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Abstract: MXene and graphene based thin, flexible and low-density composite were prepared
by cost effective spray coating and solvent casting method. The fabricated composite was
characterized using Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscope
(SEM), X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray (EDX). The prepared
composites showed hydrophobic nature with higher contact angle of 126◦, −43 mN·m−1

wetting energy, −116 mN·m−1 spreading Coefficient and 30 mN·m−1 lowest work of adhesion.
The composites displayed excellent conductivity of 13.68 S·cm−1 with 3.1 Ω·sq−1 lowest sheet
resistance. All the composites showed an outstanding thermal stability and constrain highest weight
lost until 400 ◦C. The MXene-graphene foam exhibited excellent EMI shielding of 53.8 dB (99.999%)
with reflection of 13.10 dB and absorption of 43.38 dB in 8–12.4 GHz. The single coated carbon fabric
displayed outstanding absolute shielding effectiveness of 35,369.82 dB·cm2·g−1. The above results
lead perspective applications such as aeronautics, radars, air travels, mobile phones, handy electronics
and military applications.

Keywords: graphene; MXene; EMI shielding; composite; fabric

1. Introduction

The rapid advancement in intricate packing of modern electronic systems causes undesirable
radiation; this inevitable radiation is known as electromagnetic interference (EMI), which has negative
effects on humans and neighboring electronic systems. EMI pollution causes health hazards such
as languidness, insomnia, nervousness, and headaches [1–4]. Electromagnetic compatibility can be
achieved by using various materials such as textiles, polymer-based composites, MXene, and fabrics.
EMI shielding is expressed in decibels (dB) [5–15]. Conductive and nonconductive polymers such as
poly-p-phenylene-benzobisthiazole (PBT) [1,4,5], polythiophene (PTh) [1], Polyvinylidene fluoride
(PVDF) [7,8,13], polyacrylic acid (PAA) [1], styrene polymethyl methacrylate (SPMMA) [4,5], and fillers
such as metal nanoparticles [14–18], magnetic materials [13,14], carbon black, graphite [11], carbon
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nanotubes [9–12], graphene (GN) [19], and carbon fibers (CF) [17] are used to tune the properties of EMI
shielding materials [20]. The polymer Nano composites (PNC) are widely used as advance engineering
material in different environment. The functional materials, molecular dynamics, molecular details and
micro structure of PNC are important for the application [21]. PNC consist Nano fillers play important
role in generating conductive networks and combination of components alter the physicochemical
properties of the composites [22–25]. Further, surface properties of the materials can be transformed in
to hydrophobic/lyophilic by coating nanoparticle such as TiO2, ZnO and silica aerogel or polymers like
polydimethylsiloxane (PDMS), polytetraflouroethylene (PTFE). The cross link/hydrogen bond between
constituents cause by surface functional groups. The cross links improve the thermo mechanical
properties [26–28]. Furthermore, in the polymer foams the voids form due to the different nucleation
time of constitutional solid and other external factor like temperature pressure [29]. Advanced EMI
shielding materials should be lightweight, flexible, cost effective, dielectric, and multifunctional,
and should possess a tunable absorption, high thermal resistance, intrinsic conductivity, large aspect
ratio, high corrosion resistance, and good magnetic and electronic properties [19,20,30–34].

Recently, flexible, corrosion resistant, high-density, thin carbon-based materials with satisfactory
electrical conductance have become attractive candidates for EMI shielding applications such as
in the aerospace, aircraft, automobile, and modern electronics fields. Hence, wet-laid synthetic
nonwoven fabrics fulfil these criteria with good EMI shielding [34]. In addition, carbon-carbon-based
composites possess greater EMI shielding effectiveness than carbon-based polymer matrices. Further,
continuous carbon fibers are preferred to discontinuous fibers in carbon-based EMI shielding
materials [35]. This is because the properties of carbon fiber that affect EMI shielding those are
the length and array [36]. Further, MXene resembles graphene, is an attractive engineering material
and used as filler exploited to create flexible electronic devices and other engineering materials [37].
The EMI shielding range of most graphene/PVDF composites of various thicknesses has been reported
to be in the range of 20–30 dB. In addition, the graphene can be functionalized by using reduction,
oxidation, metal nanoparticles, organic molecules and polymers for various applications like solar cell,
antibacterial materials and the EMI shielding of graphene/PVDF has been enhanced by the decoration
of nanoparticles [38–42].

Two-dimensional MXenes are explored intensively for various applications including EMI
shielding. MXenes are sprouting transition metal (Ti, V, Cr, Nb, and Ta) carbides/nitrides with
universal formula Mn+1XnTx (n = 1, 2, and 3), where M is an early transition metal, X is carbon
or nitride, and Tx is a surface functional group (−O, =O and F). MXenes are generated from the
corresponding layered MAX phase with the general formula Mn+1AXn by selective engraving of the
A-layer (group 13/14 elements) created by a weak M-A bond sandwiched between a strong M-X bond.
Minimally intensive layer-delamination (MILD) etching is carried out using the LiF/HCl method,
which is advantageous over clay etching in which Hydrogen fluoride (HF) is utilized under various
etching conditions [43–47]. Intercalation and exfoliation are conducted using urea, dimethyl sulfoxide
(DMSO), tetramethylammonium hydroxide (TMAOH), NH4OH, tetrabutylammonium hydroxide
(TBAOH), and sonication. These exfoliation techniques are inevitable in the clay method. However,
LiF/HCl-based in-situ mild etching is highly preferable owing to the number of steps, level of defects
and risk, and the fact that exfoliation can be achieved through manual shaking. However, sonication
at low temperature and in inert environments (Ar) is preferable [34]. MXene thin-films and foams
exhibit the highest EMI shielding in the X-band region. EMI shielding can be achieved by absorption,
reflection, and multiple reflection. The MXene film enables internal multiple reflection which facilitates
absorption. The reflection on the surface due to the electron and layered structure encourages multiple
reflection. When electromagnetic radiation hits the surface, it induces electron mobility (ohmic loss).
The lightweight foaming materials are attractive candidate over metal-shielding materials as the latter
have higher densities which limit the application range in terms of aerospace [34,35].

In this study, we develop a graphene-flake (GN) coated carbon-fiber reinforced-matrix composite
(MC) and solution-casting MXene graphene foam, which exhibit a high EMI shielding effect in the
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S-band region. The required thickness is achievable by adjusting the spraying and drying cycles.
Further, we developed MXene graphene foam with internal hollow sphere with surface imbedded
balls. Consequently, we analyze the following parameters in detail; EMI shielding, morphology of
GN-coated matrix and MXene-graphene foam, electrical conductivity, constitutional chemical species,
elemental percentage, and hydrophobic nature. In addition, the pristine carbon-fiber-reinforced
matrix composite, graphene, graphene oxide, and reduced graphene oxide are denoted as MC, GN,
GNO, and rGNO, respectively. The GN, GNO and rGNO coated fabrics are denoted as GNMC,
GNOMC, and rGNOMC, whereas the MXene-graphene coated fabric, MXene-graphene composite,
and MXene-graphene oxide composite are symbolized as MGNMC, MGNC, and MGNOC, respectively.

2. Materials and Methods

2.1. Materials

Graphene (GN) (M-25, 99.5%, average size and thickness of 25 µm and 7 nm, respectively) was
obtained from Ditto Technology Co. Ltd., (Gyeonggi-do, Seoul, Korea). Dimethylformamide (DMF)
99.8 w/w%, lithium fluoride (LiF) (98%, 300 mesh), Polyacrylic acid (PAA), and Polyacrylamide (PAM)
were purchased from Sigma Aldrich (Seoul, Korea). Polyvinylidene fluoride (PVDF) (melting point of
155–166 ◦C) was purchased from Alfa Aesar (Seoul, Korea). Hydrochloric acid (HCl-35%) and nitric
acid (HNO3-70%) were supplied by Samsung Chemical Co., Ltd. (Seoul, Korea), anhydrous lithium
chloride (LiCl) was purchased from Tokyo Chemical Industry Co., Ltd (Tokyo, Japan), and Ti3AlC2

was acquired from Forsman Scientific Co., Ltd. (Beijing, China). Carbon fiber (fiber diameter 7 µm,
6 mm) and polyethylene terephthalate (PET) binder (fiber diameter 2.2 dtex, 5 mm) were purchased
from TORAY Product (Osaka, Japan). No purification methods other than those stated were utilized
for the chemicals.

2.2. Preparation of Graphene Oxide (GNO) and Reduced Graphene Oxide (rGNO)

A total of 1 g of graphene was mixed with 50 mL of HNO3 and stirred at room temperature
for 12 h. The reacted graphene was washed with deionized water until it reached a neutral pH.
The resulting black flakes were GNO, and these were dried at 80 ◦C for 24 h. Equal amounts of
GNO and NaBH4 were mixed together in deionized water and stirred at room temperature for 12 h.
The resultant product was washed several times with deionized (DI) water and dried at 80 ◦C for 24 h.
The obtained product was rGNO.

2.3. Preparation of MXene and MXene Colloidal Solution

Equal amounts of Ti3AlC2 and LiF were immersed in 20 mL of 6M HCl solution and stirred at
35 ◦C for 24 h. The resultant mixture was washed with DI water (pH 6) several times by centrifuging
at 3500 rpm for 5 min, and the black flakes were dried at 100 ◦C for 12 h in a vacuum oven. A total of
0.1 g of MXene was dispersed in 10 mL of DI water by sonication for 1 h in an ice bath. The resultant
exfoliated solution was centrifuged at 3500 rpm for 30 min. The supernatant was collected and stored
at 5 ◦C for the coating process.

2.4. Preparation of Carbon Fabric

Carbon fiber, PET-binder fiber with a 4:1 weight ratio, and 0.3 wt.% of PAM were dispersed in
DI water. Then, the mixture was rotated at 500 rpm for 10 min. A web was produced using a general
wet-laid method. During this process, a drum dryer was used with a surface temperature of 140 ◦C
and a speed of 7 m·min−1. The obtained fabric density was 20 g·m−2.

2.5. Fabrication of Composite (MC)

A series of GN-coated MCs were prepared by a cost-effective spray-coating process. MC was
spray-coated using 3 g·L−1 of GN, GNO, and rGNO with a 5 g·L−1 PVDF dispersed solution of DMF.
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After the coating process, the fabrics were subjected to drying at 100 ◦C for 5 min in a drying oven.
This process was repeated up to ten cycles to alter the quantity of GN coated on the MC in each
case. MNNC and MGNOC were fabricated using a solvent-casting method; 5 g of PVDF, 3 g of GN,
and equal amounts of PAA and LiCl (0.3 g) were stirred in a 50 mL DMF solution at room temperature
for 12 h. The resultant mixture was poured into a casting plate and evaporate DMF in vacuum oven at
80 ◦C (pressure below 0.8 atm). Then, 100 mL of colloidal MXene solution was added and evaporation
occurred under the same condition. Finally, the resultant film was separated from the casting plate.

2.6. Characterization

The density was measured using a laser flash apparatus, LFA457 (NETZCH, Seoul, Korea).
A high-resolution Raman spectrophotometer Jobin Yvon, LabRam HR Evolution (Horiba, Tokyo, Japan)
was used to identify the structural features of MC, GN, GNO, rGNO, MXene, and GN-based and
MXene composite. The morphologies of the fabrics were investigated using a field-emission scanning
electron microscope (SEM, S-4800; Hitachi, Tokyo, Japan). The X-ray diffraction patterns of the
materials were recorded using a high-power X-ray diffractometer, D/max-2500V/PC (Ragaku, Tokyo,
Japan) with Cu (Kα). The elemental percentages and chemical environments were analyzed using XPS
with a spot-size of 30–400 µm at 100 W of Emax (Al anode) K-Alpha, Thermo Fisher (East Grinstead,
UK). A contact angle meter, Phonix-300A (S.E.O. Co., Ltd., Suwon, Korea), was used to analyze the
wetting ability of the surfaces of the composites. A thermal analyzer, DSC TMA Q400 (TA Instruments
Ltd., New Castle, DE, USA), was used to measure the thermogravimetric data. The EMI shielding
effectiveness (SE) of the composites were recorded using an EMI shielding tent, ASTM-D4935-10,
ASTM International (West Kentucky, PA, USA) at room temperature (For s band). The Savitzky–Golay
function (Origin 2017 graphing and analysis, OriginLab; Boston, MA, USA) was used to plot the
data. The electrical conductivities were measured using a four-probe method FPP-RS8, DASOL ENG
(Seoul, Korea). The thicknesses were measured using a Mitutoyo thickness 2046S dial gage (Mitutoyo,
Kanagawa, Japan). The electromagnetic characteristics of the specimens were measured using a
vector network analyzer (VNA, Agilent N5230A, Agilent Technologies, Santa Clara, CA, USA) and
a rectangular wave guide with the frequency ranging from 8.2 GHz to 12.4 GHz. The samples were
prepared by cutting the free-standing film into rectangular shapes (width is 22.16 mm and height is
10.16 mm) (For X band).

3. Results

3.1. Structural Characterization

3.1.1. Scanning Electron Microscopic (SEM) Analysis of Morphology

SEM images were used to analyze the surface topological morphology of the Ti3AlC2, Ti3C2Tx,
graphene, MXene composites, and uncoated fabric (MC). Virtually the cracks and annular gaps are
entailing with fiber surfaces of MC (Figure 1a,d). The SEM image of MC (Figure 1a) expresses the
porous, smooth, and clean nature of the surfaces, which consist of haphazardly packed carbon fibers
and GN, GNO, and rGNO. They are oriented randomly and grooves remain owing to the wrinkly
nature of graphene (Figure 1b,e) [48]. GNO is disseminated planar in nature (rigid stack) over the MC
composite, which exhibits a different pattern to GN and rGNO [49]. This phenomenon is attributed to
the presence of carboxylic groups and the flat nature (Figure 1c) of the GNO regulated arrangement of
the graphene flakes on MC. In addition, the relevantly sized GN flakes could fill the fissures during
fabrication (Figure 1b–e). This could be described in terms of the magnitude of the GN flakes used,
and the size of the carbon fibers and gaps present in the fabric. The diameter of the carbon fibers is
approximately 7–9 µm, whereas the average size of the GN flakes is 25 µm. Thus, the large size of the
GN flakes prevents homogeneous coating of the smaller carbon fiber in the carbon fabric, as shown in
Figure 1b–e. As a result, the majority of the pores are covered by carbon flakes owing to infiltration
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in the carbon fabric while smaller GN flakes (2–5 µm) are deposited on the surface of the carbon
fiber (Figure 1d). Aggregation of GN at the carbon-fiber (CF) joints was observed and is shown in
Figure 1b,d,e; this may enhance the hydrophobicity, EMI shielding, and electrical conductivity. Hence,
the porosity of MC was attenuated by the coating process (Figure 1b–e) and alignment of the GN
flakes can be tuned by oxidation (Figure 1c). This appears to be true based on our study. Ti3AlC2 and
Ti3C2Tx are layered materials that are like graphite (Figure 1f,g) [50]. The gaps in Ti3C2Tx (Figure 1g)
indicate that effective eradication of Al, and EDX strengthens this statement (Figure S3b). The surface
of MXene-graphene foam illustrates the arrangement of the GN flakes and MXene with small pores
(Figure 1h–k), where one graphene flake accommodates several MXene flakes. This could be an
effective way to enhance multiple reflection and absorption. Moreover, interconnected MXene and
graphene are responsible for electron mobility. The cross-sections of MGNC and MGNOC confirm
that the formation of the foam, which is a highly attractive structural requirement for lightweight
EMI shielding (Figure 1j,k) [34,35]. The cross-sections of MGNC and MGNOC visually confirm
the foam structure (Figure 1j–l). It is obvious that the pore size of MGNOC is smaller than that of
MGNC. This can be explained by the thickness of the material. The thicknesses of GNMC, GNOMC,
rGNOMC, MGNC, and MGNOC are 0.0191, 0.0174, 0.0163, 0.0192, 0.035, and 0.0243 cm, respectively.
The thickness of MGNOC is smaller than that of MGNC, which means that the pores in MGNOC
are small and GNO is arranged in a flat stack. Further, the cross section of coated fabric revealed the
infiltration of GN, GNO, rGNO and MXene (Figure S2a–f). Most of the GNO flake laid on the surface
of fabric while few penetrate (Figure S2c). The MGNC, MGNOC possessed internal hollow sphere
with numerous ball like structure (Figure S2g,h). The size of the hollow sphere was large in MGNC
whereas GNO densely packed with small spheres (Figure S2g,h). The EDX confirms the constitutional
elements of Ti3AlC2 and Ti3C2Tx (Figure S3a,b) and that the etching removed Al and introduced F and
Cl, derived from etching solution. The ratio F/O is 6.27 and F/Cl is 100.15, confirming that F is the
major surface functional group. The mapping of the MGNC inveterate distribution of the elements in
the composites are shown in Figure S3c–f.

Materials 2018, 11, x FOR PEER REVIEW  5 of 19 

 

electrical conductivity. Hence, the porosity of MC was attenuated by the coating process (Figure 1b–

e) and alignment of the GN flakes can be tuned by oxidation (Figure 1c). This appears to be true based 

on our study. Ti3AlC2 and Ti3C2Tx are layered materials that are like graphite (Figure 1f,g) [50]. The 

gaps in Ti3C2Tx (Figure 1g) indicate that effective eradication of Al, and EDX strengthens this 

statement (Figure S3b). The surface of MXene-graphene foam illustrates the arrangement of the GN 

flakes and MXene with small pores (Figure 1h–k), where one graphene flake accommodates several 

MXene flakes. This could be an effective way to enhance multiple reflection and absorption. 

Moreover, interconnected MXene and graphene are responsible for electron mobility. The cross-

sections of MGNC and MGNOC confirm that the formation of the foam, which is a highly attractive 

structural requirement for lightweight EMI shielding (Figure 1j,k) [34,35]. The cross-sections of 

MGNC and MGNOC visually confirm the foam structure (Figure 1j–l). It is obvious that the pore size 

of MGNOC is smaller than that of MGNC. This can be explained by the thickness of the material. The 

thicknesses of GNMC, GNOMC, rGNOMC, MGNC, and MGNOC are 0.0191, 0.0174, 0.0163, 0.0192, 

0.035, and 0.0243 cm, respectively. The thickness of MGNOC is smaller than that of MGNC, which 

means that the pores in MGNOC are small and GNO is arranged in a flat stack. Further, the cross 

section of coated fabric revealed the infiltration of GN, GNO, rGNO and MXene (Figure S2a–f). Most 

of the GNO flake laid on the surface of fabric while few penetrate (Figure S2c). The MGNC, MGNOC 

possessed internal hollow sphere with numerous ball like structure (Figure S2g,h). The size of the 

hollow sphere was large in MGNC whereas GNO densely packed with small spheres (Figure S2g,h). 

The EDX confirms the constitutional elements of Ti3AlC2 and Ti3C2Tx (Figure S3a,b) and that the 

etching removed Al and introduced F and Cl, derived from etching solution. The ratio F/O is 6.27 and 

F/Cl is 100.15, confirming that F is the major surface functional group. The mapping of the MGNC 

inveterate distribution of the elements in the composites are shown in Figure S3c–f. 

 

Figure 1. Microstructural images from scanning electron microscopy of (a) surface of MC (×500), (b) 

surface of GNMC (×300), (c) surface of GNOMC (×300), (d) fiber surface of GNO-coated GNOMC 

(×2000), (e) surface of rGNOMC (×300), (f) Ti3AlC2 (×100,000), (g) Ti3C2Tx (×50,000), (h) surface of 

MGNC (×300), (i) MXene on surface of MGNC (×3000), (j) cross-section of MGNC (×1000), (k) cross-

section of MGNC (×3500) (l) cross-section of MGNOC (×500). 

3.1.2. Raman Spectroscopic Analysis of the Structure of Carbon-Based Materials 

Raman spectroscopy is a prominent tool with which to investigate the structural and crystalline 

nature of Ti3C2Tx, and carbon-based materials including graphite materials [32,33]. In addition, the 

level of defect and disorder can be predicted by using (ID/IG) [6]. The ID/IG value of GN, GNO, rGNO 

Figure 1. Microstructural images from scanning electron microscopy of (a) surface of MC (×500),
(b) surface of GNMC (×300), (c) surface of GNOMC (×300), (d) fiber surface of GNO-coated GNOMC
(×2000), (e) surface of rGNOMC (×300), (f) Ti3AlC2 (×100,000), (g) Ti3C2Tx (×50,000), (h) surface
of MGNC (×300), (i) MXene on surface of MGNC (×3000), (j) cross-section of MGNC (×1000),
(k) cross-section of MGNC (×3500) (l) cross-section of MGNOC (×500).
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3.1.2. Raman Spectroscopic Analysis of the Structure of Carbon-Based Materials

Raman spectroscopy is a prominent tool with which to investigate the structural and crystalline
nature of Ti3C2Tx, and carbon-based materials including graphite materials [32,33]. In addition,
the level of defect and disorder can be predicted by using (ID/IG) [6]. The ID/IG value of GN, GNO,
rGNO were 0.14, 0.23 and 0.17, respectively (Figure S4). Hence, oxidation made more defect in
GNO while reduction minimize the defect rGNO. Furthermore, GNMC, GNOMC, rGNOMC, MGNC,
MGNOC and MC had (ID/IG) value of 0.4, 0.84, 0.38, 0.17, 0.15 and 0.91 respectively. It was obvious
that graphene coating diminished defects and films possessed less defects compare with fabric. MGNC
foam consisted little high defect than MGNOC as MGNC own large hollow cavity than MGNOC
(Figure S2). Introduction of hydroxyl functional groups lessen defect in carbon fabric while carboxylic
acid group increase the defects [37]. Even though, carboxylic functional groups induced planer
arrangement of graphene flake (Figure 1c). Further, the in-plane vibrational mode of surface functional
groups Ti and C generate peaks at 624, 263, and 394 cm−1 [51,52]. The weak broad band with similar
intensities at 1350 and 1570 cm−1 is attributed to the D- and G-bands. In addition, the presence of
anatase TiO2 caused peaks at 628, 510, and 396 cm−1 (Figure 2b) [43,53]. The Raman spectra G-bands
of GN, GNO, and rGNO show bands at 1578, 1580, and 1579 cm−1, respectively; these have higher
intensities than the corresponding D-bands at 1351, 1352, and 1346 cm−1, respectively [51]. However,
rGNO shows a weaker peak at 1346 cm−1 (Figure 2a). These results agree that GN- and GN-based
materials have higher crystallinity. Highly oriented pyrolytic graphite (HOPG) is a form of ordered
graphene (GN) sheets arranged one over another; the Raman spectrum of HOPG also manifests as
a single band at 1582 cm−1 (G mode E2g) which corresponds to the band at 1578 cm−1 in the GN
spectrum [32,54,55]. The raw material and production methods influence the disparity properties of
carbon fiber, in which the constituents resemble graphite [56]. The Raman spectrum of MC exhibits
numerous peaks, in which the D- and 2D-bands are placed at 1348–1374 cm−1 and 2680–2740 cm−1,
respectively; these values are from the corresponding boundaries of CF crystalline graphite. In addition,
the presence of HOPG is confirmed by the G-band at 1503–1634 cm−1 (Figure 2a) [32,33,56]. The use
of PVDF as a binder in the GN coating influences the shape of the spectrum owing to the PVDF/GN
interactions that cause fluctuation at 2750 cm−1 (2D-band), which is absent in MC. The bands in the
spectrum split into a few new bands owing to the PVDF molecules [57,58]. In addition, GNOMC
produces weak 2D band, whereas less oxidized composites exhibit a prominent 2D band. At the same
time, the sharp band at 1503–1634 cm−1 and new peak at 2750 cm−1 provide evidence that the GN
coating occurs on MC. In addition, the MGNC and MGNOC composites generate new peaks at 2452,
2976, and 3243 cm−1 while the G- and 2D-band intensities increase significantly. This advocates that
effective interaction occurred between MXene, GN, and the polymers (Figure 2b).
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Figure 2. Normalized Raman spectra of (a) MXene, MC, GN, GNO, rGNO, and (b) composites. 
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3.1.3. X-ray Diffraction (XRD) Analysis

The crystalline or amorphous nature of the materials can be confirmed using XRD profiles [59,60].
XRD results of the pristine materials and composites are shown in Figure 3a,b. According to the
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XRD profiles, all of the materials display a crystalline nature. GN, GNO, and rGNO show two
type of peaks: one intense peak 2θ located at 24.5◦–27.5◦, and another small peak 2θ positioned at
54.8◦. However, the location of 2θ of the intense peak varies slightly such that 2θ is 26.56◦, 26.5◦,
and 26.52◦, which represent GN, GNO, and rGNO, respectively. The XRD pattern of Ti3C2Tx confirms
the formation of MXene. Cao et al. reported that the delamination of MXene can be confirmed
by the shifting of the peak from 9.3◦ to 7.2◦ [61,62]. Hence, synthesized MXene consisting of two
peaks at 7.15◦ and 9.5◦ (002) confirm the formation of partially delaminated Ti3C2Tx. The composites
show three different peaks of 2θ = 19.5◦–21.5◦, 25.5◦–27.2◦, and ∼54.8◦. The high intense peaks are
located at 2θ = 25.5◦–27.2◦, where MGNOC, GNOMC, rGNOMC, MGNMC, GNMC, and MGNC
are positioned at 26.62◦, 26.56◦, 26.64◦, 26.6◦, 26.75◦, and 26.7◦, respectively. The intense peaks are
attributed to the presence of graphene and PVDF [59,60]. In addition, the intense peak is absent in MC
where the broader peak indicates the amorphous nature and presence of the graphite-like structure
(Section 4.1.2, [63]). The peak at 2θ = 54.8 and 25.5◦–27.2◦ confirms the presence of the graphene
structure. In MGNMC, extra peaks are formed by MXene at 2θ = 23.8◦ and 27.9◦. PVDF generates two
weak shoulder 2θ peaks at 17.7◦ and 20.6◦ corresponding to alpha and beta PVDF, respectively [60].
MGNC and MGNOC display weak single peaks at 20.4◦, which supports the peak due to PVDF.
This peak is absent in the fabric-based composites owing to the low concentration of PVDF.
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3.1.4. X-ray Photoelectron Spectroscopy (XPS) Analysis

XPS is useful technique that can deliver the structural nature and functional groups of the
compound analyzed; a Gaussian–Lorentzian function is used to fit the XPS data. Thus, different binding
energy levels were identified by using fitted Ti2p, C1s, F1s, and O1s electron binding energy curves.
In addition, the bonding nature of diverse components is reported based on the chemical shift of
elements (Figure 4a–f) [64,65]. Table 1 expresses the constitutional elements in different proportions.
In MXene, F is a more dominant functional group than OH. The atomic percentage of the oxygen reveals
slight oxidation of GN in GNO (Table 1). The XPS Ti2p fitting curve confirms the presence of bonds
such as TiO2 (464.5(2p1/2) and 458.5 (2p3/2) eV), Ti2+ (461.3 and 456.4 eV), and Ti-C (454.5 eV). Further,
C1s displays bonds such as C–Ti–Tx (281.1 and 283.2 eV), C–C (284.5 eV), and CHx/C=O (286.1 eV)
where the C–C bond gives rise to a high intense peak. The functional constitutions, namely TiO2

(529.6 eV), C–Ti–(OH)x (531.1 eV), Al2O3 (532.3 eV), and H2Oads (533.8 eV) are inveterate by the O1s
fitting curve. The F1s fitting curve is purely responsible for the C–Ti–Fx bond. Hence, MXene is formed
with the formula Ti3C2T(OH, F) [52,66–68]. GNs comprise mainly graphene C-C bonds with numbers of
C–O/C=O bonds. MC comprises 8.8% oxygen (Table 1); nevertheless, C=O or C–O belonging to the
C1s peak are not observed prominently, which is confirmed by the C1s fitting curve of GN. However,
the addition of PVDF introduces two main new peaks at 286 and 290.5 eV. These peaks might originate
from the C–C–F and C–F bonds, respectively, and the 286 eV peak arises owing to the MXene C=O
bond (Figure 4f). In addition, the newly generated MGNC and MGNOC peak at 288.1 eV may arise
owing to the addition of PAA and LiCl [68]. However, the intense peak intensity and corresponding
binding energy caused by the composites vary as follows: GNMC (284.17 eV), GNOMC and rGNOMC
(284.25 eV), MGNMC (284.21 eV), and MGNC and MGNOC (284.5 eV) (Figure 4f). The XPS graphs of
GN and other coated carbon composites show a combination of GN, PVDF, and carbon fabric peaks.
The amount of O varies with the combination of the composite, which is strongly evidenced from
the XPS data (Table 1). After the GN coating, we observed that there is defect at 285.0 eV, which may
reduce the strength of the GNMC fabric.
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Table 1. Atomic percentages of Ti3C2TX, GN, GNO, rGNO, and composites from XPS analysis.

Elements C1s (%) O1s (%) F1s (%) Ti (%) S (%) N (%) Si (%) Cl (%)

MXene 20.54 14.86 58.27 6.32 - - - -
MC 89.54 8.8 - - - 1.16 0.51 -

GNMC 81.38 2.46 15.31 - - 0.85 - -
GNOMC 73.34 8.16 15.02 - - 0.63 2.85 -
rGNOMC 75.49 7.66 1.71 - - - - -
MGNC 56.55 33.69 2.41 3.48 - 1.55 - 2.34

GN 95.42 4.07 - - 0.52 - - -
GNO 92.49 7.51 - - - - - -
rGNO 93.12 6.88 - - - - - -

3.2. Surface Property of Composites

The hydrophilicity associated with wettability plays a vital role in moistening the surfaces.
A contact angle above 90◦ is considered hydrophobic, and below 90◦ is hydrophilic. Water-loving
constitutions reduce the contact angle, whereas water-abhorring compounds increase the contact angle.
The contact angle can be tuned by using organic or inorganic materials [69]. The spreading of the
liquid on the surface depends on the surface energy between the solid and liquid. The increasing
surface roughness and surface energy causes the hydrophobic nature [70]. When the roughness
increases, the air is trapped in nano or micro grooves. This air minimizes the wetting area and leads to
hydrophobicity. Hence, the topography of the materials and their other properties, such as morphology,
roughness, and chemical homogeneity, influences the surface wettability [71]. The wetting ability of
the composites are shown in Figure 4. GNMC, GNOMC, and rGNOMC exhibit a hydrophobic nature
at 125◦, 124◦, and 126◦, respectively, whereas MGNC and MGNOC show hydrophilic behavior at 78◦

and 81◦, respectively. The wetting energies of GNMC, GNOMC, rGNOMC, MGNC, and MGNOC
are −41.85, −41, −42.82, 14.89, and 11.48 mN·m−1, respectively. It is obvious that the positive
wetting energy increases the hydrophilic nature. The most negative wetting energy (−42.82 mN·m−1)
causes the highest contact angle and the contact angle is incommensurate with the wetting energy.
The spreading coefficients of −114.65, −113.8, −115.62, −57.91, and −61.31 mN·m−1 were generated
from GNMC, GNOMC, rGNOMC, MGNC, and MGNOC, respectively. The spreading coefficient
also expresses a similar behavior to the wetting energy in terms of hydrophobic behavior. The rising
work of adhesion increases the water-loving behavior, for instance, GNMC, GNOMC, rGNOMC,
MGNC, and MGNOC engender values of 30.95, 31.8, 29.98, 87.69, and 84.28 mN·m−1, respectively;
the increasing work of adhesion increases the hydrophilicity of the surface [69,70]. Hence, coating the
graphene-based materials increases the hydrophobicity of the surfaces. Tissera et al. reported that
GO-coated cotton showed an improvement in hydrophobicity with a maximum contact angle of
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143◦ [72]. Zhang et al. reported that poly (vinylidene fluoride—hexafluoropropylene)/graphene
composite is super hydrophobic in nature [73]. Despite this, the MXene-graphene-based foam exhibits
a hydrophilic nature which is due to the surface MXene flakes. The produced composite can be used
to protected instruments from harmful water environments.

3.3. Electrical Conductivity

The electrical conductivity of MC is significantly affected by the spray-coating process.
The incorporation of 2D materials in the polymer alters the electric conductivity owing to the
arrangement of the 2D material in the polymer matrix [74]. In graphene, the carbon atoms are
arranged hexagonally with sp2 hybridization and the free π valance electron aligns at right angles to
the hexagonal plane. This electron is responsible for the out-of-plane π bond and electron mobility.
The conductivity of the graphene influences by the number of graphene layers. When the number
of layers increases, the electrical conductivity reduces, which is due to the interfacial alignment of
GN which increase the resistance [75]. GNOMC displays the highest electric conductivity of the
composites, which is supported by the SEM image of GNOMC (Figure 1c). GNO arranges in a
flat-stack manner with possible touching of the GNO flakes, which leads to interfacial electron transfer.
Hence, etching with HNO3 is the best option to tune the self-assembly of GNO flakes on the MC matrix.
The conductivity is inversely proportional to the thickness [76], and the conductivity and Rs of GNOMC
are 13.68 S·cm−1 and 4.2 Ω·sq−1, respectively, at a thickness of 0.0174 cm (Figure 5). Nevertheless,
GNOMC deviates from the MGNC behavior, exhibits a low electric conductivity (9.3 S·cm−1) while
showing the lowest sheet resistance (3.1 Ω·sq−1) at a 0.0350 cm thickness; MGNOC exhibits 8.97 S·cm−1

with a 4.6 Ω·sq−1 sheet resistance and thickness of 0.0243 cm. Of the fabricated composite, MGNC
shows a maximum thickness of 0.0350 cm, while the others, such as GNMC (0.0191 cm), GNOMC
(0.0174 cm), rGNOMC (0.0163 cm), MGNMC (0.0192 cm), and MC (0.0127 cm) exhibit values below
0.0200 cm. Hence, the highest thickness of MGNC minimizes the electric conductivity. In addition,
MGNMC shows the highest Rs value owing to the aggregation of the hydrophobic PVDF and
hydrophilic MXene. The highest electrical mobility increases the EMI SE. Hence, the lowest sheet
resistance of MGNC causes it to possess the highest surface electron mobility, which leads to the surface
reflection of EMI SE [47]. Further, the resistivity of GNOMC, rGNOMC, GNMC, MGNMC, MGNC and
MGNOC were 0.073, 0.083, 0.087, 0.101, 0.108 and 0.111 Ω·cm, respectively. Despite the conductivity
depend on thickness of the materials. The functionalized graphene increased the resistivity while
presence of MXene significantly increased the resistivity of fabric and foam (Figure 6b). Despite this,
other parameters such as thickness and some other structural features (foams) also influence EMI
SE [46]. Further, the lowest Rs and high resistivity of MGNC is due to the presence of MXene on the
surface of the composite (Figure 1i). Further explanation is given in the EMI-shielding section.
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Figure 6. (a) Electric conductivity and sheet resistance of the composites and (b) resistivity of the
composites (Rs: sheet resistance; σ: electric conductivity).

3.4. Electromagnetic Shielding Effectiveness of Composites

In this study, solution casting and spray coating were performed to produce EMI shielding
composites. MC was spray-coated by a dispersed mixture of GN, GNO, and rGNO (3 g·L−1) and
PVDF (5 g·L−1) in in a DMF solution. The thickness of MC was adjusted by changing the number
of coating cycles. All of the EMI SE calculations were carried out according to the Gamage et al.
study. The EMI shielding of all of the composites is illustrated in Figure 7. It is obvious that all of
the composites show a maximum EMI SE in the frequency range of 1.9–2.6 GHz in S band region
whereas GNMC showed increasing trend in X band region and other composites exhibited slight
downward trend. Of the composites, MGNC yields the maximum and minimum EMI shielding of 41
and 31 dB, respectively, whereas MGNOC exhibits a 36 dB maximum and 23.14 dB minimum EMI
shielding in S band region. The maximum EMI shielding of GNMC, GNOMC, rGNOMC, MGNMC,
MC, and GNMC-single are 35.3, 36.2, 34.6, 35.2, 28.5, and 33.4 dB, respectively, and the corresponding
minimum EMI shielding is 28.4, 29.7, 28.4, 28.8, and 23.2, 28 dB, respectively. The average EMI shielding
of GNMC, GNMC-single, GNOMC, rGNOMC, MGNMC, MGNC, and MGNOC is 32, 30, 32.66, 31.43,
31.87, 35.7, and 32.86 dB, respectively in S band region. This trend changed in X band region that can
be represented as follow, the maximum EMI shielding of GNMC 53.89 dB with reflection of 13.10 dB
and absorption of 43.38 dB (Figure 7 and Table S2). The maximum EMI SE range of composites was
53.89–31.73 dB while minimum range was 52.4–30.15 dB (Table S2). The maximum reflection loss
(SER) and absorption loss (SEA) range were 14.75–11.73 dB and 43.38–20.01 dB, respectively (Table S2).
Further, SER was high in GNMC with 14.75 dB of maximum while exhibited maximum absorption of
26.97 dB. Among fabricated fabric, absorption played a major role in EMI shielding.
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Figure 7. EMI shielding effectiveness of composites (a) EMI SE in S-band, (b) EMI SE in X-band, (c) SER,
(d) SEA, (e) comparison of EMI SE with thickness and (f) Basic mechanism in MGNC.

The mechanism of GNMC can be explained. according to structure that the MXene film and
graphene nanoplates reflects incident rays caused by moving charges while internal hollow structure,
free carriers and layered structure of MXene caused multiple reflection and scattering within the
core, finally leads to absorption [77,78]. Further, the highest EMI shielding of MGNC arises owing
to its physical nature, i.e., lowest sheet resistance, high resistivity, internal pores, and thickness
(Figure 6b). Among the fabricated MC composites, GNOMC shows the highest EMI shielding in
S band region owing to the planer nature caused by the functional group derived by means of
etching [79]. Even though, in X band region, GNMC, MGNMC and rGNOMC exhibited higher
EMI SE compare with GNO as they possessed relatively higher reflection and absorption loss
(Figure 7b–d and Table S2). This can be further correlated with cross section of fabric that made
cores and randomly arrange GN, rGNO and MXene flake caused absorption (Figure 7b–d and
Table S2). In addition, GNO exhibited high EMI shielding in S band region which is due to the
high conductivity and in X band region its EMI SE decrease significantly owing to dielectric response
rather than electron mobility [80]. Further, planar structure of GNOMC diminished absorption
(Figure 7b–d and Table S2). Formation of functional groups promotes interfacial touching of the
flake-created planner surface with higher conductivity (Figures 1c and 7). GNMC and MGNMC
display similar EMI shielding values. However, MXene-graphene foam exhibits good EMI shielding
which can be explained by the fact that the coating of hydrophilic MXene colloidal solution and
the hydrophobic GN-PVDF polymer coating on the carbon fiber are limited owing to the adhesion
between MXene and graphene. Thus, interfacial electron transfer is minimized owing to the improper
arrangement of GN and MXene flake increasing the surface resistance (Figure 7). Hence, the reflection
was low for all the composite (Figure 7b–d and Table S2). The specific EMI shielding effectiveness
(SSE) of MC, GNMC-single, GNMC, GNOMC, rGNOMC, MGNMC, MGNC, and MGNOC is 381.5,
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452.73, 394.91, 189.90, 183.8, 185.3, 46.4, and 56.18 dB·cm3·g−1, respectively; the single GN-coated
composite shows the highest SSE. Furthermore, SSE range of all the composite in X band region was
449.95–68.05 dB·cm3·g−1 (Table S2). Of the fabricated single-coated composites, GNMC shows the
highest absolute EMI shielding effectiveness (SSE/t) of 35,369.82 dB·cm3·g−1, whereas MC, GNMC,
GNOMC, rGNOMC, MGNMC, MGNC, and MGNOC exhibit values of 30,039, 10,914, 11,275.78,
9649.42, 1324.29, and 2311.83 dB·cm3·g−1, respectively in S band region while SSE/t of composite in
X band region was 35428.4–1944.3 dB·cm3·g−1 in which MGNC displayed lowest SSE/t (Table S2).
Further, the thickness influences the EMI shielding. Reducing the amount of PVDF increases SSE/t
(PVDF (1 g·L−1) and GN (3 g·L−1) in DMF, yielding 31,095.13 dB·cm2·g−1 in S band region). According
to reported data, PVDF exhibits an EMI shielding effectiveness of approximately 1.1 dB, which is not an
effective barrier against electromagnetic radiation compared with carbon-based PVDF composites [48].

Most of the carbon base composite reported showed lower EMI shielding compared to the
composite produced and thickness proportional to EMI SE and increasing graphene loading increase
the EMI SE. However, in each case, equal amount of dispersed solutions was utilized. Thus, in this
case, not only component loading but also structural feature of composite affect EMI SE (Table S1 and
Figure 1, Figure 7e and Figure S2) [77,81,82]. Further, the MXene based composite with less thickness
generate relatively good EMI SE compare with other composite reported (Figure 7e) and the Al and
Cu foil show exceptional EMI shielding of approximately 70 dB (~10 µm). Gonzalez et al. reported
that the reflection from CNT and graphene is approximately 10 dB with an absorption of 20 dB. At the
same time, ultrathin graphene-based composites have also shown a lower reflection of approximately
10 dB [75,83–85]. According to Zhao et al. the EMI shielding of the PVDF/graphene composite was
22.58 dB at a thickness 0.1 mm and electrical conductivity of 6.56 × 10−3 S·cm−1 [40]. Poly (ether
imide) (PEI-rGO nanocomposite films exhibited EMI shielding values of approximately 26 dB at a
thickness of 0.086 mm [41]. PVDF/graphene quantum dots showed a 31 dB EMI shielding at an 8 GHz
frequency. Further, Ag-nanoparticle reinforced PVDF/graphene quantum dots increase EMI shielding
(43 dB at 12 GHz) [42]. Hence, the composition, amount, and status of graphene in the composition
alter the EMI shielding. In addition, the incorporation of nanoparticles improves the EMI shielding of
the graphene composites [40–42]. Yuan et al. reported that reduced graphene oxide nano-composite
films exhibit EMI shielding of 32 dB with 0.27 mm [85]. Based on the literature reviewed, our study
shows excellent EMI shielding effectiveness over a frequency range of 1–3 GHz and 8–12.4 GHz.

3.5. Thermal Stability and Thermo Gravimetric Analysis of Composites

Thermal stability studies were carried out using well-known thermogravimetric analysis
(TGA) and differential thermal analysis (DTG). The temperature range was maintained from room
temperature to 1000 ◦C with a heating rate of 10 ◦C·min−1, and during the TGA and DTG analysis,
the Al2O3 crucible and nitrogen environment were maintained. The mass loss and enthalpy changes
were investigated using TGA and DTG, respectively. All of the samples exhibit outstanding stability
over a higher temperature range (Figure 8a). Swift degradation of all of the composites occurred about
375 ◦C to 500 ◦C, which is higher than that of MC, which exhibits a 5% weight loss between 280 ◦C and
400 ◦C [7]. Further, MGNOC and MGNC exhibit a 65% and 52% weight loss, respectively, whereas the
MC-based composites exhibit a loss of 20% in the aforementioned temperature range. These composites
(MGNOC and MGNC) show a higher weight loss than MC (6.5%) [7]. This is due to the introduction
of a polymer binder (PVDF and PAA) and GN/GNO to the composite [60,86]. The weight-loss
temperature of pristine PVDF and graphene are approximately 400 and 200 ◦C, respectively [87–91].
We noticed that all of the fabrics exhibit similar behavior below 400 and above 500 ◦C. All of the fabric
shows a minimal weight loss (~20%) which is due to the introduction of graphene species and MXene
(Table 2). In addition, the thermal stability of the composites can be altered by amount filler loading,
types of polymers used, environment of experience, exposure temperature and duration of exposure
of the composites. Presence of oxygen environment burn both polymer, MXene and graphene [92].
The MC had the minimum temperature of the degradation was 40 ◦C and 174 ◦C. This trend changed
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after introduction of graphene (Table 2). Though, minimum degradation temperature of the all
composite bellow 300 °C that is intermediate temperature of graphene and PVDF. The introduction
of the oxygen on graphene increase the weight loss considerably (Table 2). On the whole, PVDF,
graphene, MXene film possessed low thermal stability compare with carbon fabric-based composites.
Hence, the carbon fabric induces the thermal stability of the composite [7]. MGNC and MGNOC
lost 5% and 20% weight at approximately 100 ◦C which was due to the water loss, and then both
constrained degradations up to 400 ◦C. In addition, above 400 ◦C, MGNC and MGNOC exhibit a 50%
and 65% weight loss, respectively. The DTG curve of the composites shows endothermic peaks at
different positions. GNMC, GNOMC, rGNOMC, MGNMC, MGNC, and MGNOC show prominent
peaks at 476.9, 468.7, 490.5, 422.4, 453.1, and 469.33 ◦C, respectively (Figure 8b). This indicated where
rapid weight loss occurred. In addition, MC exhibits a broad endothermic peak in the range of
243–390 ◦C Hence, the stability of the composite dramatically increases with the coating process.
The introduction of MXene minimizes the degradation of the composite, which means that all of the
MXene-based composites show a low thermal stability. Further, GNOMC and rGNOMC show another
endo-thermic peak at 350 ◦C, which is more intense in rGNO than in GNO. The introduction of GNO
and rGNO generates new peaks where they were absent in GN, and a similar peak is observed at
313 ◦C, which shifts to a lower temperature owing to the presence of MXene. MGNC and MGNOC
exhibit the same endo-thermic peaks at 117 ◦C owing to the thermal conductivity oGN/PVDF, internal
pores, LiCl, and PAA. The TG curve supports this statement [76]. Finally, the rGO-based composite
displays a higher thermal stability than the other composites fabricated.
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Table 2. Comparison of mass changes of composites.

No. Composites Rapid Change
Range (◦C)

Rapid Mass
Change (%)

Whole Mass
Change (%)

Degradation Starting
Temperature (◦C)

1 GNMC 425–505 15.5 26.0 245.0
2 GNOMC 435–500 11.6 19.5 245.0
3 rGNOMC 460–510 16.1 22.2 265.0
4 MGNMC 420–510 12.0 19.1 275.0
5 MGNC 373–490 38.6 52.1 78.5

6 MGNOC
35–75 22.1

65.5
35.0

375–510 32.6 75.5

7 MC 175–570 6.2 6.5
40.0

174.0

4. Conclusions

Spray-coated composites and solvent casting films were successfully fabricated with high
flexibility, low apparent density (~0.77 to 0.081 g·cm−3) and low thickness (0.0120–0.0350 cm).
The fabricated composites exhibited an uppermost contact angle of 126◦ and the range of wetting
energy of all of the composites was −42.82 to 14.89 mN·m−1. Thus, graphene-based constitutions
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improve the hydrophobicity. The surface-coated MXene and graphene oxide minimized the sheet
resistance and showed a high conductivity of 13.68 S·cm−1 with a sheet resistance of 3.1 Ω·sq−1.
The MXene-graphene-PVDF composition improved the thermal stability and constrained the dramatic
weight changes up to 400 ◦C. The flat stack-like composition displayed an excellent EMI shielding of
41 dB (99.99% efficiency) in S band while exhibited maximum EMI shielding of GNMC 53.8 (99.999%)
with reflection of 13.10 dB and absorption of 43.38 dB (Figure 7 and Table S2). and the size of the pore
comparatively advanced the property of EMI shielding. The single-coated graphene fabric showed an
outstanding absolute shielding effectiveness of 35,369.82 dB·cm2·g−1. Hence, the composites with high
EMI SEs and that are hydrophobic in nature can be applied in various applications such as aeronautics,
locators, air travel, mobile phones, handy electronics, and military application.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/11/10/1803/
s1, Figure S1: EMI shielding sample loading; Figure S2: Cross section of SEM image; Figure S3: EDX and mapping;
Figure S4: Normalized curve of Raman spectrum; Table S1: Comparison of EMI SE with thickness; Table S2:
Comparison of maximum (MAX), minimum (MINI), average (AVE) shielding, SSE and SSE/t of composite in
each case.

Author Contributions: K.Y.C. and R.B. designed the project; K.R., B.M.K. and J.J.M. were performed experiment;
H.J.J. and Y.S.L. were analyzed the data; C.M.Y. supervised the analysis; K.R. wrote the manuscript.

Funding: This research was supported by the Leading Human Resource Training Program of Regional Neo
industry through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and
future Planning (NRF-2017H1D5A1043865). C.M.Y. acknowledges the financial support from the Korea Institute of
Science and Technology (KIST) Institutional Program and from Nanomaterial Technology Development Program
through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future
Planning (2016M3A7B4027695).

Conflicts of Interest: There are no conflicts to declare.

References

1. Geetha, S.; Satheesh Kumar, K.K.; Rao, C.R.; Vijayan, M.; Trivedi, D.C. EMI shielding: Methods and
materials—A review. J. Appl. Polym. Sci. 2009, 112, 2073–2086. [CrossRef]

2. Al-Saleh, M.H.; Sundararaj, U. Electromagnetic interference shielding mechanisms of CNT/polymer
composites. Carbon 2009, 47, 1738–1746. [CrossRef]

3. Das, N.C.; Chaki, T.K.; Khastgir, D.; Chakraborty, A. Electromagnetic interference shielding effectiveness of
ethylene vinyl acetate based conductive composites containing carbon fillers. J. Appl. Polym. Sci. 2001, 80,
1601–1608. [CrossRef]

4. Lai, K.; Sun, R.J.; Chen, M.Y.; Wu, H.; Zha, A.X. Electromagnetic shielding effectiveness of fabrics with
metallized polyester filaments. Text. Res. J. 2007, 77, 242–246. [CrossRef]

5. Kim, S.; Oh, J.S.; Kim, M.G.; Jang, W.; Wang, M.; Kim, Y.; Seo, H.W.; Kim, Y.C.; Lee, J.H.; Lee, Y.; et al.
Electromagnetic interference (EMI) transparent shielding of reduced graphene oxide (RGO) interleaved
structure fabricated by electrophoretic deposition. ACS Appl. Mater. Interfaces 2014, 6, 17647–17653.
[CrossRef] [PubMed]

6. Jan, R.; Habib, A.; Akram, M.A.; Ahmad, I.; Shah, A.; Sadiq, M.; Hussain, A. Flexible, thin films of
graphene–polymer composites for EMI shielding. Mater. Res. Express 2017, 4, 035605. [CrossRef]

7. Pothupitiya Gamage, S.J.; Yang, K.; Braveenth, R.; Raagulan, K.; Kim, H.S.; Lee, Y.S.; Yang, C.M.; Moon, J.J.;
Chai, K.Y. MWCNT coated free-standing carbon fiber fabric for enhanced performance in EMI shielding
with a higher absolute EMI SE. Materials 2017, 10, 1350. [CrossRef]

8. Joseph, N.; Singh, S.K.; Sirugudu, R.K.; Murthy, V.R.K.; Ananthakumar, S.; Sebastian, M.T. Effect of silver
incorporation into PVDF-barium titanate composites for EMI shielding applications. Mater. Res. Bull. 2013,
48, 1681–1687. [CrossRef]

9. Ng, V.M.H.; Huang, H.; Zhou, K.; Lee, P.S.; Que, W.; Xu, J.Z.; Kong, L.B. Recent progress in layered transition
metal carbides and/or nitrides (MXenes) and their composites: Synthesis and applications. J. Mater. Chem. A
2017, 5, 3039–3068.

10. Yang, Y.; Gupta, M.C.; Dudley, K.L.; Lawrence, R.W. Novel carbon nanotube—polystyrene foam composites
for electromagnetic interference shielding. Nano Lett. 2005, 5, 2131–2134. [CrossRef] [PubMed]

http://www.mdpi.com/1996-1944/11/10/1803/s1
http://www.mdpi.com/1996-1944/11/10/1803/s1
http://dx.doi.org/10.1002/app.29812
http://dx.doi.org/10.1016/j.carbon.2009.02.030
http://dx.doi.org/10.1002/app.1253
http://dx.doi.org/10.1177/0040517507074033
http://dx.doi.org/10.1021/am503893v
http://www.ncbi.nlm.nih.gov/pubmed/25238628
http://dx.doi.org/10.1088/2053-1591/aa6351
http://dx.doi.org/10.3390/ma10121350
http://dx.doi.org/10.1016/j.materresbull.2012.11.115
http://dx.doi.org/10.1021/nl051375r
http://www.ncbi.nlm.nih.gov/pubmed/16277439


Materials 2018, 11, 1803 16 of 19

11. Singh, R.; Kulkarni, S.G. Nanocomposites based on transition metal oxides in polyvinyl alcohol for EMI
shielding application. Polym. Bull. 2014, 71, 497–513. [CrossRef]

12. Sharma, A.K.; Bhardwaj, P.; Singh, K.K.; Dhawan, S.K. Improved microwave shielding properties of
polyaniline grown over three-dimensional hybrid carbon assemblage substrate. Appl. Nanosci. 2015,
5, 635–644. [CrossRef]

13. Lopes, A.C.; Caparros, C.; Ribelles, J.G.; Neves, I.C.; Lanceros-Mendez, S. Electrical and thermal behavior
of γ-phase poly (vinylidene fluoride)/NaY zeolite composites. Micropor. Mesopor. Mater. 2012, 161, 98–105.
[CrossRef]
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