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Abstract. The isometric mapping (Isomap) algorithm is often used for analysing hyperspectral
images. Isomap allows to reduce such hyperspectral images from a high-dimensional space into
a lower-dimensional space, keeping the critical original information. To achieve such objective,
Isomap uses the state-of-the-art MultiDimensional Scaling method (MDS) for dimensionality re-
duction. In this work, we propose to use Isomap with SMACOF, since SMACOF is the most accu-
rate MDS method. A deep comparison, in terms of accuracy, between Isomap based on an eigen-
decomposition process and Isomap based on SMACOF has been carried out using three benchmark
hyperspectral images. Moreover, for the hyperspectral image classification, three classifiers (support
vector machine, k-nearest neighbour, and Random Forest) have been used to compare both Isomap
approaches. The experimental investigation has shown that better classification accuracy is obtained
by Isomap with SMACOF.

Key words: dimensionality reduction, hyperspectral imaging, isometric mapping (Isomap),
manifold learning, SMACOF algorithm.

1. Introduction

HyperSpectral Images (HSIs) contain an exhaustive variety of information about specific
characteristics of the materials, with hundreds or even thousands bands (Borengasser et al.,
2007). The spectrum of each pixel can be seen as a vector, where each component rep-
resents the luminosity of the reflectance value for each spectral band. The set of bands
which composes an HSI shows the representation of a scene, but each one individually
contains information from a different wavelength range, which can cover both the visible
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and infrared spectrum. The width of each band can be between 5 and 10 nm, depending
on the considered sensor. Each material throws a different reflectance profile for all the
bands. Thus, for each point of the image, a specific curve that provides a lot of information
for the corresponding point of the scene is obtained. Therefore, to efficiently exploit this
information in applications, classification of HSIs is usually performed, where pixels are
labelled to one of the classes based on their spectral characteristics.

There are many applications which take advantage of a large amount of information
provided by hyperspectral sensors, such as remote sensing (Wang et al., 2017), biotech-
nology (Asaari et al., 2018), medical diagnose (Leavesley et al., 2018), forensic science
(Almeida et al., 2017), environmental monitoring (Virlet et al., 2017), etc. This available
information leads us to develop new processing techniques. In addition, many applica-
tions which work with HSIs require a fast response. Examples of these applications may
be obtained in the areas of modelling and environmental assessment, detection of mili-
tary objectives or prevention and response to risks, such as forest fires, rescue operations,
floods or biological threats (Chang et al., 2001; Manolakis et al., 2003).

However, the large amount of information contained in an HSI, which is its main ad-
vantage, is also a disadvantage in terms of computational performance. The work with
large HSIs involves a high computational complexity and requires a lot of resources and
time (Rizzo et al., 2005). On the other hand, it is well-known that high-dimensional data
spaces are mostly empty. This indicates that the data structure of an HSI exists basically in
a subspace (Plaza et al., 2005). Taking into account these ideas, it can be concluded that
there is a need (and a possibility) to reduce the size of the HSIs. So, it is usual to apply
techniques to reduce the dimensions of the original HSIs, obtaining reduced images which
can be handled in a more efficient way without losing critical information (Harsanyi and
Chang, 1994; Bruce et al., 2002; Wang and Chang, 2006).

Multidimensional Scaling (MDS) consists of a set of techniques which are used to
reduce the dimensions of a data set. Such techniques are used in many applications –
multiobjective optimization (Filatovas et al., 2015), data mining (Medvedev et al., 2017),
(Bernatavičienė et al., 2007), marketing (Green, 1975), cryptography (Gupta and Ray,
2015), a wide variety of mathematical and statistical methods (Granato and Ares, 2014),
psychology (Rosenberg, 2014), etc. They use a mapping function usually based on Eu-
clidean distances which is able to find an optimal data representation. However, also other
distance metrics could be considered (Fletcher et al., 2014). MDS techniques represent
data in a low-dimensional space in order to make these data more accessible (Borg and
Groenen, 2005; Dzemyda et al., 2013). For instance, a graphical visualization of the data
in 2D or 3D space for an easier understanding of the information.

A well-known technique named Isometric mapping (Isomap) generalizes MDS to
non-linear manifolds, replacing Euclidean distances by geodesic distances (Bengio et al.,
2004). Isomap has been used successfully in a multitude of applications, such as HSIs
(Li et al., 2017), face recognition (Yang, 2002a), biomedical datasets (Lim et al., 2003),
pattern classification (Yang, 2002b), learning multi-class manifold (Wu and Chan, 2004),
supervised learning (Pulkkinen et al., 2011), etc. Focusing on the HSIs, Isomap could be
used in their reductions, achieving images with almost the same accuracy than the origi-
nal but with fewer bands (Li et al., 2017). The main goal here is to reduce the number of
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bands keeping the critical information they contain. Isomap is able to find hidden patterns
in the bands and to reproduce the same pattern but with less bands.

Isomap often uses classical scaling such as eigen-decomposition as a part of its pro-
cess. Classical scaling is a MDS method to reconstruct a configuration from the inter-
point distance, which achieves a good accuracy and has a feasible computing cost (Sibson,
1979). However, any MDS method could be used.

The main contribution of this paper is the use of Isomap based on SMACOF (Scaling
by MAjorizing a COmplicated), which is considered to be the most accurate MDS method
(Borg and Groenen, 2005), and used when solving various MDS problems in social and
behavioural sciences, marketing, biometrics, and ecology. Nevertheless, it is also one of
the most computationally demanding methods (Ingram et al., 2009). In previous work
(Li et al., 2017), where Isomap is studied in depth, authors consider classical scaling
methods such as an eigen-decomposition process. However, our propose is to consider
Isomap based on SMACOF due to its high accuracy. In this paper, the obtained results of
both strategies, Isomap using eigen-decomposition and Isomap based on SMACOF, are
compared in terms of classification accuracy. Such comparison is carried out by means of
three popular HSIs and the same configurations in both cases.

The paper is organized as follows. In Section 2, the description of the Isomap method
is provided. Section 3 describes the SMACOF algorithm. In Section 4, the results obtained
after applying two versions of Isomap (with eigen-decomposition and with SMACOF) on
several test images are discussed. Finally, we conclude this work in Section 5.

2. Isomap

Isomap is a manifold learning algorithm which can reduce the data redundancy preserv-
ing the original geometry of it. Isomap estimates the geodesic distance between all the
items, given only input-space distances. For the points which are neighbours, input-space
is an accurate approximation to the geodesic distance. For the distant ones, the geodesic
distance can be computed as the addition of a sequence of distances between neighbour-
ing points. The main idea is to find the shortest paths in a graph with edges connecting
neighbouring data points (Tenenbaum et al., 2000).

Isomap tries to build a matrix which contains all the minimum (geodesic) distances
between the m items which are contained in a data set X (an HSI in our case), and then
it reduces such matrix. In detail, the algorithm has three steps. They are shown in Algo-
rithm 1 and described below:

1. To set a number l of neighbours. This number will be the same for all the items
(points) Xi . Then, to determine the neighbours for every item Xi finding the l near-
est points, taking into account that two points Xi and Xj cannot be neighbours if the
distance between them is greater than a fixed value k. Euclidean distances between
the m items are used. In this way, a graph G is constructed. Algorithm 2 describes
the l-nearest neighbour (KNN) algorithm, which is commonly used to build neigh-
bourhoods (Tay et al., 2014).
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Algorithm 1 Isomap(m, b, X, l, k, s, imax, ǫ)
Require:

m: number of items;
b: number of bands;
X: m × b matrix which represents the HSI;
l: maximum number of neighbours for each item;
k: neighbourhood radius;
s: dimension of low-dimensional space;
imax: maximum number of iterations;
ǫ: threshold for the stress variance

Ensure:

Y : set of finding points in the low-dimensional space stored in a m × s matrix
1: Construct the neighbourhood graph, G = KNN(m,b,X,k, l) (Algorithm 2)
2: Compute shortest path between nodes, 1 = Dijkstra(m,G) (Algorithm 3)
3: Compute MDS method. For instance, SMACOF, Y = SMACOF(m, s , 1, imax, ǫ, Y ) (Algorithm 4)
4: return Y

Algorithm 2 KNN(m, b, X, k, l, j )
Require:

m: number of items;
b: number of bands;
X: m × b matrix which represents the HSI;
k: neighbourhood radius;
l: maximum number of neighbours for each item;
j : index of the selected item

Ensure:

G: The neighbourhood graph
1: for i = 0; i < m; i + + do

2: Compute Euclidean distances, D = [d(Xi ,Xj )]

3: Compute set G containing indices for the l smallest distances (with l < k) of each element of D

4: return G

2. To calculate the shortest distance between all pair of points in G. When Xi and Xj

are neighbours, their distance is Euclidean. However, when the points are not neigh-
bours, the distance is computed as the shortest path between all possible ones in G

which connects Xi and Xj , that is, d(Xi,Xj ) = min{dG(Xi ,Xj ), dG(Xi ,Xn) +

dG(Xn,Xj )}, where n = 1, . . . ,m. As a result of this step, an m × m matrix which
contains the short distances 1, is obtained. In this work, Dijkstra’s algorithm has
been used to calculate the shortest paths among G according to Algorithm 3 (Di-
jkstra, 1959). Authors in Deng et al. (2012) explain Dijkstra’s algorithm as these
steps:

• To initialize all nodes to ∞, except the initial, which is set to 0. Neighbours
already have their distances. To mark all nodes as unvisited, as it is shown in
Fig. 1(a).

• To consider all the unvisited neighbours and to calculate their distances
through each node. For every neighbour, to compare this distance with its pre-
vious distance and to assign the smallest one to the node. An example is shown
in Fig. 1(b).
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Algorithm 3 Dijkstra(m, G)
Require:

m: number of items;
G: neighbourhood graph

Ensure:

1: m × m matrix with the shortest distances
1: for i = 0; i < m; i++ do

2: 1[i] = ∞

3: previous[i] = −1

4: 1[0] = 0

5: Q = the set of all nodes in G

6: while Q is not empty do

7: u = vertex in Q with the smallest 1

8: if 1[u] = ∞ then break;

9: Delete u from Q

10: for each neighbour v of u do

11: alt = 1[u] + distbetween(u, v)

12: if alt < 1[v] then

13: 1[v] = alt

14: previous[v] = u

15: Reorder v in Q

16: return 1

• When all the neighbours have been considered, to mark the current node as
visited. A visited node will never be checked again. Move to the next unvisited
node with the smallest distance and to repeat the previous steps, as it is shown
in Fig. 1(c).

• If the final node has been marked as visited or if there is no path between the
initial and the final node (all paths have a step marked as infinite), then the
algorithm has finished. The final step is shown in Fig. 1(d).

3. To apply any MDS method to the shortest distances (1). Particularly, in this work,
SMACOF and the eigen-decomposition methods are considered.

To evaluate the accuracy of Isomap based on SMACOF and eigen-decomposition
methods for HSIs, a classification process with several classifiers – the Support Vector
Machine (SVM) (Cortes and Vapnik, 1995), the KNN classifier (Altman, 1992) and the
Random Forest algorithm (Breiman, 2001) – has been used.

3. SMACOF

SMACOF, as other MDS methods, is used for the analysis of similarity data on a set
of items. As it has been mentioned before, SMACOF is the most accurate MDS tech-
nique (Ingram et al., 2009). Its objective is to find a set of points Y1, Y2, . . . , Ym ≡ Y in a
low-dimensional space R

s , s < b (where b is the original number of dimensions), taking
into account that the distances between these points must be as similar as possible to the
distance between the original points X1,X2, . . . ,Xm ≡ X (Orts et al., 2018). The key is
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Fig. 1. Steps of the Djikstra’s algorithm.

the stress function (Eq. (1)). The less stress, the better results, since it measures the dif-
ference between the distances of the original points and the distances of the points in the
low-dimensional space. In Eq. (1), δ represents the distance between points of X, and d

does it between points of Y .

EMDS =
∑

i<j

(

δij − d(Yi, Yj )
)2

. (1)

The majorizing concept, which implies to approximate a big or complex function
through another smaller or simpler, is used by SMACOF to achieve the reduction of
the stress (Groenen et al., 1995). It consists of finding a new function iteratively. The
new function will be located over the complex one, touching it at a point called sup-

porting point (Fig. 2). Each iteration brings the minimum of the new function closer to
the minimum of the original one, that is, the stress function (Borg and Groenen, 2005;
Mairal et al., 2014). In De Leeuw and Mair (2011), the majorization is defined in the
following steps:

1. To choose an initial value y = y0.
2. To find update x t such that g(x t , y)6 g(y, y).
3. If f (y) − f (x t )> ǫ, then y = x t and go to step 2.

In Algorithm 4, all the steps of SMACOF are shown. In such an algorithm, the initial
value y = y0 mentioned in step 1 is randomlygenerated. It has been tested in other works in
which SMACOF obtains good results beginning from solutions randomly generated (Orts
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Supporting point

New function g

Original function f New minimum reached

Fig. 2. Illustration of the majorization concept. The original function f is represented with a blue dashed line.
The function obtained by majorization at every iteration, g, represented as a red dotted line, touches f at the
supporting point. Taking into account that a new minimum of g is obtained at every iteration.

et al., 2018). The stress value of the current mapping is measured and then compared to the
stress value of the previous mapping result. Each iteration minimizes the stress value due
to the generation of closer solutions to the original. If the difference between the distances
is smaller than a fixed threshold value, the algorithm stops (Ekanayake et al., 2010), as it
is mentioned in step 3. For the sake of simplicity, the details of the Guttman transform,
used to update x(t), have not been explained here.

Algorithm 4 SMACOF(m, s, 1, imax , ǫ)
Require:

m: number of items;
s: dimension of low-dimensional space;
1: m × m matrix of dissimilarities of observed data on the high-dimensional space (n);
imax: maximum number of iterations;
ǫ: threshold for the stress variance

Ensure:

Y : set of finding points in the low-dimensional space stored in a m × s matrix
1: Initial Solution randomly generated, Y 0

2: Compute Euclidean distances, D0 = [d(Y 0

i
, Y 0

j
)]

3: k = 0, error = 1

4: if (k < imax) and (error > ǫ) then

5: Compute Guttman transform matrix, Bk ≡ Bk(1,Dk−1)

6: Compute Guttman transform, Y k = 1/m · Bk · Y k−1

7: Update distances Dk = [d(Y k
i
, Y k

j
)]

8: Compute Ek
MDS (Eq. (1))

9: error = |Ek
MDS − Ek−1

MDS |

10: k = k + 1

11: return Y
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4. Evaluation Results

Such an investigation methodology has been considered in this work: first, to run Isomap
based on SMACOF or eigen-decomposition methods and, after that, to apply a classifica-
tion process with SVM, KNN or Random Forest classifiers.

Obtained results of Isomap using SMACOF are compared with the obtained results of
a recent paper where Isomap considers an eigen-decomposition process (Li et al., 2017)
in the problem of hyperspectral images reduction. As in Li et al. (2017), three popular HSI
images collected by the AVIRIS and ROSIS sensors have been considered to test Isomap
(see Fig. 3). The considered data sets have the following characteristics:

• Pavia city centre (AVIRIS Salinas Valley, 2019), acquired by the ROSIS sensor. Pavia
consists of 1096 × 715 pixels and 102 bands. For the sake of clarity, the data set is
reduced to a 150 × 150 pixels subset. However, authors in Li et al. (2017) do not
detail how they truncate the image in the study. In our work, random subsets of
150 × 150 are collected, keeping the ground truth variety.

• A finer spatial resolution of Salinas (AVIRIS sensor), named Salinas-A. Salinas-A
consists of 86×83 pixels, which are the [samples, lines] = [591−676,158−240]

of the original Salinas data set. It contains 204 bands.
• The Indian Pines data set (NW AVIRIS, 2012) collected by the AVIRIS sensor. It

consists of 145 × 145 pixels and, originally, 224 bands. However, 24 bands which

A B C D

E F

Fig. 3. HSIs tested. Pavia city centre (A) and its ground truth (B), Salinas-A (C) and its ground truth (D), and
Indian Pines with its ground truth ((E) and (F) respectively).
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contain the information about water absorption are removed in Li et al. (2017), so it
has 200 bands in the tests.

Both Isomap versions (SMACOF and eigen-decomposition) have been implemented
in Matlab and executed on a cluster composed by 64 cores of Bullx R424-E3 Intel Xeon
E5 2650 with 8GB RAM. Specifically, KNN and Dijkstra procedures (Algorithms 2 and 3)
have been coded using the Matlab functions find_nn and dijkstra, respectively. The pre-
cision of the classification process is dependent on the considered dimension of low-
dimensional space (s) on Isomap. Therefore, several dimensions s have been taken into
account to study their accuracy in the classification. Concretely, we varied the dimen-
sion of s from 10 to 50, as it was performed in Li et al. (2017). The parameter k, which
describes the number of neighbours handled for each point has been set to 20.

We follow the idea described in Li et al. (2017) of considering several classifiers to
evaluate the accuracy of both versions of Isomap for HSI classification, such as SVM
and KNN classifiers. In addition, we have also considered the Random Forest algorithm.
Similarly to Li et al. (2017), training and testing data were randomly selected from the
ground truth. The 20% of the total pixels of each image were used to train, and the 80%

to test. The comparative analysis has been based on the classification accuracy, which is
obtained as the ratio: correctly predicted data/total testing data.

The SVM is coded using LIBSVM described in Chang and Lin (2011) with the fol-
lowing parameters: “−t 2 −c 100” (−t 2 sets the type of kernel function as radial basis
function, and −c 100 set the cost parameter to 100). It is not necessary to set the gamma
value, −g (a parameter used as input by the radial basis function), as it is automatically set
to “−g 1/D”, where D is the dimension. The input data must be transformed following
the data preprocessing described in Hsu et al. (2003). The results obtained using the SVM
are depicted in Fig. 4.

KNN is a straightforward classification method, however, it is one of the most accurate
ones (Keogh and Kasetty, 2002; Wei and Keogh, 2006). The results of the preliminary
analysis of KNN are presented in Table 1 to consider the most suitable value of the number
of neighbours (k′). This table shows the accuracy of the classification considering several
values of k′ (1,3,5), for every reduced image on both dimensionality reduction methods
(eigen-decomposition and SMACOF). Here, the best values are marked in italic style. As
it can be observed in the table, the accuracy is reduced as the value of k′ increases and
1NN obtains the best values of accuracy in all analysed cases. Therefore, KNN with k′ = 1

(1NN) will be considered hereinafter. An additional advantage of 1NN is that it does not
have tuning parameters and does not require a special transformationof the data or another
preprocessing (Xing et al., 2009). The Matlab function fitcknn has been used to perform
KNN.

Apart from the classifiers used in Li et al. (2017), the Random Forest algorithm has
also been considered in our evaluation (Fig. 6). The Matlab function TreeBagger has been
used to perform Random Forest.

Obtained results with SVM, 1NN and Random Forest can be observed in Figs. 4, 5
and 6, respectively. The figures show the accuracy of the classification from the reduced
images compared to the ground truth images, for both versions in each range from s = 10
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Fig. 4. Classification results (in terms of accuracy) of the three HSI data sets using SVM: (a) Indian Pines;
(b) Salinas-A; (c) Pavia.

to s = 50. Such results have shown that the use of SMACOF improves the accuracy of
Isomap for the three tested classifiers. In comparison with the version based on the eigen-
decomposition process, the SMACOF approach is able to achieve better accuracies which
involves a more optimized classification of HSI data sets.
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Table 1
Classification results (in terms of accuracy) of the three HSI data sets using KNN for k′ = 1,3 and 5 and test

images Indian Pines, Salinas-A and Pavia.

SMACOF EIGEN-DECOMPOSITION

k′

IMAGE s 1 3 5 1 3 5

Indian Pines 50 0.8112 0.7958 0.7943 0.7250 0.6956 0.6881
40 0.8046 0.7987 0.7912 0.7200 0.6965 0.6884
30 0.8068 0.7849 0.7814 0.7150 0.6933 0.6893
20 0.8179 0.8069 0.7845 0.7150 0.6916 0.6879
10 0.8090 0.7915 0.7877 0.7050 0.6896 0.6880

Salinas-A 50 0.9946 0.9931 0.9890 0.9899 0.9714 0.9658
40 0.9952 0.9913 0.9925 0.9896 0.9733 0.9654
30 0.9950 0.9935 0.9904 0.9898 0.9765 0.9645
20 0.9952 0.9917 0.9914 0.9892 0.9743 0.9699
10 0.9963 0.9890 0.9924 0.9890 0.9765 0.9687

Pavia 50 0.9917 0.9503 0.9488 0.9729 0.9365 0.9211
40 0.9929 0.9407 0.9463 0.9720 0.9320 0.9232
30 0.9940 0.9597 0.9525 0.9729 0.9365 0.9235
20 0.9937 0.9598 0.9526 0.9735 0.9312 0.9245
10 0.9934 0.9615 0.9576 0.9715 0.9348 0.9234

Once it is proven that the SMACOF approach is more accurate than the eigen-
decomposition process, the global precision of Isomap with SMACOF has been tested
in a more extended range of the values of s than (Li et al., 2017) using 1NN (see Fig. 7).
In this figure, it can be observed that the classification accuracy is quite high for all the
analysed dimensionality reduction cases (from 50 to 2). However, it should be noted that
the classification accuracy slightly decreases among the range from 9 to 2. Thus, we can
conclude that SMACOF achieves a good accuracy even for the significant dimensionality
reduction.

5. Conclusions

In this paper, our intention was to improve the accuracy of Isomap algorithm in the analysis
of hyperspectral images. To achieve this, Isomap has been based on SMACOF, which is
the most accurate MDS method, instead of classical scaling such as eigen-decomposition
process.

The proposed version of Isomap based on SMACOF has been experimentally com-
pared to a state-of-the-art version with an eigen-decomposition process. For that, well-
known hyperspectral images taken from airbornes or satellites have been considered (In-
dian Pines, Salinas-A and Pavia Center). Moreover, a classification process using several
classifiers (SVM, KNN and Random Forest) has been carried out to determine the accu-
racy of every test image with every method (SMACOF of eigen-decomposition).Obtained
results have shown that the use of SMACOF improves the accuracy of Isomap in the re-
duction of the hyperspectral images for all studied cases.
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Fig. 5. Classification results (in terms of accuracy) of the three HSI data sets using 1NN: (a) Indian Pines;
(b) Salinas-A; (c) Pavia.

In this work, only one criteria, the classification accuracy, is considered when reducing
dimensions of the hyperspectral images. However, it should be noted that the drawbacks
of Isomap and SMACOF are high consumptions of time and resources. Therefore, to de-
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Fig. 6. Classification results (in terms of accuracy) of the three HSI data sets using Random Forest: (a) Indian
Pines; (b) Salinas-A; (c) Pavia.

crease these aspects could be very valuable to make their application more approachable.
Consequently, our current and future work is focused on the implementation of a GPU
version of Isomap based on SMACOF.
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Fig. 7. Classification results (in terms of accuracy) of the three HSI data sets using 1NN for ranges from 50 to
2: (a) Indian Pines; (b) Salinas-A; (c) Pavia. Solid lines are to guide the eye.
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