
Abstract
A new method called Arbor Crown Enumerator (ACE) was
developed for tree crown detection from multispectral Very
High-resolution (VHR) satellite imagery. ACE uses a combina-
tion of the Red band and Normalized Difference Vegetation
Index (NDVI) thresholding, and the Laplacian of the Gauss-
ian (LOG) blob detection method. This method minimizes the
detection shortcomings of its individual components and
provides a more accurate estimation of the number of tree
crowns captured in an image sample. The ACE was applied
successfully to sample images taken from a four-band
QuickBird (0.7m � 0.7m) scene of Keritis watershed, in the
Island of Crete. The method performs very well for different
tree types, sizes and densities that may include non vegeta-
tion features such as roads and houses. Statistical analysis
on the tree crown detection results from the sample images
supports the agreement between the measurements and the
simulations. The new method reduces considerably the effort
of manual tree counting and can be used for environmental
applications of fruit orchard, plantation and open forest
population monitoring.

Introduction
Reducing uncertainty in land-use mapping is very impor-
tant in water resources, agriculture and forestry manage-
ment. This has also been obvious in decision making tier
with the European commission spending 170USD (120€)
million on a tree counting system which was deemed
necessary to record the condition and number of trees
(Moore, 2006). The main purpose of the survey was to
establish a regulatory register, thus providing a basis for
management and control of the financial aid to farmers
(Kay et al., 1997). The parcel-level requirement for data
from areas with complex agronomic characteristics
demands an approach that can define individual trees.
(Karantzalos and Argialas, 2004).

The knowledge of plant distribution per farm can be
also used for irrigation water prices and availability regula-
tion, according to individual farmer needs. In order to cross
reference farmer statements on the number of irrigated
trees, an automated tree counting technique can be used.
Combined with land-cover classification or segmentation
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algorithms this can result to a very useful product for water
resources managing authorities.

Keeping a dynamically updated inventory or tracking the
number of trees through time can be used to trace the fate of
individual trees. This can be a very important index when
associated with diseases, weather conditions, and ecosystem
behavior. Especially for endangered or protected areas that are
difficult to manage, a dynamically updated, high-resolution
product can prevent disasters from spreading. Furthermore,
tree counting results can be coupled with hazard management
models such as forest fires models (Lasaponara and Lanorte,
2007a; Lasaponara and Lanorte, 2007b; Loboda and Csiszar,
2007) to produce accurate results. Minimizing uncertainties
can also help understand many ecosystem processes ranging
in scale, from biomass equivalent and regional fuel loading
for fire risk assessments (Pyne et al., 1996) to global climate
models (Post, 1993).

Vegetation units have traditionally been extracted through
visual interpretation and manual digitizing of large scale aerial
photographs (Dralle and Rudemo, 1997, Larsen and Rudemo,
1998, Tarp-Johansen, 2002, Freeman and Buck, 2003, Pauleit
et al., 2005). This technique, although efficient for detailed
mapping, is time consuming and may be largely impractical
(Mathieu et al., 2007). Until recently, the spatial resolution
of satellite sensors has been too coarse (e.g., 30 or 20 m for
Landsat or SPOT) to be appropriate for application, given the
size of a tree crown. The last generation of high-resolution
Earth Observation satellites, e.g., Ikonos or QuickBird, pro-
vides images with a level of detail compatible with urban
mapping (Jensen and Cowen, 1999), i.e., from 0.6 to 2.5 m
spatial resolution and can thus provide data at a level appro-
priate for tree detection. In addition, multispectral sensors
have the advantage of recording near infrared (NIR) radiation
which is the most sensitive spectral band used to map
vegetation canopy properties (Guyot, 1990).

In more recent work, Song and Woodcock (2003),
present a simple analytical model to estimate tree crown
size using sills of semi-variograms from images at two
spatial resolutions. On a later approach, Song (2007)
explores the potential of using spatial information of high-
resolution optical imagery for estimating mean tree crown
diameter on a stand basis with a panchromatic Ikonos
image. Gougeon and Leckie (2006) give an assessment
of the effects of different spatial resolutions on the detec-
tion, delineation, and classification of the individual
tree crowns on Ikonos images using a valley-following
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Figure 1. (a) RED band thresholding, and (b) tree
detection.

algorithm and a rule-based isolation module were applied
to delineate the individual tree crowns. Song and Dickin-
son (2008) found that the spatial properties of Ikonos
panchromatic imagery are highly valuable in estimating
both tree crown size and LAI. Ozdemir (2008) investigates
the relationship between field-measured stem volume and
tree attributes, including tree crown area and tree shadow
area, measured from pan-sharpened QuickBird imagery
using visual delineation and computer-aided automatic
classification methods

In September 1997, the European Commission (Direc-
torate General of Agriculture) launched the “OLISTAT”
project, supported by the Joint Research Centre (JRC) (Masson,
2005), with the goal to estimate the number of olive trees in
France, Italy, Spain, Portugal, and Greece. A prototype tool,
OLICOUNT (Kay et al., 1998) is based on a combination of
image threshold (i.e., using the spectral characteristics of
trees), region growing, and tests based on tree morphological
parameters (i.e., using the morphology of individual trees).
More details on the method can be found in Peedel et al.
(2000). The OLICOUNT software has various limitations, as it
was originally designed for olive trees, and it was not tested
for other fruit trees or with image resolutions of less than
1 m. Nevertheless, OLICOUNT was adapted to support VHR
images, and the JRC carried out some tests with other fruit
trees species (nuts and citrus). For the moment, OLICOUNT
works only with single-band images and 16-bit support was
added following Version 2.0 (Bagli, 2005). Therefore, analysis
of multispectral images would require a different approach
(Masson, 2005).

Methodology
Red Band Thresholding
The Photosynthetically Active Radiation (PAR) or Visible
Red (RED: 630 to 690 nm) is a chlorophyll absorption band
important for vegetation classification. Live green plants
absorb solar radiation in the PAR spectral region, which they
use as a source of energy in the process of photosynthesis
(Gates, 1980). For this reason, the RED band portion of a
multispectral satellite image appears dark where green
plants are captured.

A method proposed by Tsanis and Seiradakis (2002,
also included in Tsanis et al., 2006) takes advantage of this
property of chlorophyll absorption in order to count tree
crowns from a high-resolution satellite image. Eleven-bit
QuickBird images contain a pixel value range from 0 to 2047
and are usually scaled and stored as 16-bit. When threshold-
ing the RED band against a single value, estimated tree-crowns
appear as artifacts (Figure 1a). Artifacts can be then converted
to topological polygons and at the center of each a tree crown
is modeled as a point feature (Figure 1b). The choice of the
appropriate value of threshold � for an image so that:

will produce an estimate of the actual number of trees
present in the sample.

Different values of thresholds are applied in the case
shown in Figure 1a and are plotted against detected tree
crowns in Figure 2. For threshold values under 100, the
method still has not detected all features, and for values
over 130, dense tree tops are being considered as single trees.
From simple observations on the same site and product,
values over 190 cluster most of the vegetation in one cell.

Tsanis and Seiradakis (2002) found that this simple
method works well for threshold values of 120, but this is a
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Figure 2. A plot of different threshold values from the
case shown in Figure 1a for the Keritis basin in Crete,
Greece.
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site and satellite product-specific value. For different sites
and satellite products this simple analysis has to be carried
out in advance.

Blob Detection
One of the first and most common blob detectors is based 
on the Laplacian of the Gaussian. A given image can 
be convolved by a Gaussian kernel of width :

to give a representation:

.

Then, the Laplacian operator is computed:

which usually results in strong positive responses for dark
blobs of extent and strong negative responses for bright
blobs of similar size. Practically, the image is
processed with a filter given by:

.

Figure 3 shows a 61 � 61 (randomly chosen for visualization)
Laplacian of the Gaussian filter with a standard deviation

and its contours.

NDVI
Leaf cells have evolved to scatter (i.e., reflect and transmit)
solar radiation in the near-infrared (NIR: 760 to 900 nm)
spectral region which carries approximately half of the total
incoming solar energy. This happens because the energy
level per photon in that domain is not sufficient to be useful
to synthesize organic molecules: a strong absorption in NIR
would only result in over-heating the plant and possibly
damaging the tissues. Therefore, live green vegetation which
appears relatively dark in the RED band also appears rela-
tively bright in the NIR (Gates, 1980). Since early instruments
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of Earth Observation, such as NASA’s ERTS and NOAA’s
AVHRR, acquired data in the RED and NIR, scientists exploited
the strong differences in plant reflectance in order to
determine their spatial distribution in these satellite images.
The NDVI is calculated from these measurements as follows:

.

Since the NDVI is merely a normalized difference, it
carries only a fraction of the information available in the
original spectral reflectance data. It is also sensitive to a
number of perturbing factors including atmospheric compo-
sition, clouds (Putsay and Csiszár, 1997), soil moisture
(Kimura, 2007), anisotropic light reflectance and sensor
spectral effects. For these reasons it is mostly used only for
qualitative estimations.

For each spectral band individually, spectral reflectance
is a ratio of the reflected over the incoming radiation, hence it
takes values between 0.0 and 1.0. Thus, by design, the NDVI
itself varies between �1.0 and �1.0. Empirically, the NDVI of
an area containing a dense vegetation canopy will tend to
positive values (0.3 to 0.8), while clouds and snow fields
will be characterized by negative values of this index. Soils
generally exhibit a NIR spectral reflectance, somewhat larger
than the RED, and thus tend to also generate rather small
positive NDVI values between 0.1 to 0.2.

Arbor Crown Enumeration (ACE)
The Arbor Crown Enumeration (ACE) algorithm is based
on the combination of the above three procedures (examin-
ing the high absorption of Red Band, tracking down visible
blobs, and NDVI thresholding) as presented in Figure 4.

Intuitively, each calculation on its own will not produce
satisfying results. The blob detection will detect all blobs
regardless of their nature so many “non-green” small size
objects like buildings will also be included in the count. On
the other hand, both the NDVI and the RED band thresholding
will produce filters where individual trees will not be
discretised when planted densely. In order to test these
presumptions the algorithm was broken into two parts, ACE1
and ACE2. The former method is based only on blob detec-
tion and NDVI thresholding whereas the latter includes all
three procedures. These presumptions (later tested and
proved valid) lead to the combination of the calculations
into an all inclusive algorithm (ACE2).

Criteria of Evaluation
When the number of trees within a given area (e.g., a
single field) is known, the relative error of a tree crown
estimate is given by:

.

Thus, for a perfect estimation ( ) the
relative error is equal to 0.0 percent. Relative errors for
small fields are not representative for evaluating a tree
counting method since inaccuracies can appear in areas that
have not been accounted for. Therefore, a large sample of
land parcels needs to be taken into account. For such
parcels of land, the total relative error is given by:
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Figure 3. LOG filter for .s � 20
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In reality, it is difficult to know the exact number of
trees for a large area in order to make this comparison.
Ideally, statistical methods should be applied over a repre-
sentative sample (a collection of satellite image segments)
of the population (total area covered). This sample has to
include all the significant vegetation patterns that challenge
a tree counting method, and at the same time, maintain the
characteristics of the population. Nevertheless, population
characteristics and method pitfalls are not known a priory.
For this reason, the choice of the sample is based mostly on
expert judgment and prior inference.

Case Study
Geographical Background
The Keritis hydrological basin is located between 35° 15�
to 35° 32� N and 23° 45� to 23° 55� E on the island of
Crete, Greece, 12 km west of the town of Chania (Figure 5).
Starting from the White Mountains in its southernmost

part, Keritis basin discharges into Platanias Bay in the
north coast of Crete. The total area of the basin is 218 km2,
and its altitude ranges from sea level to 2,355 m (mean
altitude: 738 m).

From a hydrologic point of view, the Keritis basin is
the most important watershed in the Prefecture of Chania
(Soupios et al., 2007). The water resources in the area are
more than sufficient for this basin and are also used for
public water supply and irrigation for the wider area. For
this reason, the basin has been traditionally cultivated
intensively with olive trees (Olea europaea, mainly cultiva-
tion of the cultivar Koroneiki), orange trees (Citrus sinensis),
and vineyards (Vitis vinifera). Due to the large morphologi-
cal diversity of the landscape, vegetation also varies from
flat agriculturally exploited fields in the north to patches
and shelves of olive trees mixed with short vegetation in
the south. Other vegetation within the watershed includes
oriental planes (Platanus orientalis) mostly along the stream
banks and various herbs of the mint family (Lamiaceae)
found mostly in the mountains.

Three satellite images, each covering a fraction of the
basin, were taken by QuickBird on 02 May 2002 (Figure 6).
The resolution of each image is 0.7 m � 0.7 m.

Calibration
Initially, the parameters of the method have to be cali-
brated by minimizing an error function. Generally, as
in polynomial regression, the smaller the error during
calibration the larger the chance of over-fitting the method
to a specific sample. In reality, the goal is not a method
that is perfectly accurate for a single sample, but one that
is acceptably accurate for a large number of samples.
Therefore, after trial and error, the error function optimum
result is set to 10 percent which is a rather acceptable
estimation for this type of application.

In order to perform calibration, a sample is taken from a
known location where the trees have been counted in situ.
Figure 7 shows a sample area of 100 � 100 pixels which
includes 193 trees (typical pattern of orange cultivation).

Figure 5. Location of the Keritis basin in Crete,
Greece: (a) Greece, (b) Crete, (c) Keritis Watershed
west of Chania, and (d) shaded relief map of the
Keritis Watershed.
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Figure 6. QuickBird satellite image of the Keritis watershed. Different tones denote
the three different images that form the mosaic of the watershed.

This number does not take into account trees that are
partially contained in the picture (e.g., on the fringe of the
image) since they are not detected by ACE.

A search algorithm performs a tree-detection for a
possible range of all ACE parameters. This way, candidate
sets that fulfill the calibration goal can be singled out.
Increasing the search pixel radius for the blob detection
technique will result in trees that have a size smaller
than this radius to be left out. Increasing the blob detection
threshold will result into trees appearing less pronounced
(having less contrast) to be ignored. Regarding NDVI, a large
value cut-off will result in taking account of only those
trees that have a strong NDVI signal. Figure 8 shows a
visualization of the resulting values.

For the selected sample, the range of blob diameters that
allow for a correct calculation of the tree numbers is six to
eight pixels. For diameter values higher than eight pixels
(5.6 m), the maximum number of detected trees is smaller
than the actual number of trees. The most stable solutions
appear for a diameter of eight pixels where the effect of
threshold also becomes the least sensitive. For eight pixels,
the range of solutions that successfully estimate the number

of trees can be achieved for a range of NDVI threshold values
between 0.3 and 0.4.

The effect of threshold in blob detection ranging from
0.5 to 7 can be seen in Figure 9. With lower values, less
pronounced blobs are also detected. For example, in Figure 9a
on the north side of the dirt-road that runs across the sample
picture, several blobs are detected where trees do not exist.
On the other hand, high values can cause small trees not to
be accounted for. For example, many relatively smaller or
“fainter” trees have not been detected in the southeast of
Figure 9b. Since we assume that the NDVI filter will later
dispose of the blobs that do not represent vegetation, the goal
of the threshold calibration should be to assign a large
enough value so that insignificant vegetation like scrub and
bush is not taken into account. For the tested case, the best
results were accomplished for threshold values between 3.6
and 5.

Figure 10 shows the NDVI index for the selected image
sample. Darker values (closer to zero) denote areas with no
vegetation, e.g., along the dirt road that crosses the fields from
southwest to northeast. The minor road that runs northwest is
a low traffic agricultural path that allows for short vegetation
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Figure 7. 100 � 100 pixels sample which includes 193
orange trees used for calibration.

during spring (at the time the satellite image was taken).
Therefore, its NDVI is comparably higher than that of the dirt
road, and in Figure 10, it is practically not distinguishable
from the fields. Thresholding the NDVI image will produce a
filter that will leave out certain pixels. As shown in Figure 8,
the sensitivity to NDVI changes is between 0.3 and 0.45,
therefore the calibrated value has to be from this interval in
order to have a better agreement with the actual data.

Figure 11 shows the effect of NDVI thresholding. For a
low threshold value of 0.3, the discretization that takes
place is only between the road and the vegetated fields
(Figure 11a). Therefore, for values less than 0.3, practically
all detected blobs will be considered as trees. For a high
threshold value of 0.45 (Figure 11b), the NDVI filter will
leave out more areas where the vegetation index has a
weaker signal or soil is apparent. For a given pixel diame-
ter and blob detection threshold, the NDVI effect can be
seen in Figure 12.

Sensitivity analysis on possible combinations of blob
detection and NDVI threshold values, reveals that the values
4.8 and 0.37, respectively are the ones that give the best fit
to the actual number of trees. Figure 13 shows the resulting
tree crown count.

Results and Discussion
Following the initial calibration process, the method was
tested on ten different samples from the satellite image of
the Keritis hydrological basin (Figure 14). The images were
chosen with the objective to capture different tree sizes
and densities as well as land-use and cultivation patterns
in the watershed.

Table 1 shows the results acquired after performing four
types of analysis on each sample image. Blob detection and
simple RED band thresholding were performed separately in
order to demonstrate their individual shortcomings. Even
though RED band thresholding has a higher standard error
than blob detection, this error is quite large to extract useful
conclusions for a wider area. The blob detection method
seems to overestimate the number of trees more often whereas
RED band thresholding underestimates it. Therefore, both
approaches are not sufficiently accurate to be used individu-
ally. The combination of algorithms denoted as ACE1 leads to
a smaller average and an which is acceptable with most
individual errors averaging out. The best performance was

Erer

Figure 8. Effect of ACE parameters on tree detection.
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(a)

(b)

Figure 9. The effect of blob detection threshold:
(a) threshold 0.5, and (b) threshold 7.0.

Figure 10. NDVI index for the selected image sample.

accomplished with ACE2. The final products of ACE2 on the
samples are shown in Figure 15.

In order to explain the merits and pitfalls of each method,
individual sample results are analyzed giving greater gravity to
those that result to larger errors.

For the samples SP01, SP09, and SP10 as is evident
from Table 1, blob detection performs as good as the ACE1
and ACE2 methods. On the other hand, RED band threshold-
ing greatly underestimates the number of trees. The reason
for this is the high density of trees which leads RED band
thresholding to cluster tree crowns. Here, the good results of
blob detection overlap all other calculations and are the
final product of ACE1 and ACE2. In all three samples, NDVI
filtering essentially produces a matrix of ones.

In the sample SP02, RED band thresholding also under-
estimates the actual number of trees whereas blob detection
slightly overestimates it. Here, the difference of ACE1 and

ACE2 is apparent with the former detecting the same amount
of trees as blob detection (217 from the actual 215) and the
latter reducing them by 4. This is obviously where the RED
band thresholding comes into play when moving from
ACE1 to ACE2.

Sample SP03 is the only case in which ACE1 performs
slightly better than ACE2. This can be attributed to the
adverse effect of RED band thresholding failing to detect
some of the trees that ACE1 has captured. Apart from this
fact all techniques have acceptable results. In sample
SP04, due to a number of non-green artifacts (building and
surrounding objects at the northwest side of the image)
blob detection overestimates the total number of trees.
These artifacts are cancelled out with the use of NDVI
thresholding in ACE1, leaving few extra objects detected
as trees. Finally, RED band thresholding improves the
estimation. The fact that RED band thresholding scores a
smaller absolute is due to the clustering of dense
vegetation mainly at the southwest part of the sample.

Similar to SP04 in sample SP05, the field on the east
side of the sample presents artifacts that are spotted by
the blob detection method without necessarily represent-
ing trees. Therefore, the number of trees is largely overesti-
mated. Here, the difference between ACE1 and ACE2 is
obvious, with the RED band thresholding capturing the
difference between pasture land with short vegetation and
shrubs (east part of the image) and tree vegetated land
(west part of the image). The results of ACE2 are very
promising, detecting just four trees more than the actual
number of trees.

Sample SP06 includes a non-vegetated parcel of land in
the middle of an olive tree plantation. Blob detection and
RED band thresholding give errors larger than 10 percent
(16.2 percent and �10.4 percent, respectively) for the same
reasons as in sample SP04 but ACE2 dramatically improves
the tree detection process missing just one tree.

Sample SP07 represents a very mixed landscape with
artificial surfaces and vegetation of different size and shape.
The main feature of vegetation is trees with multiple tops
and various bushes. Blob detection overestimates the total
tree number by almost 50 percent as it includes non-green
objects, whereas RED band thresholding appears to have very
good results. Nevertheless, the more complex algorithms fail

er
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(a)

(b)

Figure 11. NDVI filters for different threshold values:
(a) threshold 0.3, and (b) threshold 0.45.

Figure 13. 192 detected trees.

common element of ACE1 and ACE2, except for the blob
detection which is expected to fail in such cases. Specifi-
cally, some of the trees detected by these methods have not
been considered “green enough,” and therefore have not
been taken into account when counting trees in situ. This is
normally not an issue and was expected since the NDVI
threshold value was calibrated for a very different location.
For a larger amount of samples it is expected that errors like
this will be evened out towards a smaller total error.

As in SP07, sample SP08 involves a mixed landscape,
and ACE2 is able to distinguish between artificial surfaces
and vegetation very well. Blob detection alone overestimates
because of buildings and RED band thresholding underesti-
mates due to clustered tree tops in several areas in the
sample. Overall results for the ten sample images show that
ACE1 and ACE2 increase the correlation coefficient from
0.35 and 0.59 to 0.87 and 0.92, respectively (Figure 16).
Statistical analysis on the ACE2 method produces a linear
model y � 0.8618x � 24.817 where y is the estimated
number of trees, and x is the number of measured trees,
with a standard error of estimate sy/x � 13.398 and a
coefficient of determination R2 � 0.9209. These results
indicate that 92.09 percent of the original uncertainty has
been explained by the linear model. At 95 percent confi-
dence interval for this linear model, the intercept coefficient
belongs to [�12.95, 62.58], and slope belongs to [0.656,
1.068]. The desired values (0 for intercept and 1 for slope)
fall within the intervals (Figure 16d) supporting the agree-
ment between the measurements and the model.

Conclusions
The automatic extraction of features like tree crowns from
VHR images requires validation in the field which is time
consuming and ineffective for large areas. Existing tree
crown detection methods such as blob detection, NDVI
thresholding and RED band thresholding have shortcoming
when applied individually. Blob detection detects all blob-
like surfaces regardless if they represent vegetation or
artificial objects. This usually leads to overestimations

Figure 12: The effect of NDVI thresholding.

with errors larger than 15 percent. The reason is obviously
the poor match of NDVI calibration values, which is the
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 14. Ten VHR samples from the Keritis River basin: (a) Sample 1 (SP01) dense tree crowns, 
(b) Sample 2 (SP02) medium dense tree crowns, (c) Sample 3 (SP03) medium dense tree crowns, 
(d) Sample 4 (SP04) medium dense tree crowns with house and road, (e) Sample 5 (SP05) dense
tree crowns with warehouse and field, (f) Sample 6 (SP06) tree crowns of various density and size, 
(g) Sample 7 (SP07) dense tree crowns with houses, (h) Sample 8 (SP08) dense tree crowns with
houses and road, (i) Sample 9 (SP09) very dense tree crowns, and (j) Sample 10 (SP10) very dense
tree crowns.

in samples with mixed land-uses. RED band thresholding
usually leads in tree crown clustering where vegetation is
dense and therefore underestimates the actual number of
trees. This method depends on the reflection values with
which it has been calibrated and samples that belong to
different satellite scenes have to be calibrated separately.
This is also true for NDVI thresholding which is sensitive
to a number of factors unique for each satellite image.
Also, NDVI thresholding produces continuous filters where
individual trees cannot be distinguished and is mostly
used for qualitative estimations.

ACE has been designed to run with multispectral images
(four bands: RGB � NIR) which carry more information than

a single band product. Therefore, instead of taking the
strictly empirical approach of morphological classification,
the problem is also solved physically using well docu-
mented vegetation indexes such as the NDVI and the absorp-
tion of the RED band by chlorophyll.

A combination of blob detection with NDVI threshold-
ing using ACE1 gives acceptable results for a selected
number of samples where vegetation patterns do not differ
much within the same image. The ACE2 which also
includes RED band thresholding gives the best results and
this is attributed to the algorithm’s ability to process
multispectral images, which carry more information and to
the complexity and combination of individual algorithms

TABLE 1. RESULTS FOR TREE COUNTING TECHNIQUES FOR TEN SAMPLE IMAGES

Blob detection Red band Thresholding ACE1 ACE2

Sample Measured Estimated Estimated Estimated Estimated
Name number of trees trees trees trees trees

SP01 248 244 �1.6% 206 �16.9% 244 �1.6% 244 �1.6%
SP02 215 217 0.9% 193 �10.2% 217 0.9% 213 �0.9%
SP03 193 197 2.1% 181 �6.2% 191 �1.0% 189 �2.1%
SP04 158 188 19.0% 148 �6.3% 178 12.7% 173 9.5%
SP05 74 169 128.4% 62 �16.2% 125 68.9% 78 5.4%
SP06 173 201 16.2% 155 �10.4% 185 6.9% 172 �0.6%
SP07 141 211 49.6% 143 1.4% 176 24.8% 165 17.0%
SP08 150 194 29.3% 118 �21.3% 151 0.7% 143 �4.7%
SP09 196 204 4.1% 121 �38.3% 204 4.1% 204 4.1%
SP10 226 196 �13.3% 80 �64.6% 196 �13.3% 196 �13.3%

Total number 
of trees 1,774 2,021 1,407 1,867 1,777

13.9% �20.7% 5.2% 0.2%

Average 23.5% �18.9% 10.3% 1.3%

standard
deviation 41.0% 19.3% 22.9% 8.3%

er

er

Er

erererer

1201-1211_08-046.qxd  9/17/09  5:40 PM  Page 1209



1210 Oc t obe r  2009 PHOTOGRAMMETRIC ENGINEER ING & REMOTE SENS ING

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 15. Final products of ACE2 results from the Keritis River basin samples: (a) Sample 1 (SP01)
dense tree crowns, (b) Sample 2 (SP02) medium dense tree crowns, (c) Sample 3 (SP03) medium
dense tree crowns, (d) Sample 4 (SP04) medium dense tree crowns with house and road, (e) Sample 5
(SP05) dense tree crowns with warehouse and field, (f) Sample 6 (SP06) tree crowns of various density
and size, (g) Sample 7 (SP07) dense tree crowns with houses, (h) Sample 8 (SP08) dense tree crowns
with houses and road, (i) Sample 9 (SP09) very dense tree crowns, and (j) Sample 10 (SP10) very
dense tree crowns.

involved in the process. ACE2 performs very well in
distinguishing among land-uses, e.g., pastures, roads/dirt
roads, building and trees (see SP03 to SP08 in Figure 15),
and this can be contributed to the use of the RED band and
NDVI filters. Also, its performance is not hindered much by
differences in tree density or tree crown size due to use of
blob detection (see SP01, SP02, and SP09, SP10 in
Figure 15).

Finally the new tree crown detection method has been
designed to detect a specific range of tree sizes rather that
a specific tree type (as OLICOUNT). Therefore, it can have
a wider range of applications, such as tree counting in
complex vegetated and mixed land-use areas or forestry.
The limits of application have to be defined in further
research since counting tree populations in complex or
dense forest strands might not be feasible. Also, a tree type
classification module could be embedded in the future in
order to expand its use in water resources management.
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