September 1917 (see Grattan-

Guinness [1977, p. 144]) reminisced: “I read all the articles in ‘Acta Mathematica’ [mainly
those in vol. 2, 1883, French translations of various of Cantor’s papers] carefully in 1898, and
also ‘Mannigfaltigkeitslehre’ [for example Cantor [1883]]. At that time I did not altogether
follow Cantor’s arguments, and I thought he had failed to prove some of his points. I did not
read [Cantor [1895] and Cantor [1897]] until a good deal later.” Cantor [1895] only appears
in Russell’s reading listWhat shall I read? [1983, p. 364] for November 1900, when Russell
was suffused with the new insights from Peano.
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of a Platonic atomism,12 and in terms of Leibniz’s lingua characteristica
for logical reasoning.13 Newly inspired and working prodigiously, Russell
used Peano’s symbolic approach to develop the logic of relations, to define
cardinal number, and to recast some of Cantor’s work. However, in the
course of this development a fundamental tension emerged, as we shall soon
see, between Cantor’s one-to-one correspondences and Peano’s inclusion vs.
membership distinction, a tension fueled by Russell’s metaphysical belief in
the existence of the class of all classes.

At first, Russell was convinced that he had actually found an error in Can-
tor’s work. In a letter to the philosopher Louis Couturat dated 8 December
1900 Russell wrote:

I have discovered an error in Cantor, who maintains that there is
no largest cardinal number. But the number of classes is the largest
number. The best of Cantor’s proofs to the contrary can be found
in [Cantor [1891]]. In effect, it amounts to showing that if u is a
class whose number is α, the number of classes included in u (which
is 2α) is larger than α. The proof presupposes that there are classes
included in u which are not individuals [i.e., members] of u; but if
u = Class [i.e., the class of all classes], that is false: every class of
classes is a class.14

Also, in a popular article completed in January 1901, Russell [1901a, p. 87]
wrote:

Cantor had a proof that there is no greatest number, and if this
proof were valid, the contradictions of infinity would reappear in a
sublimated form. But in this one point, the master has been guilty of
a very subtle fallacy, which I hope to explain in some future work.15

12See Hylton [1990, p. 103ff.], and generally for the metaphysics underlying Russell’s logic.
13Russell had just completed a book on Leibniz.
14This passage, originally in French, is quoted in Moore [1995, p. 231], and by Moore in

Russell [1993, p. xxxii].
In a subsequent letter toCouturat dated 17 January 1901, Russell pointedly praised Peano’s

introduction of ∈ and then wrote: “ . . . there is a concept Class and there are classes. Hence
Class is a class. But it can be proved (and this is essential to Cantor’s theory) that every class
has a cardinal number. Hence there is a number of classes, i.e., a number of the class Class.
But this does not result in a contradiction, since the proof which Cantor gives that

α ε Nc . ⊃ . 2α > α

presupposes that there is at least one class contained in the given class u (whose number is
α) which is not itself a member of u . . . . If we put u = Cls [Class, the class of all classes],
this is false. Thus the proof no longer holds.”
This letter, originally in French, is quoted in large part in Russell [1992, pp. 210–2]; see

also Moore [1995, p. 233].
15However, as a foretaste of things to come we note that Russell added the following

footnote to this passage in 1917: “Cantor was not guilty of a fallacy on this point. His
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Russell was shifting the weight of the argumentation away from (Can-
tor’s) result through (Cantor’s) ‘error’ to (Russell’s) paradox. By May 1901
Russell had formulated a version of his now famous paradox in terms of self-
predication in a draft of his book The Principles of Mathematics.16 In the
published book Russell discussed the paradox extensively in various forms,
and described [1903, p. 364ff.] in some detail how he had arrived at his
paradox from Cantor’s [1891] proof. Having developed the logic of relations
Russell made the basic move of correlating subclasses of a class with the rela-
tions on the class to 0 and 1. By this means he converted Cantor’s functional
argument to one about inclusion and membership for classes, concluding
that [1903, p. 366] “the number of classes contained in any class exceeds the
number of terms belonging to the class.”
It is here that our mathematical motif emerges and begins to guide the
historical description. Cantor’s argument is usually presented nowadays
as showing that no function f : X → P(X ) is bijective, since the set {x ∈
X |x /∈ f(x)} is not in the range off. Cantor [1891] himself first established
(in equivalent terms with characteristic functions as we would now say) the
positive result that for any f : X → P(X ) there is a subset of X , namely the
set just defined, which is not in the range of f.17 Russell’s remark starting
“The proof presupposes . . . ” in the penultimate displayed quotation above
may at first be mystifying, until one realizes what concerned Russell about
the class of all classes. In modern terms, ifU is that class andP(U ) the class
of its subclasses, then P(U ) ⊆ U . Thus, the identity map on P(U ) is an
injection of P(U ) into U . However, Cantor’s argument also shows that no
function F : P(X )→ X is injective.18 This will be our guiding mathematical
motif, the study of functions F : P(X )→ X .

For the Russell of The Principles mathematics was to be articulated in an
all-encompassing logic, a complex philosophical system based on universal
categories.19 He had drawn distinctions within his widest category of “term”

proof that there is no greatest number is valid. The solution of the puzzle is complicated
and depends upon the theory of types, which is explained in Principia Mathematica, Vol. 1
(Camb. Univ. Press, 1910).”
16See Russell [1993, p. 195].
17As emphasized by Gray [1994], Cantor [1874] similarly established first a positive result,

that for any countable sequence of real numbers there is a real number not in the sequence,
and only then drew the conclusion that the reals are uncountable. Cantor’s main purpose in
[1874] was actually to show that the algebraic real numbers are countable and then to apply
his positive result to get a new proof that there are transcendental numbers.
18Generally, from an injection g : A→ B a surjection B → A can be defined by inverting

g on its range and extending that inversion to all of B . However, Cantor’s result established
that there is no surjection X → P(X ).
19Russell [1903, p. 129] wrote: “The distinction of philosophy and mathematics is broadly

one of point of view: mathematics is constructive and deductive, philosophy is critical, and
in a certain impersonal sense controversial. Wherever we have deductive reasoning, we have
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(but with “object” wider still20 ) among “propositions” about terms and
“classes” of various kinds corresponding to propositions. Because of this,
Russell’s Paradox became a central concern, for it forced him to face the
threat of both the conflationof his categories and the loss of their universality.
Discussing his various categories, Russell [1903, pp. 366–7] first described
the problem of “the class of all terms”: “If we are to assume . . . that
every constituent of every proposition is a term, then classes will be only
some among terms. And conversely, since there is, for every term, a class
consisting of that term only, there is a one-one correlation of all terms
with some classes. Hence, the number of classes should be the same as the
number of terms.” For this last, Russell explicitly appealed to the Schröder-
Bernstein Theorem. However, classes consist of terms, soCantor’s argument
shows that there are more classes than terms! To (most) contemporary eyes,
this is a remarkable mixing of mathematics and metaphysics. Russell then
observed with analogous arguments that: there are more classes of objects
than objects; there are more classes of propositions than propositions; and
there are more propositional functions than objects.

Russell next made the closest connection in The Principles [1903, p. 367]
between Cantor’s argument and Russell’s Paradox: Let V be the class of all
terms, andU the class of all classes; for RussellU is a proper subclass of V .
Russell defined a function f : V → U by stipulating that if x is not a class
then f(x) is the class {x}, and if x is a class thenf(x) = x, i.e., f restricted
toU is the identity. What is now seen as the Cantorian {x ∈ U | x /∈ f(x)}
then becomes the Russellian w = {x ∈ U | x /∈ x}. However, Cantor’s
argument implies that w is not in the range of f, yet for Russell f(w) = w
is in the range.21

As emphasized above, Cantor’s argument has a positive content in the
generation of sets not in the range of functions f : X → P(X ). For Russell
however, P(U ) ⊆ U with the identity map being an injection, and so the
Russellianw ⊆ U must satisfyw ∈ U , arriving necessarily at a contradiction.
Having absorbed the inclusion vs. membership distinction, Russell had to
confront the dissolution of that very distinction for his universal classes.
Russell soon sought to resolve his paradox with his theory of types, adum-
brated in The Principles. Although the inclusion vs. membership distinction

mathematics; but the principles of deduction, the recognition of indefinable entities, and the
distinguishing between such entities, are the business of philosophy. Philosophy is, in fact
mainly a question of insight and perception.”
20Russell [1903, p. 55n] wrote: “I shall use the word object in a wider sense than term, to

cover both singular and plural, and also cases of ambiguity, such as ‘a man.’ The fact that a
word can be framed with a wider meaning than term raises grave logical problems.”
21The formal transition from {x | x /∈ f(x)} to {x | x /∈ x} was pointed out by Crossley

[1973]. Though not so explicit in The Principles, the analogy is clearly drawn in 1905 letters
from Russell to G. H. Hardy and to Philip Jourdain (as quoted in Grattan-Guinness [1978]).
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was central to The Principles, the issues of whether the null-class exists and
whether a term should be distinct from the class whose sole member is that
term became part and parcel of the considerations leading to types. First,
Russell [1903, p. 68] distinguished between “class” and “class-concept”, and
asserted that “there is no such thing as the null-class, though there are null
class-concepts . . . [and] that a class having only one term is to be identified,
contrary to Peano’s usage, with that one term.” Russell then distinguished
between “class as one” and “class as many” (without the { }, so to speak),
and asserted [1903, p. 76] “an ultimate distinction between a class as many
and a class as one, to hold that the many are only many, and are not also
one.”
In an early chapter (X, “The Contradiction”) discussing his paradox Rus-
sell decided that propositional functions, while defining classes as many, do
not always define classes as one, else they could participate qua terms for
self-predication as in the paradox. There he first proposed a resolution by
resorting to a difference in type [1903, pp. 104–5]:

We took it to be axiomatic that the class as one is to be foundwherever
there is a class as many; but this axiom need not be universally
admitted, and appears to have been the source of the contradiction.
. . . A class as one, we shall say, is an object of the same type as its
terms . . . . But the class as one does not always exist, and the class
as many is of a different type from the terms of the class, even when
the class has only one term . . .

He consequently decided [1903, p. 106]: “that it is necessary to distinguish
a single term from the class whose only member it is, and that consequently
the null-class may be admitted.”
In an appendix to thePrinciples devoted to Frege’s work, Russell described
an argument of Frege’s showing that a should not be identified with {a} (in
the case of a having many members, {a}would still have only one member),
and wrote [1903, p. 513]: “ . . . I contended that the argument was met
by the distinction between the class as one and the class as many, but this
contention now appears to me mistaken.” He continued [1903, p. 514]:
“ . . . it must be clearly grasped that it is not only the collection as many, but
the collection as one, that is distinct from the collection whose only term it
is.” Russell went on to conclude [1903, p. 515] that “the class as many is the
only object that can play the part of a class”, writing [1903, p. 516]:

Thus a class of classes will be many many’s; its constituents will each
be only many, and cannot therefore in any sense, one might suppose,
be single constituents. Now I find myself forced to maintain, in spite
of the apparent logical difficulty, that this is precisely what is required
for the assertion of number.

Russell was then led to infinitely many types [1903, p. 517]:
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It will now be necessary to distinguish (1) terms, (2) classes, (3)
classes of classes, and so on ad infinitum; we shall have to hold that
no member of one set is a member of any other set, and that x ∈ u
requires that x should be of a set of a degree lower by one than
the set to which u belongs. Thus x ∈ x will become a meaningless
proposition; in this way the contradiction is avoided.

And he wrote further down the page:

Thus, although we may identify the class with the numerical con-
junction of its terms [class as many], wherever there are many terms,
yet where there is only one term we shall have to accept Frege’s range
[Werthverlauf] as an object distinct from its only term.

Today, these shifting metaphysical distinctions concerning classes and wor-
ries focusing on the difference between a and {a} may seem strange and
convoluted. But for us logic is mathematical, and we are heir to the develop-
ment of set theory based on the iterated application of the { } operation and
axioms governing it. Of Russell’s concerns and formulations, his theory of
types has found technical uses in set theory.22 But ultimately, the ontological
question “What is a class?”, like the ontological questions “What is a set?”
and “What is a number?”, has little bearing on mathematics and has not
contributed substantially to its development.

§2. Zermelo’s well-ordering theorem. The first decade of the new century
sawErnst Zermelo atGöttingenmake hismajor advances in the development
of set theory.23His first substantial result was his independent discovery of
the argument for Russell’s Paradox. He then established the Well-Ordering
Theorem, provoking an open controversy about this initial use of the Axiom
of Choice. After providing a second proof of the Well-Ordering Theorem in
response, Zermelo also provided the first full-fledged axiomatization of set
theory. In the process, he ushered in a new abstract, generative view of sets,
one that would dominate in the years to come.

Zermelo’s independent discovery of the argument for Russell’s Paradox is
substantiated in a note dated 16 April 1902 found in the Nachlass of the
philosopher Edmund Husserl.24According to the note, Zermelo pointed
out that any set M containing all of its subsets as members, i.e., with
P(M ) ⊆ M , is “inconsistent” by considering {x ∈ M | x /∈ x}. Schröder
[1890, p. 245] had argued that Boole’s “class l” regarded as consisting of
everything conceivable is inconsistent, and Husserl in a review [1891] had
criticized Schröder’s argument for not distinguishing between inclusion and

22See Dreben-Kanamori [1997] for the line of development from Russell’s theory of types
to Gödel’s constructible universe.
23Peckhaus [1990] provides a detailed account of Zermelo’s years 1897–1910 at Göttingen.
24See Rang-Thomas [1981].
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membership. Zermelo was pointing out an inherent problem when inclusion
implies membership as in the case of a universal class, but he did not push
the argument in the direction of paradox as Russell had done. Also, Zermelo
presumably came to his argument independently of Cantor’s diagonal proof
with functions. That P(M ) has higher cardinality thanM is evidently more
central than P(M ) 6⊆ M , but the connection between subsets and charac-
teristic functions was hardly appreciated then, and Zermelo was just making
the first moves toward his abstract view of sets.25

Reversing Russell’s progress fromCantor’s correspondences to the identity
map inclusion P(U ) ⊆ U , Zermelo considered functions F : P(X ) → X ,
specifically in the form of choice functions, those F satisfying F (Y ) ∈ Y
for Y 6= ∅. This of course was the basic ingredient in Zermelo’s [1904]
formulation of what he soon called the Axiom of Choice for the purpose
of establishing his Well-Ordering Theorem. Russell the metaphysician had
drawn elaborate philosophical distinctions and was forced by Cantor’s di-
agonal argument into a dialectical confrontation with them, as well as with
the concomitant issues of whether the null class exists and whether a term
should be distinct from the class whose sole member is that term. Zermelo
the mathematician never quibbled over these issues for sets and pushing
the Cantorian extensional and operational view proceeded to resolve the
problem of well-ordering sets mathematically. As noted in Footnote 2, in
describing abstract functions Cantor had written [1895, §4]: “ . . . by a ‘cov-
ering [Belegung] of N with M ,’ we understand a law . . . ”, and thus had
continued his frequent use of the term “law” to refer to functions. Zermelo
[1904, p. 514] specifically used the term “covering”, but with his choice func-
tions any residual sense of “law” was abandoned by him [1904]: “ . . . we
take an arbitrary covering ã and derive from it a definite well-ordering of the
elements ofM .” It is here that abstract set theory began.
That part of Zermelo’s proof which does not depend on the Axiom of
Choice can be isolated in the following result, the central articulation of our
guiding motif. The result establishes a basic correlation between functions
F : P(X ) → X and canonically defined well-orderings. For notational
convenience, we take well-orderings to be strict, i.e., irreflexive, relations.

25In the earliest notes about axiomatization found in his Nachlass, written around 1905,
Zermelo took the assertion M /∈ M as an axiom, as well as the assertion that any “well-
defined” set M has a subset not a member of M (see Moore [1982, p. 155]). In Zermelo’s
axiomatization paper [1908a], the first result of his axiomatic theory was just the result in
the Husserl note, that every set M has a subset {x ∈ M | x /∈ x} not a member of M ,
with the consequence that there is no universal set. Modern texts of set theory usually take
the opposite tack, showing that there is no universal set by reductio to Russell’s Paradox.
Zermelo [1908a] applied his first result positively to generate specific sets disjoint from given
sets for his recasting of Cantor’s theory of cardinality.
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Theorem 2.1. Suppose that F : P(X )→ X . Then there is a unique 〈W,<〉
such thatW ⊆ X , < is a well-ordering of W , and:

(a) For every x ∈W , F ({y ∈W | y < x}) = x, and

(b) F (W ) ∈W .

Remarks. The picture here is thatF generates a well-ordering ofW which
according to (a) starts with

a0 = F (∅) ,

a1 = F ({a0}) = F ({F (∅)}) ,

a2 = F ({a0, a1}) = F ({F (∅), F ({F (∅)})})

and so continues as long as F applied to an initial segment ofW constructed
thus far produces a new element. W is the result when according to (b) an
old element is again named. Note that if X is transitive, i.e., X ⊆ P(X ),
and F is the identity on at least the elements in the above display, then
we are generating the first several von Neumann ordinals.26 But as was
much discussed in Section 1, F cannot be the identity on all of P(X ).
Whereas Russell’s Paradox grew out of the insistence that inclusion implies
membership, membership in a transitive set implies inclusion in that set. This
later and positive embodiment of the inclusion vs. membership distinction
became important in set theory after the work of John von Neumann [1923]
on ordinals, and central to the subject since the work of Kurt Gödel [1938]
on the constructible universe L.

The claim that Theorem 2.1 anticipates later developments is bolstered by
its proof being essentially the argument for the Transfinite Recursion Theo-
rem, the theorem that justifies definitions by recursion along well-orderings.
This theorem was articulated and established by von Neumann [1923, 1928]
in his system of set theory. However, the argument as such first appeared in
Zermelo’s [1904]:

Proof of Theorem 2.1. Call Y ⊆ X an F -set iff there is a well-ordering
R of Y such that for each x ∈ Y , F ({y ∈ Y | yRx}) = x. The following
are thus F -sets (some of which may be the same):

{F (∅)}; {F (∅), F ({F (∅)})}; {F (∅), F ({F (∅)}), F ({F (∅), F ({F (∅)})})} .

We shall establish:

If Y is an F -set with a witnessing well-ordering R and Z is an
F -set with a witnessing well-ordering S, then 〈Y,R〉 is an initial
segment of 〈Z,S〉, or conversely.

(∗)

26Notably, Zermelo in unpublished 1915work sketched the rudiments of the vonNeumann
ordinals. See Hallett [1984, p. 278ff.].
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(Taking Y = Z it will follow that any F -set has a unique witnessing well-
ordering.)
For establishing (∗), we continue to follow Zermelo: By the comparability
of well-orderings, we can assume without loss of generality that there is an
order-preserving injection e : Y → Z with range an S-initial segment of Z.
It then suffices to show that e is in fact the identity map: If not, let t be the
R-least member of Y such that e(t) 6= t. It follows that {y ∈ Y | yRt} =
{z ∈ Z | zSe(t)}. But then,

e(t) = F ({z ∈ Z | zSe(t)}) = F ({y ∈ Y | yRt}) = t ,

a contradiction.

To conclude the proof, let W be the union of all the F -sets. Then W is
itself an F -set by (∗) and so, with < its witnessing well-ordering, satisfies
(a). For (b), note that if F (W ) /∈W , thenW ∪{F (W )}would be an F -set,
contradicting the definition ofW . Finally, that (a) and (b) uniquely specify
〈W,<〉 also follows from (∗). ⊣

Zermelo of course focused on choice functions as given by the Axiom of
Choice to well-order the entire set:

Corollary 2.2 (The Well-Ordering Theorem, Zermelo [1904]). If P(X )
has a choice function, then X can be well-ordered.

Proof. Suppose that G : P(X ) → X is a choice function, and define
a function F : P(X ) → X to “choose from complements” by: F (Y ) =
G(X − Y ) ∈ X − Y for Y 6= X , and F (X ) some specified member of X .
Then the resultingW of the theorem must be X itself. ⊣

It is noteworthy that Theorem 2.1 leads to a new proof and a positive form
of Cantor’s basic result that there is no bijection between P(X ) and X :

Corollary 2.3. For any F : P(X )→ X , there are two distinct setsW and
Y both definable from F such that F (W ) = F (Y ).

Proof. Let 〈W,<〉 be as in Theorem 2.1, and let Y = {x ∈ W | x <
F (W )}. Then by Theorem 2.1(a) F (Y ) = F (W ), yet F (W ) ∈W − Y . ⊣

This corollary provides a definable counterexample 〈W,Y 〉 to injectivity.
In the F : P(X ) → X version of Cantor’s diagonal argument, one would
consider the definable set

A = {x ∈ X | ∃Z(x = F (Z) ∧ F (Z) /∈ Z)}.

By querying whether or not F (A) ∈ A, one deduces that there must be
some Y 6= A such that F (Y ) = F (A). However, no such Y is provided
with a definition. This is also the main thrust of Boolos [1997], in which the
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argument for Theorem 2.1 is given ab initio and not connected with Zermelo
[1904].
Another notable consequence of the argument for Theorem 2.1 is that
since the F there need only operate on the well-orderable subsets of X , the
P(X ) in Corollary 2.3 can be replaced by the following set:

PWO(X ) = {Z ⊆ X | Z is well-orderable} .

That this set, like P(X ), is not bijective with X was first shown by Alfred
Tarski [1939] through a less direct proof. Tarski [1939] (Theorem 3) did
have a version of Theorem 2.1; substantially the same version appeared
in the expository work of Nicolas Bourbaki [1956, p. 43] (Chapter 3, §2,
Lemma 3).27

Zermelo’s main contribution with his Well-Ordering Theorem was the
introduction of choice functions, leading to the postulation of the Axiom of
Choice. But besides this, Theorem2.1 brings outZermelo’s delineationof the
power set as a sufficient domain of definition for generating well-orderings.
Also, Theorem 2.1 rests on the argument for establishing the Transfinite
Recursion Theorem; here however, it is the well-ordering itself that is being
defined. The argument is avowedly impredicative: After specifying the
collection of F -sets its union is taken to specify a member of the collection,
namely the largest F -set. All these were significant advances, seminal for
modern set theory, especially when seen against the backdrop of how well-
orderability was being investigated at the time.
Cantor [1883, p. 550] had propounded the basic principle that every “well-
defined” set can be well-ordered. However, he came to believe that this
principle had to be established, and in 1899 correspondence with Dedekind
gave a remarkable argument.28 He first defined an “absolutely infinite or
inconsistent multiplicity” as one into which the class Ω of all ordinal num-
bers can be injected and proposed that these collections be exactly the ones
that are not sets. He then proceeded to argue that every set can be well-
ordered through a presumably recursive procedure whereby a well-ordering
is defined through successive choices. The set must get well-ordered, other-
wise Ω would be injected into it. G. H. Hardy [1903] and Philip Jourdain
[1904, 1905] also gave arguments involving the injection of all the ordinal

27Bourbaki’s version is weighted in the direction of the application to the Well-Ordering
Theorem (cf. Corollary 2.2). It supposes that for some Z ⊆ P(X ), F : Z → X with
F (Y ) /∈ Y for every Y ∈ Z, and concludes that there is a 〈W,<〉 as in Theorem 2.1 except
that its (b) is replaced by W /∈ Z. From this version Bell [1995] developed a version in a
many-sorted first-order logic and used it to recast Frege’s work on the number concept.
28The 1899 correspondence appeared in Cantor [1932] and Noether-Cavaillès [1937] and,

translated into French, in Cavaillès [1962]. The main letter is translated into English in van
Heijenoort [1967, p. 113ff.].
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numbers, but such an approach would only get codified at a later stage in
the development of set theory in the work of von Neumann [1925].
Consonant with his observation on Schröder’s inconsistent classes that no
X can satisfy P(X ) ⊆ X , Zermelo’s advance was to preclude the appeal to
inconsistent multiplicities by shifting the weight away from Cantor’s well-
orderings with their successive choices to the use of functions on power
sets making simultaneous choices. Zermelo, when editing Cantor’s collected
works, criticized him for his reliance on successive choices and the doubts
raised by the possible intrusion of inconsistent multiplicities. Zermelo noted
that “it is precisely doubts of this kind that impelled the editor [Zermelo]
a few years later to base his own proof of the well-ordering theorem purely
upon the axiom of choice without using inconsistent multiplicities.”29

Cantor’s realization that taking the class Ω of all ordinal numbers as a set
is problematic was an early emanation of the now well-known Burali-Forti
Paradox, generated qua paradox by Russell in The Principles [1903, p. 323]
after reading Cesare Burali-Forti’s [1897].30 It is notable that Russell [1906,
p. 35ff.] later provided a unified approach to both Russell’s Paradox and
the Burali-Forti Paradox that can be seen as reformulating the heart of the
argument for Theorem 2.1 to yield a contradiction.31 He considered the
following schema for a property φ and a function f:

∀u(∀x(x ∈ u → φ(x)) −→ (∃z(z = f(u)) & f(u) /∈ u & φ(f(u)))) .

It follows that if w = {x | φ(x)} and w is in the variable range of ∀u, then
both φ(f(w)) and ¬φ(f(w)), a contradiction. Russell’s Paradox is the case
of φ(x) being “x /∈ x” and f(x) = x. The Burali-Forti Paradox is the
case of φ(x) being “x is an ordinal number” and f(x) = the least ordinal
number greater than every ordinal number in x. Russell went on to describe
how to define “a series ordinally similar to that of all ordinals” via Cantor’s
principles for generating the ordinal numbers:
Starting with a functionf and an x such that ∃z(z = f(x)), the first term
of the series is to be f(x). Having recursively defined an initial segment
u of the series and assuming ∃z(z = f(u)) & f(u) /∈ u, the next term of
the series is to be f(u). Thus, Russell was describing what corresponds to
the defining property of the F -sets in the proof of Theorem 2.1 except for
insisting that f(u) /∈ u.
The above schema consequently implies that w = {x | φ(x)} contains a
series similar to all the ordinal numbers. In particular, as Russell observed,

29See Cantor [1932, p. 451] or van Heijenoort [1967, p. 117].
30Moore-Garciadiego [1978] and Garciadiego [1992] describe the evolution of the Burali-

Forti paradox.
31See also the discussion in Hallett [1984, pp. 180–1]. While Russell [1906] discussed

Zermelo [1904], it is unlikely that Russell made a conscious adaptation along the lines of
Theorem 2.1.
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{x | x /∈ x} contains a series similar to all the ordinal numbers, and “the
series as a whole does not form a class.”32 Hence, Russell had interestingly
correlated the structured Theorem 2.1 idea anew with the possibility of
injecting all the ordinal numbers. Whereas Theorem 2.1 with its positing
of a power set domain led to the positive conclusion that there is a well-
ordered set W satisfying F (W ) ∈ W , Russell’s positing that f(u) /∈ u
illuminated the paradoxes as necessarily generating series similar to all the
ordinal numbers.

With its new approach via choice functions on power sets, Zermelo’s [1904]
proof of the Well-Ordering Theorem provoked considerable controversy,33

and in response to his critics Zermelo published a second proof [1908] of
his theorem. The general objections raised against Zermelo’s first [1904]
proof of the Well-Ordering Theorem had to do mainly with its exacerbation
of a growing conflict among mathematicians about the use of arbitrary
functions. But there were also specific objections raised about the possible
role of ordinal numbers through rankings in the proof, and the possibility
that again the class of all ordinal numbers might be lurking. To preclude
these objections Zermelo in his second [1908] proof resorted to an approach
with roots in Dedekind [1888]. Instead of initial segments of the desired
well-ordering, Zermelo switched to final segments and proceeded to define
the maximal reverse inclusion chain by taking an intersection in a larger
setting:
Towell-order a setM using a choice functionϕ onP(M ), Zermelo defined
a Θ-chain to be a collection Θ of subsets of M such that: (a) M ∈ Θ; (b)
if A ∈ Θ, then A − {ϕ(A)} ∈ Θ; and (c) if Z ⊆ Θ, then

⋂
Z ∈ Θ. He

then took the intersection I of all Θ-chains, and observed that I is again a
Θ-chain. Finally, he showed that I provides a well-ordering ofM given by:
a ≺ b iff there is an A ∈ I such that a /∈ A and b ∈ A. Thus, I consists
of the final segments of the desired well-ordering, and the construction is
“dual” to the one provided by Theorem 2.1 and Corollary 2.2.

With the intersection approach no question could arise, presumably, about
intrusions by classes deemed too large, such as the class of all ordinal num-
bers. While his first [1904] proof featured a (transfinite) recursive construc-
tion of a well-ordering, Zermelo in effect now took that well-ordering to
be inclusion, the natural ordering for sets. He thus further emphasized the
various set theoretic operations, particularly the power set. As set theory
would develop, however, the original [1904] approach would come to be
regarded as unproblematic and more direct, leading to incisive proofs of
related results (see Section 3).

32Russell attributed this observation to G. G. Berry of the Bodleian Library, well-known
for Berry’s Paradox, given in Russell [1906a, p. 645].
33See Moore [1982, Chapter 2].
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The main purpose of Zermelo’s [1908a] axiomatization of set theory, the
first full-scale such axiomatization, was to buttress his [1908] proof by mak-
ing explicit its underlying set-existence assumptions.34 The salient axioms
were the generative Power Set and Union Axioms, the Axiom of Choice of
course, and the Separation Axiom. These incidentally could just as well have
been motivated by the first [1904] proof. With his axioms Zermelo advanced
his new view of sets as structured solely by ∈ and generated by simple opera-
tions, the Axiom of Infinity and the Power Set Axiom furnishing a sufficient
setting for the set-theoretic reduction of all ongoing mathematics. In this
respect, it is a testament to Zermelo’s approach that the argument of The-
orem 2.1 would, with the Axiom of Infinity in lieu of the Power Set Axiom
furnishing the setting, become the standard one for establishing the Finite
Recursion Theorem, the theorem for justifying definitions by recursion on
the natural numbers.35

In his axiomatization paper [1908a] Zermelo provided a new proof of the
Schröder-Bernstein Theorem, and it is noteworthy that themes of Kura-
towski [1922], to be discussed in Section 3, were foreshadowed by the proof.
Zermelo focused on the following formulation: IfM ′ ⊆M1 ⊆M and there
is a bijection g : M → M ′, then there is a bijection h : M → M1. The
following is his proof in brief, where ⊂ denotes proper inclusion:

For A ⊆ M , define f(A) = (M1 − M
′) ∪ {g(x) | x ∈ A}. Since g

is injective, f is monotonic in the following sense: if A ⊂ B ⊆ M , then
f(A) ⊂ f(B). Set T = {A ⊆ M | f(A) ⊆ A}, and noting that T is
not empty since M ∈ T , let A0 =

⋂
T . Then A0 ∈ T (and this step

makes the proof impredicative, like Zermelo’s argument used for Theo-
rem 2.1). Moreover, f(A0) ⊂ A0 would imply by the monotonicity of f
that f(f(A0)) ⊂ f(A0) ⊂ A0, contradicting the definition of A0. Conse-
quently, we must have f(A0) = A0. It is now straightforward to see that
M1 = A0 ∪ (M

′ −{g(x) | x ∈ A0}), a disjoint union, and so if h : M →M1
is defined by h(x) = x if x ∈ A0 and h(x) = g(x) otherwise, then h is a
bijection.

34Moore [1982, p. 155ff.] supports this contention using items from Zermelo’s Nachlass.
35The Finite Recursion Theorem first appeared in the classic Dedekind [1888, §125], and

his argument can be carried out rigorously in Zermelo’s axiomatization of set existence
principles. The theorem does not seem to appear in the work of Peano, who was mainly
interested in developing an efficient symbolic system. Nor does the FiniteRecursion Theorem
always appear in the subsequent genetic accounts of the numbers starting with the natural
numbers and proceeding through the rational numbers to the real numbers. A significantly
late example where the theorem does not appear is Landau [1930], with its equivocating
preface. We would now say that without the Finite Recursion Theorem the arithmetical
properties of the natural numbers would remain at best schemas, inadequate for a rigorous
definition of the rational and real numbers.
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Zermelo himself did not define the function f explicitly, but he did define
T andA0 =

⋂
T , and his argument turned onA0 being a “fixed point off”,

i.e., f(A0) = A0. This anticipated the formulations of Kuratowski [1922],
as we shall see. Another connection is to the general aim of that paper, to
avoid numbers and recursion, which Zermelo did for a specific mathematical
purpose:

The first correct proof of the Schröder-Bernstein Theorem to appear in
print was due to Felix Bernstein and appeared in Borel [1898, pp. 104–
6]. However, like proofs often given today Bernstein’s proof depended on
defining a countable sequence of functions by recursion. One of Henri
Poincaré’s criticisms of the logicists36 was that “logical” developments of
the natural numbers and their arithmetic inevitably presuppose the natural
numbers and mathematical induction, and in connection with this Poincaré
[1905, p. 24ff.] pointed out the circularity of developing the theory of
cardinalitywith the Schröder-BernsteinTheorembased onBernstein’s proof,
and therefore on the natural numbers. This point had mathematical weight,
and in 1906 Zermelo sent his new proof of Schröder-Bernstein to Poincaré.
Zermelo in a footnote in [1908a, pp. 272–3] emphasized how his proof
avoids numbers and induction altogether. He also observed that the proof
“rests solely upon Dedekind’s chain theory [1888, IV]”, and that Peano
[1906] published a proof that was “quite similar”.37 Russell on first reading
Zermelo [1908a] expressed delight with his proof of Schröder-Bernstein but

36See Goldfarb [1988] for more about Poincaré against the logicists.
37Zermelo’s footnote is Footnote 11 of van Heijenoort [1967, p. 209]. The reference to

Dedekind [1888] raises two points: First, Dedekind [1888] had arguments that can also be
construed as getting fixed points by taking intersections, but the fixed points were always
(isomorphic to) the set of natural numbers; Zermelo’s proof of Schröder-Bernstein used
the fixed point idea to get a mathematical result, and so can be regarded as mathematically
midway between Dedekind [1888] and the explicit fixed point formulations of Kuratowski
[1922], to be discussed below. Second, it turns out that Dedekind in fact had a proof like
Zermelo’s of Schröder-Bernstein already in 1887, but the proof only appeared in 1932, both
in a manuscript of 11 July 1887 appearing in Dedekind’s collected works [1932, pp. 447–9]
and in a letter of 29 August 1899 from Dedekind to Cantor appearing in Cantor’s collected
works [1932, p. 449]. As editor for the latter, Zermelo noted in a footnote that Dedekind’s
proof is “not essentially different” from that appearing in Zermelo [1908a]; while we might
today regard this to be the case, the fixed point idea is much less evident in Dedekind’s
formulation.
The reference to Peano [1906] is part of a contretemps involving Poincaré. Poincaré [1906,

pp. 314–5] published Zermelo’s proof, but then proceeded to make it part of his criticism
of Zermelo’s work based on the use of impredicative notions, the main front of Poincaré’s
critique of the logicists. Zermelo in a footnote to his [1908, p. 118] (Footnote 8 of van
Heijenoort [1967, p. 191]) expressed annoyance that Peano when referring to Poincaré [1906]
only mentioned Peano [1906], not Zermelo, in connection with the new proof of Schröder-
Bernstein but went on to argue against Zermelo’s use of the Axiom of Choice.
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went on to criticize his axiomatization of set theory.38 In the first volume
of Whitehead and Russell’s Principia Mathematica [1910–13] there was no
formal use of the class of natural numbers, and indeed the Axiom of Infinity
was avoided; while this would not satisfy Poincaré, the theory of cardinals
was developed using Zermelo’s proof.39

The Zermelian abstract generative view of sets as set forth by his [1908a]
axiomatization would become generally accepted by the mid-1930’s, the pro-
cess completed by adjunction of theAxioms ofReplacement andFoundation
and the formalization of the axiomatization in first-order logic. But as with
the Well-Ordering Theorem itself, the [1908a] axiomatization from early on
served to ground the investigation of well-orderings, with the incisive re-
sult of Friedrich Hartogs [1915] on the comparability of cardinals being a
prominent example. The early work also led to a new transformation of our
motif.

§3. Fixed point theorems. Kazimierz Kuratowski [1922] provided a fixed
point theoremwhich can be seen as a refocusing of Theorem 2.1, and thereby
recast our guidingmotif. Fixed point theorems assert, for functionsf : X →
X satisfying various conditions, the existence of a fixed point of f, i.e., an
x ∈ X such thatf(x) = x. With solutions to equations becoming construed
as fixed points of iterative procedures, a wide-ranging theory of fixed points
has emerged with applications in analysis and topology.40 Of the pioneering
work, fixed points figured crucially in Poincaré’s classic analysis [1884] of the
three-body problem. The best-known fixed point theorem in mathematics,
due to L. E. J. Brouwer [1909], is fundamental to algebraic topology.41 And
a few pages after Kuratowski’s [1922] in the same journal, Stefan Banach
[1922] published work from his thesis including what has become another
basic fixed point theorem, a result Banach used to provide solutions for
integral equations.

Kuratowski’s overall purpose in [1922] was heralded by its title, “Amethod
for the elimination of the transfinite numbers frommathematical reasoning”.
At a time when Zermelo’s abstract generative view of sets had shifted the

38Russell’s letter to Jourdain of 15 March 1908 (see Grattan-Guinness [1977, p. 109])
began: “I have only read Zermelo’s article once as yet, and not carefully, except his new
proof of Schröder-Bernstein, which delighted me.” Russell then criticized the Axiom of
Separation as being “so vague as to be useless”. For Russell, the paradoxes cannot be
avoided in this way but had to be solved through his theory of types.
39The Schröder-Bernstein Theorem in Principia is ∗73–88. In ∗94 the Bernstein and

Zermelo proofs are compared.
40See for example the account Dugundji-Granas [1982].
41The Brouwer fixed point theorem asserts that any continuous function from a closed

simplex into itself must have a fixed point; to illustrate without bothering to define these
terms, any continuous function on a closed triangle into itself must have a fixed point.
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focus away fromCantor’s transfinite numbers but the vonNeumann ordinals
had not yet been incorporated into set theory, Kuratowski provided an ap-
proach for replacing definitions by transfinite recursion on ordinal numbers
by a set-theoretic procedure carried out within Zermelo’s [1908a] axiomati-
zation. Kuratowski’s fixed point theorem served as a basis for that approach
and can be viewed as a corollary of Theorem 2.1:

For a function f and set X , f“X = {f(x) | x ∈ X} is the image of X
under f. Again to affirm, ⊂ is proper inclusion.

Theorem 3.1 (Kuratowski’s Fixed Point Theorem [1922, p. 83]). Suppose
that X ⊆ P(E) for some E, and whenever C ⊆ X ,

⋃
C ∈ X . Suppose

also that f : X → X satisfies x ⊆ f(x) for every x ∈ X . Then there is a
fixed point off. In fact, there is a uniqueW ⊆ X well-ordered by⊂ satisfying:

(a) For every x ∈W , x =
⋃
f“{y ∈W | y ⊂ x}, and

(b)W contains exactly one fixed point of f, namely
⋃
f“W .

Proof. Adapting the proof of Theorem 2.1, call Y ⊆ X an f-set iff Y is
well-ordered by⊂, and for each x ∈ Y ,

⋃
f“{y ∈ Y | y ⊂ x} = x. This last

condition devolves to two cases: either x has an immediate⊂-predecessor y
in which case x = f(y), or else x has no immediate ⊂-predecessor and so
inductively x =

⋃
{y ∈ Y | y ⊂ x}.

As in the proof of Theorem 2.1, the unionW of all the f-sets is again an
f-set and so satisfies (a) above. Corresponding to Theorem 2.1(b) we have⋃
f“W ∈ W , and so

⋃
f“W is the ⊂-maximum element of W . Next, if

a y ∈W has an ⊂-successor inW , then by previous remarks about f-sets,
f(y) is the immediate ⊂-successor of y, and so y cannot be a fixed point.
Also, the⊂-maximum element

⋃
f“W ofW must be a fixed point off, else

W ∪ {f(
⋃
f“W )} would have been an f-set, contradicting the definition

ofW . Hence, we have (b) above. Finally, the uniqueness ofW follows as in
Theorem 2.1. ⊣

This theorem could also have been established by applying Theorem 2.1
directly to F : P(X ) → X given by: F (Y ) =

⋃
(f“Y ). For the resulting

〈W,<〉 it follows by induction along < that < and ⊂ coincide onW . With
that, Theorem 3.1(b) can be verified forW . However, as our proof empha-
sizes, Theorem 3.1 is based on an underlying ordering, namely⊆, which can
be used directly.
Kuratowski’s Theorem 3.1 strictly speaking involves two levels: It is about
members of a set X , but those members are also subsets of a fixed set E and
so are naturally ordered by ⊆. Theorem 2.1 had also featured an interplay
between levels: subsets of a set (corresponding to E in Theorem 3.1) and
its members. However, with maps f : X → X satisfying x ⊆ f(x) and
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their fixed points Kuratowski refocused the setting to a single level of sets
mediated by ⊆.
Kuratowski actually dealt more with a dual form of Theorem 3.1 resulting
from replacing “

⋃
” by “

⋂
”; “⊂” by “⊃”; and “x ⊆ f(x)” by “f(x) ⊆

x”. His argument for this dual form generalized Zermelo’s second [1908]
proof of the Well-Ordering Theorem, which together with related work of
Gerhard Hessenberg [1909] Kuratowski acknowledged.42 In terms of the
Θ-chains of Zermelo [1908] as described toward the end of Section 2, the
generalization corresponds to replacing the condition (b) “if A ∈ Θ, then
A−{ϕ(A)} ∈ Θ”whereϕ is a choice function by “if x ∈ Θ, thenf(x) ∈ Θ”.
Indeed, Kuratowski’s first application was to derive Zermelo’sWell-Ordering
Theorem as a special case.

Kuratowski went on to use Theorem 3.1 and its dual form to carry out the
“elimination of the transfinite numbers” from various arguments, especially
those in descriptive set theory that had depended on explicit transfinite
recursions. Most notably, Kuratowski established with the Axiom of Choice
the following proposition:

Let A ⊆ E be sets, R a property, and Z = {X ⊆ E | A ⊆
X & X has property R}. Suppose that for every C ⊆ Z well-
ordered by ⊆,

⋃
C ∈ Z. Then there is a ⊆-maximal member of

Z.

This proposition can be seen as a version of Zorn’s Lemma as originally
formulated by Max Zorn [1935]:

Suppose that Z is a collection of sets such that for every C ⊆ Z
linearly ordered by ⊆,

⋃
C ∈ Z. Then there is an ⊆-maximal

member of Z.

AlthoughKuratowski’s proposition is ostensibly stronger thanZorn’sLemma
in that it only required

⋃
C ∈ Z for well-ordered C , it is equivalent by the

proof of Theorem 3.3 below.43 Zorn’s Lemma is more generally accessible in
that its statement does not mention well-orderings.

Set theorywas veritably transformed in the decades followingKuratowski’s
work in ways not related to Theorem 3.1, but our motif emerged again in
connection with Zorn’s Lemma. In a now familiar generalization in terms of
partially ordered sets Zorn’s Lemma soon made its way into the expository
work of Nicolas Bourbaki, first appearing in his summary of results in set
theory [1939, p. 37] (§6, Item 10) for his series Eléments de Mathématique.

42The idea of rendering well-orderings in set theory in terms of ⊇ occurred in Hessenberg
[1906] and was pursued by Kuratowski [1921]. See Hallett [1984, p. 256ff.] for an analysis of
Zermelo’s [1908] proof in this light.
43The first to provide a proposition similarly related to Zorn’s Lemma was Felix Hausdorff

[1909, p. 300]. See Campbell [1978] and Moore [1982, p. 220ff.] for more on Zorn’s Lemma
and related propositions.
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There Bourbaki in fact formulated a partial order generalization of Theo-
rem 3.1 which he called the “fundamental lemma”. To set the stage, we first
develop some terminology:
Suppose that 〈P,≤P〉 is a partially ordered set, i.e., ≤P is a reflexive,
transitive, and anti-symmetric relation on P. <P is the strict order derived
from ≤P . C ⊆ P is a chain iff C is linearly ordered by ≤P . For A ⊆ P,
supP(A) is the least upper bound of A with respect to ≤P , assuming that it
exists.

〈P,≤P〉 is inductive iff for every chain C ⊆ P, supP(C ) exists.

Note that every inductive partially ordered set 〈P,≤P〉has a≤P-least element,
namely supP(∅). Finally, a functionf : P → P is expansive iff for anyx ∈ P,
x ≤P f(x).

Theorem 3.2 (Bourbaki’s Fixed Point Theorem [1939, p. 37]). Suppose
that 〈P,≤P〉 is an inductive partially ordered set, and f : P → P is expansive.
Then there is a fixed point of f. In fact, there is a uniqueW ⊆ P well-ordered
by <P satisfying:

(a) For every x ∈W , x = supP(f“{y ∈W | y <P x}), and

(b)W contains exactly one fixed point of f, namely supP(f“W ).

Proof. The proof is essentially the same as for Theorem 3.1, with <P
replacing ⊂ and supP replacing

⋃
. ⊣

This theorem completed the transformation of our guiding motif begun by
Kuratowski’s Theorem 3.1. With an abstract formulation in terms of partial
orders, the two levels of Theorem 3.1 (E and X ⊆ P(E)) were left behind.
Stressing the innovation of bringing in the fixed point idea, Bourbaki wrote a
paper [1949/50]44 giving a proof of Theorem 3.2 and showing moreover how
both Zermelo’s Well-Ordering Theorem and Zorn’s Lemma (in Bourbaki’s
partial order version) follow from Theorem 3.2. Nevertheless, we might
today regard this work as a straightforward generalization of Kuratowski
[1922], even to the extent that Bourbaki’s proof of Theorem 3.2 was along
the lines of Zermelo’s second [1908] proof of the Well-Ordering Theorem.
In later editions of Bourbaki’s 1939 summary, Theorem 3.2 is intriguingly
deleted, surfacing only as an exercise in his full treatment of set theory
[1956, p. 49] (Chapter 3, §2, exercise 6). Interestingly, the exercise gives
a formulation in the style of Zermelo’s second [1908] proof of the Well-
Ordering Theorem, but then suggests a use of a lemma (Chapter 3, §2,
Lemma 3 and a version of Theorem 2.1) along the lines of Zermelo’s first
[1904] proof.

44In [1949/50] Bourbaki referred to himself as “à Nancago”.
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Referring to Bourbaki’s [1939] “fundamental lemma” and Zermelo’s two
proofs for theWell-Ordering Theorem, Helmuth Kneser [1950], a student of
David Hilbert, provided a proof of Theorem 3.2 much as given above, i.e.,
in the style of Zermelo’s first [1904] proof. Kneser also pointed out that the
partially ordered set need not be quite inductive; it suffices to have a function
g that chooses for each chain C ⊆ P an upper bound g(C ).45 This was part
of Kneser’s observation that Theorem 3.2 provides a straightforward means
to prove (a partial order version of) Zorn’s Lemma from the Axiom of
Choice. However, Szele [1950] and Weston [1957] pointed out that a more
direct proof is possible; essentially, the proof of Theorem 2.1 can be adapted,
and we give such an argument:

Theorem 3.3 (AC). Suppose that 〈P,≤P〉 is a partially ordered set such that
every chainC ⊆ P has a≤P-upper bound. ThenP has a≤P-maximal element.

Proof. Fix x0 ∈ P. Using the Axiom of Choice, let g : P(P)→ P satisfy
g(C ) = x0, unless C is a chain with ≤P-least element x0 and a ≤P-upper
bound in P −C , in which case g(C ) is such an upper bound. Adapting the
proof of Theorem 2.1, call Y ⊆ P a g-set iff Y is well-ordered by <P , has
x0 as its ≤P-least member, and for each x ∈ Y , g({y ∈ Y | y <P x}) = x.
Then as in the proof of Theorem 2.1, the unionW of all the g-sets is again a
g-set, and g(W ) = x0. This last implies thatW has a≤P-maximum element
which then is also a ≤P-maximal element of P. ⊣

This short proof with its interplay between P(P) and P harkens back to
Theorem 2.1 again. Thus, our motif has come full circle after progress-
ing from Theorem 2.1 (sets and members) through Theorem 3.1 (sets and
inclusion) to Theorem 3.2 (partial orders).
The following version of Zorn’s Lemma follows analogously:

Suppose that 〈P,≤P〉 is an inductive partially ordered set. Then
P has a ≤P-maximal element.

(†)

It is now well-known that this version also implies Theorem 3.3: Given a
〈P,≤P〉 as in Theorem 3.3, let Q be the set of chains of P. Then 〈Q,⊆〉 is an
inductive partially ordered set. Hence, by (†), Q has an ⊆-maximal element
M . But then, any ≤P-upper bound ofM must be a ≤P-maximal element.
In a new chapter of the seventh edition of Bartel van der Waerden’s classic
Algebra [1966, p. 206ff.], Theorem 3.2 is established and from it both Zorn’s
Lemma in the (†) version andZermelo’sWell-Ordering Theorem are derived.

45Bourbaki [1939] defined “inductive” partially ordered sets as we have done. However,
with his penchant for generalization and perhaps influenced by Kneser [1950], Bourbaki in
the later editions of his full treatment of set theory weakened the definition of “inductive”
to chains just having upper bounds, not necessarily least upper bounds. This caused an
ambiguity, for the hint to their aforementioned exercise (Chapter 3, §2, exercise 6) no longer
works unless a function g choosing upper bounds for chains is given beforehand.
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Van der Waerden acknowledged following Kneser [1950], and according to
the foreword this was one of the main changes from the previous edition.
In Serge Lang’s popular Algebra [1971], Theorem 3.2 is established with
the proof of Bourbaki [1949/50], and from Theorem 3.2 both the (†) and
Theorem 3.3 versions of Zorn’s Lemma are derived. Notably, with the
argument so structured Lang did not even point out the essential use of the
Axiom of Choice.46

Moving forward to the present, we see that our motif has spread beyond
set theory in several guises and in new roles. In general, the existence of
a fixed point as in Theorem 3.2 underlies all modern theories of inductive
definitions.47 With the rise of computer science such theories have gained
a wide currency, and a variant of Theorem 3.2 has become particularly
pertinent.

Suppose that 〈P,≤P〉 is a partially ordered set and f : P → P. f ismono-
tonic iff for any x ≤P y ∈ P, f(x) ≤P f(y). There can be expansive maps
which are not monotonic, and monotonic maps which are not expansive. w
is a least fixed point of f (with respect to ≤P) iff w is a fixed point of f, and
whenever f(y) ≤P y, w ≤P y. Clearly there is at most one least fixed point
of f.

Theorem 3.4. Suppose that 〈P,≤P〉 is an inductive partially ordered set and
f : P → P is monotonic. Then there is a least fixed point of f. In fact, there
is aW ⊆ P well-ordered by <P satisfying:

(a) For every x ∈W , x = supP(f“{y ∈W | y <P x}), and

(b) supP(f“W ) is the least fixed point of f.

Proof. The proof is essentially the same as for Theorems 3.1 and 3.2.48 ⊣

Theorem 3.4 can also be seen as a corollary of Theorem 3.2: From the
hypotheses of Theorem 3.4 it follows by straightforward arguments that

Q = {x ∈ P | x ≤P f(x) & ∀y(f(y) ≤P y → x ≤P y)}

46Earlier in his text Lang [1971, p. 507] had written: “We show how one can prove Zorn’s
Lemma from other properties of sets which everyone would immediately grant as acceptable
psychologically.” In the argument corresponding to Theorem 3.3, Lang [1971, p. 510] then
blithely wrote: “Suppose A does not have a maximal element. Then for each x ∈ A there
exists an element yx ∈ A such that x < yx .” It is as if the mighty struggles of the past never
took place!
47See Aczel [1977] for a survey of the theory of inductive definitions in extensions of

recursion theory and Moschovakis [1974] for a detailed development (for the “positive”
case) in abstract structures.
48Kuratowski [1922, p. 83] in the context of sets and inclusion had in fact considered

monotonic functions leading to least fixed points, but with the standing assumption of
expansiveness for functions.
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ordered by ≤P is an inductive partially ordered subset (with the same
suprema of chains as P) such that f“Q ⊆ Q. But since f is expansive
on Q, the conclusions of Theorem 3.4 follow from those of Theorem 3.2.
In the early 1970’s Dana Scott and Christopher Strachey developed the
now standard denotational semantics for programming languages in terms
of algebraic structures, devised by Scott, called continuous lattices.49 The
theory was then generalized to what has come to be called complete partially
ordered sets (CPO’s), but what we called inductive partially ordered sets. In
the language of CPO’s a weak form of Theorem 3.4, where the function
f in the hypothesis is required to satisfy a continuity condition subsuming
monotonicity, has become a cornerstone of denotational semantics. This
weak form is simple to establish because of the imposed continuity condition
and suffices for theories of computation. As Scott himself pointed out, this
weak form is in fact a “semantic” version of the First Recursion Theorem of
Kleene [1952, p. 348] on least fixed point, recursive solutions for recursive
functionals.50

Although their full strength is not required, stronger fixed point theorems
have nonetheless come to be cited in computer science, perhaps for historical
contextualization or in anticipation of mathematical generalizations. One
such theoremwas established by Alfred Tarski in 1939 (see his [1955, p. 286])
and is the version of Theorem 3.4 for complete lattices (i.e., partially ordered
sets in which every subset, not only chains, has a least upper bound, and
hence, it can be shown, every subset also has a greatest lower bound). The
version of Tarski’s result corresponding to Theorem 3.1, i.e., for sets and
inclusion, had been established earlier by Bronisław Knaster [1928]. But
in these results the existence of a well-ordered chain is not necessary for
the proofs. On the other hand, well-orderings are intrinsic to the proofs
of Theorems 3.2 and 3.4 as is made explicit in their (a)’s and (b)’s; in
the general set-theoretic context transfinite well-orderings are necessarily
involved. Nonetheless, the fixed point results of Theorems 3.2 and 3.4
themselves have come to be cited in computer science, even though transfinite
well-orderings are only relevant in the higher reaches of abstract theories of
computation.51

49See Stoy [1977] for an authoritative account of Scott-Strachey denotational semantics.
The algebraic theory of continuous lattices, with motivations from a variety of quarters, has
since been considerably elaborated; see Gierz et al. [1980].
50See Scott [1975] for the interplay of denotational semantics and recursion theory. The

(Second) Recursion Theorem of Kleene [1938], [1952, p. 352ff.] is a fixed point theorem
much deeper than weak versions of Theorem 3.4 in that it provides fixed points for (partial)
recursive procedures which even depend on their numerical codes and as such is a central
result of Recursion Theory. The theorem is a generalization of the core of Gödel’s proof of
his Incompleteness Theorem.
51Surveying recent treatments of Theorems 3.2 and 3.4 by those emphasizing the signifi-

cance of these results in computer science, the text Davey-Priestley [1990, p. 94ff.] establishes
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Today, of course, Zorn’s Lemma provides the most general setting for al-
gebra, although in various constructive contexts a closer examination shows
that special cases of the lemma suffice. Analogously, our guiding motif as
embodied in Theorems 3.2 and 3.4 is coming to play a background role for
computer science.
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[1883] , Über unendliche, lineare punktmannigfaltigkeiten. V, Mathematische An-
nalen, vol. 21, pp. 545–591, published separately as Grundlagen einer allgemeinen Man-
nigfaltigkeitslehre. Ein mathematisch-philosophischer Versuch in der Lehre des Unendlichen,
B. G. Teubner, Leipzig, 1883; reprinted in [1932] below, pp. 165–209.
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[1928] BronisŁaw Knaster, Un théorème sur les fonctions d’ensembles, Annales de la
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