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Count data arise in various organizational settings. When the release of such data is sensitive, organizations
need information-disclosure policies that protect data confidentiality while still providing data access. In

contrast to extant disclosure policies, we describe a new policy for count tables that is based on disclosing only
the sufficient statistics of a flexible discrete distribution. This distribution, the COM-Poisson, well approximates
Poisson counts but also under- and over-dispersed counts. The sufficient statistics mask the exact cell counts
and often also the table size. Under the scenario of a data holding agency and a data snooper, we show that
this policy has low disclosure risk with no loss of data utility: Usually, many count tables correspond to the
disclosed sufficient statistics. Furthermore, these count tables are equally likely to be the undisclosed table.
Finding these solutions requires solving a system of linear equations, which are underdetermined for tables
with more than three cells, and can be computationally prohibitive for even small tables. We also consider
cell-specific interval bounds, a commonly used disclosure limitation policy, and compare them to our policy. We
describe several types of snooper knowledge, their integration with the disclosed statistics, and implications.
Applying this policy to three real data sets, we illustrate the low associated disclosure risk.
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1. Introduction
The problem of data disclosure from statistical data-
bases has become central in recent years. There are
great efforts invested in promoting data access and
publishing statistics while protecting privacy. The
problem is how a data holder can disclose informa-
tion that is sufficient for decision making and sta-
tistical analysis without disclosing the actual data.
Disclosure of data can compromise privacy, confiden-
tiality, and national interests (Sweeney 2002a).
The range of examples is wide: health-care man-

agement where medical information from multiple
sources is combined and disclosure of the combined
data can compromise patients, doctors, and HMOs
(Chowdhury et al. 1999), data released by the cen-
sus bureau and other federal agencies for purposes
such as policy making, and data released by financial
and other private institutions to researchers for the
purpose of fraud detection. The problem has become
especially acute due to the advances in data storage
and linkage through relational databases. Garfinkel

et al. (2002) mention that according to several sur-
veys, privacy compromise is what Americans fear
most in the new millennium. The scenario we deal
with in this paper consists of a data holding agency
that wants to release data to legitimate users in way
that maximizes data utility while protecting confiden-
tiality, and on the other side, a data snooper who
wants to uncover the confidential data. The disclosure
risk occurs when the released information allows the
data snooper to infer part or all of the confidential
data. This has been termed “inferential disclosure,”
to differentiate it from direct disclosure that results
from unauthorized access such as password break-
ing (Chowdhury et al. 1999). With today’s computa-
tional power, data snoopers use sophisticated models
to infer confidential attributes from the released infor-
mation (Sarathy and Muralidhar 2002).
In many cases, de-identifying respondents in a data

set is not sufficient to protect privacy because indi-
viduals can be re-identified by linking or match-
ing the data to other data or by looking at unique
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characteristics found in the released data (Sweeney
2002a). Common disclosure limitation techniques that
are aimed at reducing the disclosure risk are based
on altering or reducing the data to be released (Dobra
et al. 2003, Sweeney 2002b, Domingo-Ferrer and Torra
2005). Most disclosure limitation techniques are based
on one of the following principles (Domingo-Ferrer
et al. 2002, Duncan et al. 2001, Fienberg et al. 1998,
Gonzalez and Cox 2005): cell perturbation, cell sup-
pression, rounding, table redesign, sampling, swap-
ping, and simulation.
In this paper, we suggest a new disclosure policy

for one-dimensional count tables. The policy is based
on disclosing only the sufficient statistics of a flex-
ible discrete distribution that can well approximate
Poisson counts but also under- and overdispersed
counts. Overdispersion is prevalent in applications
where there is “contagion,” or a chain reaction. One
example is the number of infections resulting from
hospitalization within a hospital. The public health
system might require hospitals to report such infor-
mation to detect large-scale epidemics in the region.
However, a hospital might be reluctant to report the
exact count table because of class-action lawsuits that
might arise from uncovering infections that involved
a large number of patients. Another example is the
number of injuries per accident by cars that belong
to a large taxi service. The Bureau of Transportation
Statistics might want to collect the information on
injury distribution among taxi riders to change poli-
cies. However, taxi companies might be reluctant to
report accidents with large numbers of injuries for
fear of loss of reputation.
Our proposed disclosure policy masks the sensitive

count table well in the sense that there are multi-
ple possible count tables that correspond to the dis-
closed statistics, even for small count tables. On the
other hand, the sufficient statistics contain all the nec-
essary information required for statistical estimation
and decision making in the contexts described above.
The most common discrete distribution used for

data approximation is the Poisson distribution. If data
follow a Poisson distribution, it is sufficient to dis-
close only the number of observations n and their sum
S1. Given these statistics, to reconstruct the original
data, we use the fact that the n integers must sum
up to S1. It turns out that the number of solutions
is given by

(
S1+n−1
n−1

)
(see Feller 1968, p. 38). Burridge

(2003) suggests an “information preserving statistical
obfuscation” method for releasing data that is based
on computing the sufficient statistics and then gener-
ating simulated data from the conditional distribution
of the data given the sufficient statistics. For discrete
data, he suggests a Poisson model. The main draw-
back of this method is that they assume a Poisson
fit, which is limiting (for instance, it is not suitable

for over- and under-dispersed data). In the following,
we introduce the Conway-Maxwell-Poisson (COM-
Poisson) distribution, a 2-parameter generalization of
the Poisson distribution1 (Shmueli et al. 2005). The
COM-Poisson distribution has an additional sufficient
statistic, S2 = the sum of log�xi�!. From a data util-
ity perspective, these sufficient statistics provide legit-
imate users interested in statistical inferences with
the same data utility as would access to the raw
data. When this additional information is disclosed,
the number of solutions will always be less than
in the Poisson case. However, it does not compro-
mise the raw data in the sense that the probability
of reconstructing the original count table is generally
low. Furthermore, even if the goal of the snooper
is to find bounds for different counts, these bounds
tend to be wide. To measure the associated disclosure
risk, we use the cell-level entropy-based measure by
Domingo-Ferrer et al. (2002) and also develop a global
entropy-based measure that is a function of the num-
ber of solutions.
We start by describing the COM-Poisson distribu-

tion in §2. Next, we describe the reverse relationship
leading from the disclosed sufficient statistics to the
undisclosed sensitive count data in §3. This section
introduces the snooper’s decision problem in this set-
ting, and we derive the number of solutions and their
distribution. We discuss univariate interval bounds on
cells and their limitation, and describe disclosure-risk
measures based on these results. Section 4 illustrates
the policy applied to three real data sets, showing
its advantages for different sizes of count tables. The
paper concludes with managerial implications and
future directions in §5.

2. The COM-Poisson Distribution
The COM-Poisson probability function is given by

P�X = x�= 	x

�x!�
 ·
1

Z�	�
�
� x= 0�1�2� 
 
 
 � (1)

Z�	�
�=
�∑

j=0

	j

�j!�
 (2)

for 	 > 0 and 
 ≥ 0. This formulation allows for a
nonlinear decrease in ratios of successive probabilities
in the form

P�X = x− 1�
P�X = x� = x


	
(3)

and is thus a generalization of the Poisson distribu-
tion, as well as a bridge between the geometric (
 = 0)

1 The basic approach we propose can be applied in conjunction
with other count data distributions such as the negative binomial
distribution. We have chosen to demonstrate our ideas with the
COM-Poisson distribution because it is a flexible distribution that is
suitable both for over- and under-dispersed data.
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and Bernoulli (
 → �) distributions. The 
 parame-
ter determines the level of under- or over-dispersion
relative to the Poisson distribution (where 
 = 1).
The likelihood for a set of n independent and iden-

tically distributed (i.i.d.) observations x1�x2� 
 
 
 � xn is

L�x1�x2� 
 
 
 � xn � 	�
� =
∏n
i=1 	

xi

�
∏n
i=1 xi!�


Z−n�	�
�

= 	
∑n
i=1 xi e−


∑n
i=1 log�xi !�Z−n�	�
�

= 	S1e−
S2Z−n�	�
�� (4)

where S1 =
∑n

i=1 xi and S2 =
∑n

i=1 log�xi!�. By the fac-
torization theorem, �S1� S2� are sufficient statistics for
x1�x2� 
 
 
 � xn. Furthermore, (4) displays the COM-
Poisson distribution as a member of the exponential
family. For parameter estimation, see Shmueli et al.
(2005) and Kadane et al. (2006).

3. Reconstructing the Count Table
from the Sufficient Statistics

3.1. The Snooper’s Decision Problem
Denote by fj the frequency of value j in the data,
j = 0�1�2� 
 
 
 � J . Let us assume that the goal of the
data holder is to disclose only as much information
about the distribution of the counts that is needed
for estimation without disclosing the exact fj values.
Because sufficient statistics contain the minimal infor-
mation needed for estimating a distribution’s param-
eters, the question is: Given the sufficient statistics S1,
S2, and the sample size n, to what extent can the orig-
inal counts fj , j = 0�1� 
 
 
 � J be reconstructed? Note
that we assume that J is unknown. Thus, a snooper
who is trying to reconstruct the count table from the
sufficient statistics must solve a system of equations.
This requires an estimate or bound on J . In addition,
given that there are usually multiple solutions to these
equations, it is important to know their distribution.
We address these points next.

3.2. Distribution of Solutions
An important issue is the distribution of the integer
solutions. This influences the informativeness of the
solution space. If there are many solutions but only
a few have a high probability of being the correct
ones, then the disclosure risk is much larger than if
the solutions were equally likely. It turns out that for
the COM-Poisson distribution, as is true for all fami-
lies of distributions comprising an exponential family,
the following theorem holds:

Theorem 1. The distribution of the data given the suffi-
cient statistics is uniform among all possible integer tables
agreeing with the sufficient statistics.

Proof. Let S = �S1� S2� = �
∑n

i=1Xi�
∑n

i=1 log�Xi!�� be
the sufficient statistics and f = �f0� f1� 
 
 
 � fJ � be the
counts of the data values 0�1� 
 
 
 � J . By definition of
sufficiency, P�f = x � S = s�	�
� does not depend on
	 and 
. Furthermore,

P�f = x � S = s�	�
� = P�f = x�S = s � 	�
�
P�S = s � 	�
�

= P�f = x � 	�
�
P�S = s � 	�
�

= 	S1e−
S2Z−n�	�
�
∑

f̃ 	
S1e−
S2Z−n�	�
�

� (5)

where the sum is over all f̃ compatible with �s1� s2�.
Let the number of such f̃ be ms . Then,

P�f = x � S = s�	�
�= 1
ms

(6)

and is uniformly distributed. �

This means that regardless of the number of solu-
tions, there is no information indicating that some
solutions are more likely than others.

3.3. Bounding J
When J ≤ 1 (i.e., all observations are exclusively zeros
or else they are binary), the actual count table can be
immediately reconstructed from the sufficient statis-
tics. In this case, S2 = 0 and S1 gives the count of ones
(the number of zeros is n − S1). For J > 1, we use
prime factorization. We show that J can be bounded
and that the number of linear equations is a function
of the number of prime numbers below this bound.
The information contained in S2 is useful for bound-

ing the number of cells J . Consider the smallest prime
number p′ such that p′ does not occur among the
prime factors of eS2 .2 Then, J < p′ because the factorial
of every number greater or equal to p′ must include p′

among its factors. Although es2 is usually very large,
these numbers have the special feature that they con-
sist of many low primes, and therefore finding p′ is
not hard. When J ≤ 3, we get the exact relation J =
p′ − 1 because the numbers 1, 2, 3 are all prime num-
bers. This means that disclosing the sufficient statis-
tics when J ≤ 3 also discloses J itself. When J = 2, we
can use the three equations relating �n�S1� S2� with
�f0� f1� f2� to completely uncover the actual counts.

3.4. Solution Space
In this section, we show that using the fact that
every integer has a unique prime factorization, the
dimension of solutions depends only on the difference
between p′ and J .

2 Note that S2 is equal to the natural log of the products of the
factorials of the observations, which are integers. Therefore, eS2 is
an integer.
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Let n�p� be the exponent of p in the prime factoriza-
tion of eS2 for each p ∈��p′�, the set of prime numbers
less than p′. By construction, n�p�≥ 1 for each such p.
We can then express eS2 as

eS2 =∏p′−1
k=2 �k!�fk =

∏
p∈��p′�p

n�p�
 (7)

Now
∏p′−1

k=2 �k!�fk =
∏p′−1

k=2 �k�
∑p′−1
j=k fj =∏p′−1

k=2 �k�
gk� (8)

where gk =
∑p′−1

j=k fj . For each k, 2 ≤ k ≤ p′ − 1, let
prime p have exponent a�k�p� in the prime factoriza-
tion of k, so that

k=∏
p∈��p′�p

a�k�p�
 (9)

Note that a�k�k�= 1 and a�k�p�= 0 for k < p.
Substituting,

eS2 = ∏
p∈��p′�p

n�p� =∏p′−1
k=2 �k�

gk =∏p′−1
k=2

∏
p∈��p′�p

a�k�p�

= ∏
p∈��p′�p

∑p′−1
k=2 g�k�
 (10)

Equating exponents of primes, we have the funda-
mental equations

n�p�=
p′−1∑

k=2
a�k�p�gk =

p′−1∑

k=2
a�k�p�

p′−1∑

j=k
fj 
 (11)

The summation is over the set 2≤ k≤ j ≤ p′ − 1, so

n�p�=
p′−1∑

j=2
fj

j∑

k=2
a�k�p� for p ∈��p′�
 (12)

In other words, the coefficients fk in n�p�=
∑p′

k=1�kfk
are the number of prime factors of p that would be
contributed by k!.
In addition to the equations in (12), there are two

additional constraints on the frequencies:

n = f0+ f1+ f2+ · · ·+ fJ �
s1 = f1+ 2f2+ · · ·+ JfJ 


(13)

In practice, this means that we must factor very
large numbers (es2 is usually very large). As men-
tioned earlier, these numbers have the special feature
that they consist of many low primes. Therefore, a
simple program that first divides the number repeat-
edly by two, then by three, etc. will yield the required
factorization in no time. However, there are two major
issues: If we disclose the value of es2 , which can be
very large even for moderate count tables, it might
be impossible to represent it in less than 64 bits,
the limit that most computer programs can handle.
A solution is to disclose eS2 in the form of its fac-
torization, i.e., 2n�2� · 3n�3� · · · �p′�n�p′�. Given that the

COM-Poisson’s structure and how its sufficient statis-
tics are computed are known to the user, this form
does not disclose any more information than the exact
value of eS2 .
An alternative is to disclose S2 with a limited num-

ber of decimals. Denote the truncated value by S̃2.
Recall that S2 is a sum of log values, and is there-
fore a real number with many decimal digits. Even
if the number of disclosed decimal digits d is large,
the truncation will have a large impact on eS2 , such
that �eS2 − eS̃2 � can be very large. This introduces
more uncertainty into the count table reconstruction.
We can bound the real value of eS2 by the interval
eS̃2 ± 10−d. Within this interval, there are only a few
integers that are factorizations of all primes until p′.
However, p′ is unknown! One definite case is if S2 > 0,
where we can immediately rule out all odd numbers
as possible values. The uncertainty in the value of eS2
leads to multiple sets of solutions, one for each legit-
imate factorization. The question is then, given the
combined set of solutions from the multiple sets, what
is the distribution of solutions? There are two choices:
the first is to treat all solutions equally disregarding
which set they came from. Alternatively, we can treat
each set of solutions as equally likely and then weight
each solution according to the ratio between the num-
ber of solutions in its set and the total number of
solutions.
Note that disclosing S2 in this manner does not have

a similar effect on decision making using the sufficient
statistics. In fact, the disclosure policy would like to
choose the format used to disclose S2 to be one which
adds uncertainty to the reconstruction of count tables
while not affecting decision making significantly.
Regarding the solution space, the number of equa-

tions is determined by the number of prime numbers
below p′, and the number of unknown frequen-
cies is p′. Table 1 lists the number of equations
and unknown frequencies for J < 17. This gives a
sense of the magnitude of under-determination of the
problem.
Another important point is that only the left-hand

side of the equations in (12) and (13) depends on the
actual data, whereas the right-hand side depends only
on p′. In other words, a�k�p� are independent of the
data and can be computed in general. Table 2 gives
the values of these coefficients for k�p≤ 13.

Table 1 Number of Equations and Unknown Frequencies as a Function
of J

J 1 2 3–4 5–6 7–10 11–12 13–16

No. of equations 2 3 4 5 6 7 9
No. of frequencies (p′) 2 3 5 7 11 13 17
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Table 2 Values of a�k� p� for k� p≤ 13

k

p 2 3 4 5 6 7 8 9 10 11 12 13

2 1 2 1 3 1 2
3 1 1 2 1
5 1 1
7 1
11 1
13 1

3.5. Computing Interval Bounds
When the number of cells J is large, the number of
solutions can be very large and it is therefore com-
putationally challenging to find all solutions. In such
cases, an alternative is to compute bounds on each
cell. In some cases, the objective of the snooper is
exactly to find such bounds (rather than the solu-
tions). There has been much work on the interval
inference problem (see, for example, Chowdhury et al.
1999 and Li et al. 2002). This is usually much eas-
ier computationally than computing all the solutions
because it involves an optimization task with linear
and nonnegative integer constraints. However, uni-
variate interval bounds are computed separately for
each cell, independently from other cells, when in
truth the counts in the different cells are dependent.
This is similar to examining the marginal distribu-
tions of a multivariate distribution, thereby ignoring
the multivariate structure. In practice, this means that
the bounds might suggest solutions that do not exist.
For example, consider a case where one of the equa-
tions is f5 + f6 = 1. The LP solution would yield the
bounds �0�1� for each of f5 and f6, whereas the pair
f5 = 1, f6 = 1 is not a solution.
To assess the risk associated with univariate cell

bounds, Domingo-Ferrer et al. (2002) proposed an
entropy-based disclosure-risk (DR) measure. The DR
for cell i, as formulated in Boyens et al. (2004), is
given by

DRi = 1/ log2�Ui−Li�
 (14)

This is the reciprocal of the conditional entropy based
on the assumption that the distribution of values
within the interval �Li�Ui� is uniform. This measure
is constructed separately for each cell i, without rela-
tion to other cells. It also assumes a uniform distribu-
tion of values within the bounds. If we again consider
the dependence structure between cells, we can con-
struct a global DR measure. Theorem 1 shows that the
distribution of the solutions (which are multivariate
with respect to the cells) is uniform. If we incorporate
this into the reciprocal of the conditional entropy,3 we

3 Using the notation from §3.2, this is given by −1/∑f̃ P �f � S� ·
log2 P�f � S�=−1/∑f̃ �1/ms� log2�1/ms�= 1/ log2�ms�.

obtain a global measure of DR:

DRglobal = 1/ log2�ms�� (15)

where ms is the number of solutions. The global mea-
sure can be used to assess overall risk, whereas the
cell-level measures can give upper bounds on the
risk associated with a particular cell. We compare
our COM-Poisson approach with an interval-bounds-
based approach in the following section.

4. Examples
In this section, we try to reconstruct the count tables
for three real data sets with different sizes of count
tables. Our objective is to illustrate the extent of the
risk posed by disclosing the sufficient statistics of the
model. In all cases, we use only the sufficient statis-
tics n, s1, and es2 for the reconstruction and show the
resulting number of solutions, and where possible,
the solutions themselves. When the solutions are not
available, we give interval bounds for the cells.

4.1. Example 1: 2004 Federal Disaster Declarations
We start with a small frequency table that describes
the frequency of federal disaster declarations in 2004
in the 50 U.S. states+ the District of Columbia. The
data are taken from the official website of the Fed-
eral Emergency Management Agency, which belongs
to the U.S. Department of Homeland Security and is
displayed in Table 3. Fitting a COM-Poisson, we get
the estimates 	̂ = 1
15, �
 = 0
88, which means that
the data are over-dispersed compared to an ordinary
Poisson distribution. Now, if instead of the complete
count table we had only the summary statistics n =
51, s1 = 61, and es2 = 220 · 37, how many count tables
are consistent with these sufficient statistics? In this
case, we can bound J by 5, because 5 is the smallest
prime number that does not occur in the factoriza-
tion. We also have n�2�= 20 and n�3�= 7. To find the
actual counts, we compute a�k�p� for p= 2�3 and k=
2�3�4. From (9) or Table 2, we get a�2�2�= a�3�3�= 1,
a�4�2�= 2, and all other as are zero. This is indepen-
dent of the data. We now plug these values into (12)
and obtain the equations

20 = f2+ f3+ 3f4� (16)

7 = f3+ f4
 (17)

We write f2 and f3 as a function of f4, and add the
two constraints from 13:

51 = f0+ f1+ f2+ f3+ f4� (18)

61 = f1+ 2f2+ 3f3+ 4f4
 (19)

Table 3 Number of Federal Disaster Declarations in
2004, in the 50 U.S. States and D.C. �J = 4�

No. of disasters 0 1 2 3 4
Frequency 15 20 9 5 2
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Figure 1 Seven Solutions for Number of Disasters per State
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Note. The seven integer solutions of the four equations linking the known
sufficient statistics and the unknown counts.

The space of solutions includes seven solutions,
each with probability 1/7. These solutions can be eas-
ily obtained using software (e.g., Excel) or by hand,
and are presented in Figure 1. The largest uncertainty
is for counts of one, which range between 14 and 32.
Here and in general, if J = 3 is known, then the sin-
gle solution would be !f0 = 17, f1 = 14, f2 = 13, f3 = 7,
f4 = 0". In conclusion, here we disclose more than the
information that is required for estimating the param-
eter in an ordinary Poisson fit, namely, n�2� and n�3�.
Even with this information at hand, there is only a
chance of 1/7 to reconstruct the exact count table, but
the seven solutions are easily found. The seven solu-
tions lead to count tables that diverge especially for
counts of one. In addition, there are three “shapes” of
solutions: one where the counts are decreasing from
0–4, one with a peak at one and then decreasing, and
another with a peak at two followed by a decrease
and a slight increase at the count of four. Using the
interval bounds, we obtain an overall disclosure risk
of DR = 1/ log2�7� = 0
356. Cell-level disclosure risks
are given in Table 4.

4.2. Example 2: Word Lengths in a Slovak Poem
The count data in Table 5 describe the word lengths
in a Slovak poem by M. Rufus, and were used by
Wimmer et al. (1994) to describe the distribution of
word lengths in texts where is there no restrictions on
word length. The authors show that the data follow a
COM-Poisson distribution.
Suppose that the complete table was not disclosed,

but only the sufficient statistics n= 117, s1 = 338� and

Table 4 Interval Bounds for Cells and Their Associated Disclosure-
Risk Measure

Number of disasters 0 1 2 3 4
Lower bound 11 14 1 1 0
Upper bound 17 32 13 7 6
DR 0.39 0.24 0.28 0.39 0.39

Note. The global measure here is DRglobal = 1/ log2�7�= 0	356.

Table 5 Word Lengths (Number of Syllables) of 117
Words in a Slovak Poem �J = 5�

Word length 0 1 2 3 4 5
Frequency 0 7 33 49 22 6

es2 = 2166 ·377 ·56. We can bound J by J < 7 because 7 is
the smallest prime number that does not appear in the
factorization. We therefore have n�2�= 166, n�3�= 77,
and n�5�= 6. The five equations are

166 = f2+ f3+ 3f4+ 3f5+ 4f6� (20)

77 = f3+ f4+ f5+ 2f6� (21)

6 = f5+ f6� (22)

117 = f0+ f1+ f2+ f3+ f4+ f5+ f6� (23)

338 = f1+ 2f2+ 3f3+ 4f4+ 5f5+ 6f6
 (24)

In this case, there are 14 solutions, displayed in
Figure 2. It can be seen that the main uncertainty
is for counts of two (ranging 33–45). Also, there are
two possible “shapes” of counts: one with decreasing
counts as the words get longer, and the other with an
increase at words with six syllables. If we consider the
practical meaning of a word length, thereby eliminat-
ing solutions with nonzero counts of 0, the number of
valid solutions is seven. In this “small” example J = 5
(there are only word lengths of 0–5 words), yet there
are 14 possible solutions that have different “shapes.”
Because the number of solutions is small, it is feasible
to compute them. For sake of comparison, we give the
interval bounds and their associated DR measures in
Table 6.

4.3. Example 3: Injuries in Accidents
The next example considers J = 11 and shows how the
rate of complexity quickly increases. Table 7 describes
the number of injuries from automobile accidents in a
sample of 10,000 accidents in the United States in 2001
(from the Department of Transportation’s website at

Figure 2 14 Solutions for Word Lengths in a Slovak Poem
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Note. The 14 integer solutions of the four equations linking the known suf-
ficient statistics and the unknown counts.
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Table 6 Interval Bounds for Cells and Their Associated Disclosure-
Risk Measure

Word length 0 1 2 3 4 5 6
Lower bound 0 0 33 49 16 0 0
Upper bound 2 7 45 51 22 6 6
DR 1 0.36 0.28 1 0.39 0.39 0.39

Note. The global measure here is DRglobal = 1/ log2�14�= 0	263.

http://www.transtats.bts.gov). The user is given the
sufficient statistics: n = 10�000, s1 = 7�073, and es2 =
22�000 ·3585 ·587 ·720 ·111. In this case, the smallest prime
number that does not appear in the factorization is
p′ = 13. We therefore have the following seven equa-
tions with 13 unknown frequencies:

2�000 = f2+ f3+ 3f4+ 3f5+ 4f6+ 4f7
+ 7f8+ 7f9+ 8f10+ 8f11+ 10f12� (25)

585 = f3+ f4+ f5+ 2f6+ 2f7 + 2f8+ 4f9
+ 4f10+ 4f11+ 5f12�

87 = f5+ f6+ f7 + f8+ f9+ 2f10+ 2f11+ 2f12�
20 = f7 + f8+ f9+ f10+ f11+ f12�
1 = f11+ f12�

10�000 = f0+ f1+ f2+ f3+ f4+ f5
+ f6+ f7 + f8+ f9+ f10+ f11+ f12�

7�073 = f1+ 2f2+ 3f3+ 4f4+ 5f5+ 6f6+ 7f7
+ 8f8+ 9f9+ 10f10+ 11f11+ 12f12


Using integer programming software (Latte; see
http://www.math.ucdavis.edu/∼latte/), we find that
the number of integer solutions is 82,938,779. Clearly,
it is not feasible to find all solutions and therefore it
is even hard to compare the different solutions. We
therefore resort to computing interval bounds for the
cells, with their associated DR measures, in Table 8.

5. Managerial Implications and Future
Research

The three examples illustrate the low risk associated
with disclosing the COM-Poisson sufficient statistics.
Yet, in all three examples, the COM-Poisson well
approximates the data distribution, and therefore the

Table 8 Interval Bounds for Cells and Their Associated Disclosure-Risk Measure

Number of injuries 0 1 2 3 4 5 6 7 8 9 10 11 12
Lower bound 4�994 2�686 230 0 0 0 0 0 0 0 0 0 0
Upper bound 5�510 4�213 1�241 477 477 66 66 19 19 19 19 1 1
DR 0.11 0.09 0.10 0.11 0.11 0.17 0.17 0.24 0.24 0.24 0.24 — —

Note. The global measure here is DRglobal = 1/ log2�82938779�= 0	04.

Table 7 Number of Injuries in 10,000 Car Accidents in 2001

Number of 0 1 2 3 4 5 6 7 8 9 10 11
injuries

Frequency 5,363 3,091 1,008 348 105 46 19 9 7 2 1 1

sufficient statistics can be used for statistical esti-
mation and decision making. The disclosure risk is
low with even small count tables where the solutions
can be computed. It becomes extremely low in larger
count tables (e.g., with data values that range from
0–11), where it is practically infeasible to compute the
solutions. This policy masks not only the actual cell
counts but also the size of the table. At the same time
as noted, data utility is not sacrificed, thus meeting
the needs of legitimate users.
The proposed policy described in this paper offers

data owners the ability to control information dis-
closure taking into account the competing needs of
legitimate data users and malicious data snoopers.
Sufficient statistics meet the needs of legitimate data
users. However, the format in which the sufficient
statistic is disclosed (for example, disclosing S2 in
exponentiated form versus in a decimal approxima-
tion) has a greater impact on the malicious snooper
than it does on the legitimate data user.
Unlike many disclosure limitation techniques that

are aimed at categorical or continuous data, our
method is suitable for discrete count data. In particu-
lar, we focus on one-way tables of discrete count data.
An important next step is to develop ways for deal-
ing with higher-dimensional tables, which are preva-
lent in federal applications. One first needs to define
the nature of the multiway data structure. A popular
structure is a multiway table where one dimension
corresponds to a discrete variable (such as the dis-
tribution of the number of abortions per woman, as
reported by a survey), and the other dimensions are
categorical variables (such as ethnicity, marital status,
religion, and state). Consider the schematic example
in Table 9. As in the one-way case, the goal is to
disclose only enough information to allow for infer-
ence about abortions in different states, but the actual
cell counts should remain unrevealed. One approach
for using the COM-Poisson distribution for disclosure
limitation is to treat each category (e.g., state) sepa-
rately, and report a set of sufficient statistics for each
category. If the distribution of abortions in each state
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Table 9 Distribution of the Number of Abortions per
Woman by State (Schematic Two-Way Table)

No. of abortions per woman

0 1 2 3 	 	 	

Alabama
Alaska
Arizona

	
	
	

is independent of the distribution in the other states,
then there is no loss of information by treating each
state separately. Even if there is a dependence, but
the user is only interested in category-level inference,
then this policy is sufficient.
If there is a dependence between the discrete vari-

able and the categorical variable(s), and the user is
interested in estimating this relationship, then two
possible approaches are (1) to supplement the cate-
gory-level information with some measure of depen-
dence, or (2) to develop a COM-Poisson regression
model (perhaps one that generalizes a Poisson regres-
sion model) where the predictors are dummy vari-
ables that correspond to the categorical information.
In the last setting, it is possible to integrate not
only categorical dimensions but also continuous ones.
These are two avenues that require further research.
Finally, a third direction would be to extend the
COM-Poisson distribution to a multivariate distri-
bution, which would be useful for multiway tables
where there are multiple dimensions that are based
on discrete count variables.
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