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Mobile crowd sensing (MCS) is a novel sensing paradigm which can sense human-centered daily activities and the surrounding
environment.The impact of mobility and selfishness of participants on the data reliability cannot be ignored in most mobile crowd
sensing systems. To address this issue, we present a universal systemmodel based on the reverse auction framework and formulate
the problem as theMultiple Quality Multiple User Selection (MQMUS) problem.The quality-aware incentive mechanism (QAIM) is
proposed to meet the quality requirement of data reliability. We demonstrate that the proposed incentive mechanism achieves the
properties of computational efficiency, individual rationality, and truthfulness. And meanwhile, we evaluate the performance and
validate the theoretical properties of our incentive mechanism through extensive simulation experiments.

1. Introduction

A new paradigm of sensing with smartphones has emerged
which is usually called people-centric mobile sensing or
mobile crowd sensing [1]. Compared with the traditional
sensor networks, MCS is an effective way for large-scale data
sensing, processing, and gathering without deploying a large
number of sensor nodes. MCS has enabled numerous large-
scale applications such as urban environmentmonitoring [2–
4], traffic flow surveillance [5–7], healthcare [8], behavior and
relationship discovery [9, 10], indoor localization [11], 3G/Wi-
Fi discovering [12–14], activity monitoring [15, 16], and bus
arrival time prediction [17].

The effect of the aforementioned mobile crowd sensing
applications relies heavily on the quantities of participants.
However, the ordinary individuals are not willing to share
their sensing capabilities unless there are sufficient incentives.
Research on incentivemechanismhas beenwidely concerned
by investigators, and considerable designed schemes about
the incentivemechanismdesign have been put forwardwhich
can be classified into nonmonetary incentives [18–20] and
monetary incentives [21–29].

The key of any crowd sensing system is not only the
quantities of participants but also the sensing quality offered
by participants. However, most of the existing solutions
usually assume that each sensing task (e.g., air quality in a
certain region) in a sensing cycle could be performed by a
single participant. It is intuitive that the quality of sensing
project would be higher if each sensing task was performed
by multiple participants. One of the main reasons is that the
sensed data cannot always be trusted because participants
maybe intentionally (e.g., malicious participants) or unin-
tentionally (e.g., making mistakes) offer the data contrary to
the truth. Another reason may come from the recruitment
system model itself. A typical MCS consists of two roles: the
recruiter who publicizes the sensing tasks and the partici-
pants who constitute potential sensing capability selected by
the recruiter frommany candidates. The interaction between
the recruiter and the candidates is modeled as a reverse
auction inmany existing solutions which can be illustrated by
Figure 1.The recruiter always selects participants according to
the sensing plans of the candidates. However, changes always
go beyondplans.Theparticipantsmaynot be able to complete
the task according to their schedule for unexpected incidents
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Figure 1: A typical mobile crowd sensing system as a reverse auction framework.

(e.g., a selected participant cannot go to the specific locations
claimed in his sensing plan). These participants may offer
some forged data or do nothing. As a result, the tasks could
not be completed in time.

In this paper, we address the issue of quality-aware
monetary incentive mechanism design. We design a truthful
incentive mechanism satisfying the properties of computa-
tional efficiency, individual rationality, and truthfulness with
low approximation ratio.

The remainder of this paper is organized as follows.
In Section 2, we review the related work. In Section 3,
we describe the system model and formulate the MQMUS
problem. Thereafter, in Section 4 we propose the incentive
mechanism, named QAIM, which consists of two phases,
winner selection and payment determination, and analyze
the properties of QAIM. Section 5 presents the experimental
results. Finally, we draw the conclusion and discuss some
possible future directions in Section 6.

2. Related Work

There are lots of incentivemechanismswhich can be classified
into nonmonetary incentives [18–29] and monetary incen-
tives [30–45]. Paying for sensed data in crowd sensing tasks is
themost intuitive incentive. Monetary incentivemechanisms
are mainly based on two kinds of schemes: Stackelberg game
and auction.

Stackelberg game is a game where one leader player has
the dominant influence over the other players [46]. Duan
et al. [30] make use of the Stackelberg game to design a
threshold revenue model for service providers. The system
and the users interact through a two-stage process similar
to that of Stackelberg game. The system announces the total
reward and the threshold number of required participants.
Each participant decides whether to accept the task or
not. Yang et al. [31] also model the proposed platform-
centric incentive mechanism as a Stackelberg game, prove

that this Stackelberg game has a unique equilibrium, and
design an efficient mechanism for computing it. The above
two Stackelberg game solutions have theoretical guarantees.
However, the premise of this kind of method is that the costs
of all users or their probability distributions are assumed to
be known, which limits the applicability of Stackelberg game-
based mechanisms because participants may keep their costs
private in the real world.

An auction-based mechanism is originally the process of
buying and selling goods by negotiating the monetary prices
[47]. A kind of auction, called reverse auction, is adopted
to model the negotiation process in crowd sensing, which
is shown in Figure 1. Lee and Hoh [32] firstly design a
reverse auction-based dynamic price incentive mechanism
with virtual participation credit with the objective of mini-
mizing and stabilizing the platform cost while maintaining
the participation level. Yang et al. [31] consider two system
models for smartphone crowd sensing system: the platform-
centric model with the solution based on the Stackelberg
game and user-centric model with the solution based on the
reverse auction. Feng et al. [33] formulate the winning bids
determination problem and present a truthful auction for
location-aware collaborative sensing. Zhang et al. [34] focus
on the user-centric model and study three methods which
involve cooperation and competition among the services. Xu
et al. [35, 36] investigate truthful incentive mechanisms for
time window dependent tasks with the strong requirement
of data integrity and propose two incentive mechanisms
for the single time window case and the multiple window
case, respectively. Subramanian et al. [37] consider offline
and online incentive mechanisms using the same bidding
framework with MSensing Auction proposed in [31]. Zhao
et al. [38] investigate the incentive mechanisms in the online
setting based on an offline budget feasible mechanism [39],
which provides a starting point for the online mechanism.
Jin et al. [40] pay attention to the quality of the mobile
crowd sensing systems and incorporate a metric named QoI



Journal of Sensors 3

A B C

3 4 5

{A, B, C} {A, B, C}{B}{B, C}{A, B, C}{A, B}{A, C} {B, C} {B, C}

4 3 623.73.63.521

1 2 3 4 5 6 7 8 9

Figure 2: A motivating example with diversity requirements.

(Quality of Information) into the incentivemechanisms. SRC
andMRCmechanismswith the criterion of the combinatorial
QoI and price are proposed. However, the authors fail
to consider the truthfulness of the MRC mechanism. The
aforementioned solutions assume that each measurement of
sensing task can be represented by a single sensor reading.

Several solutions are proposed to ensure the quality of
crowd sensing data. Tanas and Herrera-Joancomart́ı [48]
achieve the first work, which focuses on how to validate
sensing data, but the premise of their work is that there
are multiple users to submit multiple sensing readings on
each task. Kazemi et al. [49] assume each worker has a
reputation score, and assign enough number of workers to
each spatial task such that workers’ aggregate reputation
can satisfy the confidence of the task. However, they focus
on self-incentivized spatial crowdsourcing, in which people
perform the tasks voluntarily without any reward. Zhang
et al. [41] propose a task management framework to match
workers to the merged query and sensing tasks efficiently. In
their model, each task can be assigned to multiple workers,
and each worker can be assigned to at most one task,
although each worker may have the preference for multiple
tasks. Xu et al. [42] design the incentive mechanism, which
considers the issue of stimulating the biased requesters in
the competing crowdsourcing market. Xiong et al. [43]
consider the k-depth coverage as an MCS data collection
constraint, but every subtask is assigned to the same value of𝑘. Wang et al. [44] present a detailed quality-aware mobile
crowdsourced sensing framework, composed of three MCS
components: crowd, crowdsourcer, and crowdsourcing plat-
form.The crowdsourcer is a new role who assesses the posted
contributions’ quality. He et al. [45] propose a recruitment
strategy in vehicle-based crowdsourcing through taking full
advantage of predictable mobility patterns of vehicles, which
bring a new insight to improve the quality of crowd sensing
system. However, the behaviors of human are affected by
many factors. It is far more difficult to predict the mobility
patterns of human beings than those of vehicles.

In this paper, we try to enhance the quality-aware incen-
tivemechanism from twomain dimensions: the reputation of
participants and the design of task.

3. Problem Statement

Different from most crowd sensing systems, the objective
of this paper is designing the truthful incentive mechanism

with maximum social efficiency and high sensing quality.
To achieve this objective, the recruiter needs to select par-
ticipants who can match the diverse requirements of the
crowd sensing application with minimum social cost. Before
demonstrating the rigorous problemdefinition,wewould like
to present a motivating example to make the problem better
understood.

3.1. A Participant Recruitment Example in Air Quality Moni-
toring. We take the urban air qualitymonitoringMCS task as
an example. As shown in Figure 2, the MCS recruiter wants
to collect the state of the air in three regions (denoted as 𝐺 ={𝐴, 𝐵, 𝐶}). Nine candidates ({V1, V2, . . . , V9}) are interested in
performing the task and reporting their sensing plans, which
include what they can do with the corresponding bid price.
The industrial structures vary greatly in different regions.
The regions with more plants, which can discharge waste
gas, need more participants to monitor. For example, the
recruiter wants 5 participants to monitor region 𝐶 and only 3
to monitor region 𝐴 because there are more chemical plants
in region 𝐶. We use squares to represent the regions, and the
number above each square denotes its requirement. To the
perspective of the candidates, people may not just stay in a
certain region in one sensing cycle and can fulfill multiple
sensing tasks in different regions. We use disks to represent
the candidates, and the number above each disk denotes its
corresponding bid price, and the set of regions below each
disk denotes the regions that he can monitor.

In this example, the mobile crowd sensing system has
some requirements: (1) Every subtask should be assigned to
enough participants so that their aggregate sensing results
can ensure the sensing quality. (2) Every subtask has different
sensing requirement. The different number of participants
should be recruited to satisfy different sensing requirements
with minimum costs. (3) Every participant has different
ability in terms of the task completion and should be assigned
to the different number of subtasks based on his particular
ability.

3.2. System Model and Problem Formulation. We present the
rigorous definition and formulation of theMQMUSproblem.
In this problem, the recruiter can divide the task intomultiple
subtasks with different quality factors and the participants
can be assigned to multiple subtasks in one sensing cycle.

Suppose that a crowd sensing task 𝐺 can be divided into𝑒 disjoint subtasks according to the sensing geographic areas,
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and each subtask 𝑔𝑘 has its sensing quality factor ℎ(𝑔𝑘) (to
simplify, we use the number of participants to represent ℎ(𝑔𝑘)
as shown in the above motivating example). The recruiter
publicizes the sensing task 𝐺 = {𝑔1, 𝑔2, . . . , 𝑔𝑘, . . . , 𝑔𝑒} and
the quality factor ℎ(𝐺) = {ℎ(𝑔1), ℎ(𝑔2), . . . , ℎ(𝑔𝑘), . . . , ℎ(𝑔𝑒)}
as a quality constraint for participants selecting.

Considering 𝑛 candidates, 𝑈 = {V1, V2, . . . , V𝑖, . . . , V𝑛} are
interested in performing the sensing task. Each candidate
V𝑖 ∈ 𝑈 submits a sensing plan 𝐵V𝑖 = (𝜓V𝑖 , 𝑏V𝑖) to the recruiter,
in which 𝜓V𝑖 = {𝑔V𝑖1 , 𝑔V𝑖2 , . . . , 𝑔V𝑖𝑘 } is the set of subtasks that
candidate V𝑖 can perform (the superscript V𝑖 of 𝑔V𝑖𝑘 is only used
to represent that V𝑖 can fulfill the subtask 𝑔𝑘) and 𝑏V𝑖 is bid
price that candidate V𝑖 wants to charge for performing 𝜓V𝑖 .

We assume that the candidate V𝑖 has a reputation score𝑟V𝑖 , which states the probability that the candidate performs
a task correctly. The recruiter is responsible for maintaining
and updating the reputation score of every candidate. The
value of 𝑟V𝑖 is set to 1 initially and updated by

𝑟V𝑖 = 𝑟V𝑖 + ∑
𝑔𝑚∈𝜓V𝑖

(ℎ (𝑔𝑚) − 1) 𝜂
max𝑔𝑘∈𝐺 {ℎ (𝑔𝑘)} . (1)

We utilize a voting mechanism to set the value of 𝜂. This
intuition is based on the idea of the wisdom of crowds [50]
that the majority of the participants are trusted.The recruiter
aggregates the different sensing results to get the reliable
result at the end of the sensing cycle. The setting way of 𝜂 is
inspired by [44]. 𝜂 is set to “−1” in two cases: (1) the candidate
cannot perform the subtask as the claimed sensing plan; (2)
the sensing result of the same subtask is contrary tomore than
half of participants’ results; otherwise, 𝜂 is “0.” If 𝑟V𝑖 < 0, V𝑖will
not be selected until the recruiter resets 𝑟V𝑖 to 1 after a period
of time (e.g., 10 sensing cycles).

Assume that the number of candidates is sufficient to
fulfill the sensing task𝐺with its quality constraints ℎ(𝐺).This
assumption is reasonable for mobile crowd sensing systems
as made in [31, 33, 35]. The selected participant 𝑠𝑗 is placed
into the list 𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑗−1} according to the order. 𝑠𝑗
is the ID of the candidate and its subscript 𝑗 denotes that 𝑠𝑗
is the 𝑗th selected participant. The recruiter has to calculate
the payment 𝑝𝑠𝑗 for each participant as the incentive. The
utility of participant can be calculated by (2), in which 𝑐𝑠𝑗 is
the real cost of the participant 𝑠𝑗 and only known by itself.𝑏𝑠𝑗 is not less than 𝑐𝑠𝑗 due to the selfishness and rationality of
participants (if the reputation score of 𝑠𝑗 is set to a value less
than 0 in this sensing cycle, the utility of 𝑠𝑗 will be 0 in the
next sensing cycle because he will not be selected).𝑢𝑠𝑗 = 𝑝𝑠𝑗 − 𝑐𝑠𝑗 . (2)

The utility of the recruiter is calculated by (3). 𝑉(ℎ(𝐺)) is
the value to the recruiter when it has collected enough data
to satisfy the quality constraints ℎ(𝐺) of the sensing task 𝐺.

𝑢0 = 𝑉 (ℎ (𝐺)) − ∑
𝑠𝑗∈𝑆

𝑝𝑠𝑗 . (3)

The social efficiency of the sensing task 𝐺 (with the
quality constraints ℎ(𝐺)) is calculated by (4). Although the

real cost 𝑐𝑠𝑗 is only known by participant 𝑠𝑗, we will prove
that claiming a different cost 𝑏𝑠𝑗 cannot help to increase the
utility of participant 𝑠𝑗 in our designed mechanisms. So we
use 𝑏𝑠𝑗 when we attempt to maximize social efficiency in the
mechanisms designed below.Theobjective ofmaximizing the
social efficiency is equivalent to the objective of minimizing
the social cost. 𝑢ℎ(𝐺) = 𝑉 (ℎ (𝐺)) − ∑

𝑠𝑗∈𝑆

𝑏𝑠𝑗 . (4)

Given the list of selected participants 𝑆 = {𝑠1, 𝑠2, . . . ,𝑠𝑖, . . . , 𝑠𝑚}, 𝐺𝑠𝑖 is the set of the remaining subtasks excluding
those subtasks of participants {𝑠1, 𝑠2, . . . , 𝑠𝑖} according to their
sensing plans. The goal of achieving high quality crowd
sensing with minimum social cost can be formulated as (5)
and constrained by (6).

min (∑
𝑠𝑗∈𝑆

𝑏𝑠𝑗) (5)

s.t. 󵄨󵄨󵄨󵄨󵄨𝜓𝑠1 ∩ 𝐺󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝜓𝑠2 ∩ 𝐺𝑠1 󵄨󵄨󵄨󵄨󵄨 + ⋅ ⋅ ⋅ + 󵄨󵄨󵄨󵄨󵄨𝜓𝑠𝑚 ∩ 𝐺𝑠𝑚−1 󵄨󵄨󵄨󵄨󵄨≥ ∑
𝑔𝑘∈𝐺

ℎ (𝑔𝑘) . (6)

We design a truthful incentive mechanism, QAIM, to
select appropriate participants to satisfy the objective of this
paper, and to eliminate the fear of market manipulation (the
participants cannot improve their utility by submitting a bid
price different from its real cost).

QAIM consists of two phases: winner selection algorithm
QAIM(𝑆) and payment determination algorithm QAIM(𝑃).
For a given ℎ(𝐺) and a set of bids 𝐵 = {𝐵V1 , 𝐵V2 , . . . , 𝐵V𝑖 ,. . . , 𝐵V𝑛}, the algorithm QAIM(𝑆) selects a subset of partici-
pants 𝑆 ⊆ 𝑈 and the algorithm QAIM(𝑃) returns the vector(𝑝1, 𝑝2, . . . , 𝑝𝑚) for those selected participants.

We cannot find the optimal solution in polynomial time
for the MQMUS problem presented in (5) and (6) because
this problem is NP-hard. The proof is in Appendix.

Our objective is to design the incentive mechanisms
satisfying the following four desirable properties to solve
MQMUS problem:

(i) Computational Efficiency. A mechanism is computa-
tionally efficient if both the winner selection function
and payment decision function can be computed in
polynomial time.

(ii) Individual Rationality. Each participant will have a
nonnegative utility upon performing the sensing task.

(iii) Truthfulness. A mechanism is truthful if no partici-
pant can improve its utility by submitting a bid price
different from its real cost, no matter what others
submit. In other words, reporting the real cost is a
dominant strategy for all participants.

(iv) Social Optimization. The objective function is max-
imizing the social efficiency. We attempt to find
optimal solution or approximation algorithm with
low approximation ratio when there is no optimal
solution computed in polynomial time.
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Input: ℎ(𝐺), set of bids 𝐵
(1) 𝜆 = 1; 𝐺𝜆 = 𝐺; 𝑆 = Φ; for 𝑙 ∈ 𝑈 if (𝑟𝑙 < 0) 𝑈 = 𝑈 − {𝑙};
(2) while (𝐺𝜆 ̸= Φ) {
(3) for each 𝑙 ∈ (𝑈 − 𝑆) if (𝜛𝑙(𝐺𝜆) ̸= 0) 𝑇𝑙(𝜆) = 𝑏𝑙𝜛𝑙(𝐺𝜆) else 𝑇𝑙(𝜆) = MAX;

(4) for each 𝑙 ∈ (𝑈 − 𝑆) Sort 𝑇𝑙(𝜆) in non-decreasing order;
(5) 𝑞 = 1; 𝑦 = 1; min ℎ𝜆 = min𝑔𝑘∈𝐺𝜆 {ℎ(𝑔𝑘)};
(6) while (𝑦 ≤ min ℎ𝜆){
(7) 𝑖 = arg(𝑇𝑞(𝜆)); 𝑆 = 𝑆 ∪ {𝑖}; 𝑦 = 𝑦 + 1; 𝑞 = 𝑞 + 1;
(8) for each (𝑔𝑖𝑘 ∈ 𝜓𝑖){

if (𝑔𝑖𝑘 ∈ 𝐺𝜆){
(9) ℎ(𝑔𝑘) = ℎ(𝑔𝑘) − 1;
(10) if ℎ(𝑔𝑘) = 0 𝐺𝜆+1 = 𝐺𝜆 − {𝑔𝑘}; } } }
(11) 𝜆 = 𝜆 + 1; }
(12) return 𝑆

Algorithm 1: QAIM(𝑆).

input: ℎ(𝐺), set of bids 𝐵, list of selected participants 𝑆
(1) for all 𝑢 ∈ 𝑈 do {𝑝𝑢 = 0; } for 𝑙 ∈ 𝑈 if (𝑟𝑙 < 0) 𝑈 = 𝑈 − {𝑙};
(2) for all 𝑠𝑖 ∈ 𝑆 do {
(3) 𝑈󸀠 = 𝑈 − {𝑠𝑖};𝜒 = Φ; 𝜐 = 1; 𝐺𝜐 = 𝐺;
(4) while (𝐺𝜐 ̸= Φ) {
(5) for 𝑙 ∈ (𝑈󸀠 − 𝜒) {if (𝜛󸀠𝑙 (𝐺𝜐) ̸= 0) Γ𝑙(𝜐) = 𝑏𝑙𝜛󸀠𝑙 (𝐺𝜐) else Γ𝑙(𝜐) = MAX; }
(6) for 𝑙 ∈ (𝑈󸀠 − 𝜒) {Sort Γ𝑙(𝜐) in non-decreasing order; }
(7) 𝑞 = 1; 𝑦 = 1; min ℎ = min𝑔𝑘∈𝐺𝜐 {ℎ(𝑔𝑘)};
(8) while (𝑦 ≤ min ℎ) {
(9) 𝑟 = arg(Γ𝑞(𝜐)); 𝑝𝑠𝑖 = max{𝑝𝑠𝑖 , 𝜛󸀠𝑠𝑖 (𝐺𝜐)𝜛󸀠𝑟(𝐺𝜐) 𝑏𝑟};𝜒 = 𝜒 ∪ {𝑟}; 𝑦 = 𝑦 + 1; 𝑞 = 𝑞 + 1;
(10) for (𝑔𝑟𝑘 ∈ 𝜓𝑟){
(11) if (𝑔𝑟𝑘 ∈ 𝐺𝜐){
(12) ℎ(𝑔𝑘) = ℎ(𝑔𝑘) − 1;
(13) if ℎ(𝑔𝑘) = 0 {𝐺𝜐+1 = 𝐺𝜐 − {𝑔𝑘}; } } } }
(14) 𝜐 = 𝜐 + 1; } }
(15) return 𝑃

Algorithm 2: QAIM(𝑃).

4. Mechanism Design and Analysis

4.1. MechanismDesign. We attempt to find an approximation
algorithm following a greedy approach which can be solved
in polynomial time because the MQMUS problem is NP-
hard problem. The winner selection algorithm QAIM(𝑆)
is illustrated in Algorithm 1 and the payment algorithm
QAIM(𝑃) is illustrated in Algorithm 2.

In Algorithm 1, 𝑙 is the ID of candidates, 𝜆 is the
number of selection round, and 𝐺𝜆 is the set of remaining
subtasks excluding those in the sensing plans of the selected
participants before the previous 𝜆 − 1 rounds. The effective
sensing units of 𝑙 in the 𝜆th round are denoted by 𝜛𝑙(𝐺𝜆)
which can be calculated by (7), the effective average sensing

weight of candidate 𝑙 in the 𝜆th round is denoted by 𝑇𝑙(𝜆)
which is calculated in Line (3) of Algorithm 1.

𝜛𝑙 (𝐺𝜆) = 󵄨󵄨󵄨󵄨𝐺𝜆 ∩ 𝜓𝑙󵄨󵄨󵄨󵄨 . (7)

The main idea of greedy approach is to select candidate
with least effective average sensing weight, so 𝑇𝑙(𝜆) of all
remaining candidates are sorted in nondecreasing order in
Line (4) of Algorithm 1, and arg(𝑇𝑞(𝜆)) is the ID of the 𝑞th
selected participant in the 𝜆th selection round.

The trick of QAIM(𝑆) lies in the use of min ℎ𝜆 which
denotes the number of participants that can be selected in the
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𝜆th round.Thenondecreasing sorting of𝑇𝑙(𝜆) implies that (8)
is true. 𝑏arg(𝑇1(𝜆))𝜛arg(𝑇1(𝜆)) (𝐺𝜆) ≤ 𝑏arg(𝑇2(𝜆))𝜛arg(𝑇2(𝜆)) (𝐺𝜆) ≤ ⋅ ⋅ ⋅

≤ 𝑏arg(𝑇min ℎ𝜆 (𝜆))𝜛arg(𝑇min ℎ𝜆 (𝜆))
(𝐺𝜆) .

(8)

Equation (9) is true; otherwise the first selected partici-
pant in the (𝜆 + 1)th round will be selected in the 𝜆th round.

𝑏arg(𝑇min ℎ𝜆 (𝜆))𝜛arg(𝑇min ℎ𝜆 (𝜆))
(𝐺𝜆) ≤ 𝑏arg(𝑇1(𝜆+1))𝜛arg(𝑇1(𝜆+1)) (𝐺𝜆) . (9)

The calculation method of 𝐺𝜆+1 in Line (10) of Algo-
rithm 1 implies that |𝐺𝜆+1| cannot be bigger than |𝐺𝜆|, so
(10) is true which implies the participant is selected in the
nondecreasing order of the effective average sensing weight:

𝑏arg(𝑇min ℎ𝜆 (𝜆))𝜛arg(𝑇min ℎ𝜆 (𝜆))
(𝐺𝜆) ≤ 𝑏arg(𝑇1(𝜆+1))𝜛arg(𝑇1(𝜆+1)) (𝐺𝜆)

≤ 𝑏arg(𝑇1(𝜆+1))𝜛arg(𝑇1(𝜆+1)) (𝐺𝜆+1) .
(10)

Let 𝑠𝑝, 𝑠𝑝+1, . . . , 𝑠𝑝+min ℎ𝜆−1 denote the IDs of the selected
participants in the 𝜆th selection round; the set of remaining
subtasks would possibly be changed only at the end of the 𝜆th
selection round, so (11) is true.

𝐺𝑠𝑝 = 𝐺𝑠𝑝+1 = ⋅ ⋅ ⋅ = 𝐺𝑠𝑝+min ℎ𝜆−2
= 𝐺𝜆,

𝐺𝑠𝑝+min ℎ𝜆−1
= 𝐺𝜆+1. (11)

Equation (12) is true by derivation from (10) and (11).

𝑏𝑠1𝜛𝑠1 (𝐺) ≤ 𝑏𝑠2𝜛𝑠2 (𝐺𝑠1) ≤ ⋅ ⋅ ⋅ ≤
𝑏𝑠𝑖𝜛𝑠𝑖 (𝐺𝑠(𝑖−1)) ≤ ⋅ ⋅ ⋅

≤ 𝑏𝑠𝑚𝜛𝑠𝑚 (𝐺𝑠(𝑚−1)) .
(12)

In Algorithm 2, 𝑢 is the ID of candidates with the same
role as 𝑙 in QAIM(𝑆), 𝜐 is the number of payment determina-
tion round, and 𝐺𝜐 is the set of remaining subtasks excluding
those in the sensing plans of the selected participants before
the previous 𝜐−1 rounds.The effective sensing units of 𝑙 in the𝜐th round are denoted by 𝜛󸀠𝑙 (𝐺𝜐) with the same calculation
method used in (7). The effective average sensing weight of
candidate 𝑙 in the 𝜐th round is denoted by Γ𝑙(𝜐) which is
calculated in Line (5) of Algorithm 2.

To compute the payment for each 𝑠𝑖 in the winner list𝑆, we consider the set of candidates 𝑈 − {𝑠𝑖} and reselect
appropriate participants into the list 𝜒𝑠𝑖 with the same
method used in QAIM(𝑆) (the superscript 𝑠𝑖 of 𝜒𝑠𝑖 is used to
identify that 𝑠𝑖 is not considered as a candidate). Let 𝜒𝑠𝑖 =

{𝑥𝑠𝑖1 , 𝑥𝑠𝑖2 , . . . , 𝑥𝑠𝑖𝑘 , . . . , 𝑥𝑠𝑖𝑎 } and 𝑥𝑠𝑖𝑘 denote the 𝑘th selected par-
ticipant, 𝐺𝑥𝑠𝑖

𝑘
is the set of remaining subtasks excluding those

effective subtasks of participants {𝑥𝑠𝑖1 , 𝑥𝑠𝑖2 , . . . , 𝑥𝑠𝑖𝑘 } according
to their sensing plans, and (13) is true for the same reason of
(12).

𝑏𝑥𝑠𝑖1𝜛󸀠
𝑥
𝑠𝑖
1

(𝐺) ≤ 𝑏𝑥𝑠𝑖2𝜛󸀠
𝑥
𝑠𝑖
2

(𝐺𝑥𝑠𝑖1 ) ≤ ⋅ ⋅ ⋅ ≤
𝑏𝑥𝑠𝑖
𝑘𝜛󸀠

𝑥
𝑠𝑖
𝑘

(𝐺𝑥𝑠𝑖
𝑘−1
) ≤ ⋅ ⋅ ⋅

≤ 𝑏𝑥𝑠𝑖𝑎𝜛󸀠
𝑥
𝑠𝑖
𝑎

(𝐺𝑥𝑠𝑖𝑎−1) .
(13)

4.2. A Walk-Through Example. To better understand the
algorithm, we use the example in Figure 2 to illustrate how
the QAIM works.

With regard to the aforementioned example, the crowd
sensing task 𝐺 = {𝐴, 𝐵, 𝐶} is divided into 3 subtasks: ℎ(𝐴)
is set to 3, ℎ(𝐵) is set to 4, and ℎ(𝐶) is set to 5. There are 9
candidates 𝑈 = {V1, V2, . . . , V9} who want to participate in the
task and report their sensing plan: the bid price of V𝑖 is shown
above it, and the subtask that V𝑖 can fulfill is given below it
in Figure 2. Take V3, for example, 𝜓V3 = {𝐴, 𝐵}, which can
also be represented as 𝜓V3 = {𝐴V3 , 𝐵V3}, and 𝑏V3 = 1. The
effective sensing units of V3 in the first round are denoted by𝜛V3(𝐺1) which is calculated by (7) (i.e., |{𝐴, 𝐵, 𝐶} ∩ {𝐴, 𝐵}| =2), and the effective average sensing weight of V3 in the first
round is denoted by 𝑇V3(1) which is calculated in Line (3) of
Algorithm 1 (i.e., 𝑏V3/𝜛V3(𝐺1) = 1/2).

We first assume that all participants are trustworthy and
can fulfill the sensing units as they had claimed in their
sensing plan.

In the first selection round, 𝐺𝜆 = {𝐴, 𝐵, 𝐶}, ℎ(𝐴) =3, ℎ(𝐵) = 4, ℎ(𝐶) = 5, min ℎ𝜆 = 3. 𝑇𝑙(𝜆) of each candidate
in the first round is listed in Table 1. According to QAIM(𝑆),
V3 is the first winner and then V4, and V1 is the third one in the
first round. The selected list 𝑆 = {V3, V4, V1}, 𝐺V3 = {𝐴, 𝐵, 𝐶},𝐺V4 = {𝐴, 𝐵, 𝐶}, and 𝐺V1 = {𝐵, 𝐶}.

In the second selection round, 𝐺𝜆 = {𝐵, 𝐶}, ℎ(𝐴) =0, ℎ(𝐵) = 1, ℎ(𝐶) = 3, and min ℎ𝜆 = 1. 𝑇𝑙(𝜆) of each
candidate in the second round is listed in Table 2. According
to QAIM(𝑆), V5 is the first and only winner. The selected list𝑆 = {V3, V4, V1, V5} and 𝐺V5 = {𝐶}.

In the third selection round, 𝐺𝜆 = {𝐶}, ℎ(𝐴) = 0, ℎ(𝐵) =0, ℎ(𝐶) = 2, and min ℎ𝜆 = 2. 𝑇𝑙(𝜆) of each candidate in the
third round is listed in Table 3. According to QAIM(𝑆), V2
is the first winner and V6 is the second one. The selected list𝑆 = {V3, V4, V1, V5, V2, V6}, 𝐺V2 = {𝐶}, and 𝐺V6 = ⌀.

In the fourth selection round, 𝐺𝜆 = ⌀, which implies
the selected participants (V3, V4, V1, V5, V2, V6) can satisfy the
sensing requirements.

If V3 is a malicious participant, he lies in the results of all
sensing units; the reputation of V3 is 0 calculated by (1) which
means he will not be selected in the next sensing recruitment
cycle.

Owning to the limitation of the space and the similarity
of the algorithm process, we only give the payment example
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Table 1: 𝑇𝑙(𝜆) in the first selection round.

𝑇V1 (𝜆) 𝑇V2 (𝜆) 𝑇V3 (𝜆) 𝑇V4 (𝜆) 𝑇V5 (𝜆) 𝑇V6 (𝜆) 𝑇V7 (𝜆) 𝑇V8 (𝜆) 𝑇V9 (𝜆)𝜆 = 1 4/3 3/2 1/2 2/3 3.5/2 3.6/2 3.7/2 2/1 6/3

Table 2: 𝑇𝑙(𝜆) in the second selection round.

𝑇V2 (𝜆) 𝑇V5 (𝜆) 𝑇V6 (𝜆) 𝑇V7 (𝜆) 𝑇V8 (𝜆) 𝑇V9 (𝜆)𝜆 = 2 3/1 3.5/2 3.6/2 3.7/2 2/1 6/2

Table 3: 𝑇𝑙(𝜆) in the third selection round.

𝑇V2 (𝜆) 𝑇V6 (𝜆) 𝑇V7 (𝜆) 𝑇V8 (𝜆) 𝑇V9 (𝜆)𝜆 = 3 3/1 3.6/1 3.7/1 MAX 6/1

Table 4: Γ𝑙(𝜐) in the first payment determination round considering V3.ΓV1 (𝜐) ΓV2 (𝜐) ΓV4 (𝜐) ΓV5 (𝜐) ΓV6 (𝜐) ΓV7 (𝜐) ΓV8 (𝜐) ΓV9 (𝜐)𝜐 = 1 4/3 3/2 2/3 3.5/2 3.6/2 3.7/2 2/1 6/3

Table 5: Γ𝑙(𝜐) in the second payment determination round considering V3.ΓV5 (𝜐) ΓV6 (𝜐) ΓV7 (𝜐) ΓV8 (𝜐) ΓV9 (𝜐)𝜐 = 2 3.5/2 3.6/2 3.7/2 2/1 6/2

Table 6: Γ𝑙(𝜐) in the third payment determination round consider-
ing V3. ΓV6 (𝜐) ΓV7 (𝜐) ΓV8 (𝜐) ΓV9 (𝜐)𝜐 = 3 3.6/1 3.7/1 MAX 6/1

of the first selected winner V3 which is similar to the payment
determination of other participants. 𝑝V3 is initialized to 0.

In the first payment determination round,𝐺𝜐 = {𝐴, 𝐵, 𝐶},ℎ(𝐴) = 3, ℎ(𝐵) = 4, ℎ(𝐶) = 5, and min ℎ𝜐 = 3. Γ𝑙(𝜐) of each
candidate in the first round is listed in Table 4. According
to QAIM(𝑃), V4 is the first winner; then 𝑝V3 = max{𝑝V3 ,(𝜛󸀠V3(𝐺𝜐)/𝜛󸀠V4(𝐺𝜐))𝑏V4} = max{0, (2/3) ∗ 2} = 4/3. V1 is the
second winner; then 𝑝V3 = max{𝑝V3 , (𝜛󸀠V3(𝐺𝜐)/𝜛󸀠V1(𝐺𝜐))𝑏V1} =
max{4/3, (2/3) ∗ 4} = 8/3. V2 is the third winner; then 𝑝V3 =
max{𝑝V3 , (𝜛󸀠V3(𝐺𝜐)/𝜛󸀠V2(𝐺𝜐))𝑏V2} = max{8/3, (2/2) ∗ 3} = 3.

In the second payment determination round,𝐺𝜐 = {𝐵, 𝐶},ℎ(𝐴) = 0, ℎ(𝐵) = 1, ℎ(𝐶) = 2, and min ℎ𝜐 = 1. Γ𝑙(𝜐)
of each candidate in the second round is listed in Table 5.
According to QAIM(𝑃), V5 is the first and only winner; then𝑝V3 = max{𝑝V3 , (𝜛󸀠V3(𝐺𝜐)/𝜛󸀠V5(𝐺𝜐))𝑏V5} = max{3, (1/2)∗3.5} =3.

In the third payment determination round, 𝐺𝜐 = {𝐶},ℎ(𝐴) = 0, ℎ(𝐵) = 0, ℎ(𝐶) = 1, and min ℎ𝜐 = 1. Γ𝑙(𝜐)
of each candidate in the second round is listed in Table 6.
According to QAIM(𝑃), V6 is the first and only winner; then𝑝V3 = max{𝑝V3 , (𝜛󸀠V3(𝐺𝜐)/𝜛󸀠V6(𝐺𝜐))𝑏V6} = max{3, (0/1)∗3.5} =3.

In the fourth payment round, 𝐺𝜐 = ⌀, so the payment to
V3 is 3.

4.3. Properties of QAIM. In this section, we analyze the
properties of QAIM theoretically to show that QAIM is
computationally efficient, individually rational, and truthful.
The approximation is also discussed in the end. We use 𝑛 to
denote the number of candidates, 𝑒 to denote the number of
subtasks, Ω(𝐺) to denote all the sensing units, and Ω(𝐺󸀠𝑠𝑖) to
denote the effective sensing units of the selected participants𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑖}, and for ease of analysis they can be
calculated by

Ω (𝐺) = 𝑒∑
𝑘=1

ℎ (𝑔𝑘) , (14)

Ω(𝐺󸀠𝑠𝑖) = 󵄨󵄨󵄨󵄨󵄨𝜓𝑠1 ∩ 𝐺󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨𝜓𝑠2 ∩ 𝐺𝑠1 󵄨󵄨󵄨󵄨󵄨 + ⋅ ⋅ ⋅ + 󵄨󵄨󵄨󵄨󵄨𝜓𝑠𝑖 ∩ 𝐺𝑠𝑖−1 󵄨󵄨󵄨󵄨󵄨 . (15)

(1) 𝑄𝐴𝐼𝑀 Is Computationally Efficient. We analyze QAIM(𝑆)
and QAIM(𝑃), respectively, where QAIM takes 𝑂(𝑛3 ∗ 𝑒) in
the worst case.

The nested for-loop (Lines (8)–(11)) of QAIM(𝑆) will be
executed 𝜆 ∗ |𝜓𝑠𝑖 | ∗min ℎ𝜆 times. The maximal value of 𝜆 isΩ(𝐺)which is less than 𝑛 obviously in theworst casewhen the
effective sensing unit of every candidate has only one subtask.|𝜓𝑠𝑖 | is less than 𝑒 and min ℎ𝜆 is far less than 𝑛 obviously, so
QAIM(𝑆) takes 𝑂(𝑛2 ∗ 𝑒) in the worst case.

QAIM(𝑃) takes 𝑂(𝑛3 ∗ 𝑒) in the worst case because there
are similar processes in both QAIM(𝑆) (Lines (2)–(11)) and
QAIM(𝑃) (Lines (4)–(14)), which will be executed |𝑆| times
less than 𝑛.
(2) 𝑄𝐴𝐼𝑀 Is Individually Rational. When considering the set
of candidates𝑈−{𝑠𝑖}, let 𝑥𝑠𝑖𝑘 be the replacement of participant𝑠𝑖 which appears in the 𝑘th place in the selected list 𝜒𝑠𝑖 =
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{𝑥𝑠𝑖1 , 𝑥𝑠𝑖2 , . . . , 𝑥𝑠𝑖𝑘 , . . . , 𝑥𝑠𝑖𝑎 }. Equation (16) is true according to the
main idea of winner selection.𝑠1 = 𝑥𝑠𝑖1 , 𝑠2 = 𝑥𝑠𝑖2 , . . . , 𝑠𝑖−1 = 𝑥𝑠𝑖𝑖−1,

(That is 𝐺𝑠𝑖−1 = 𝐺𝑥𝑠𝑖𝑖−1) . (16)

𝑥𝑠𝑖
𝑘
will not be selected in the 𝑘th place if 𝑠𝑖 is considered, so

(17) is true.

𝑏𝑠𝑖𝜛𝑠𝑖 (𝐺𝑠𝑖−1) ≤
𝑏𝑥𝑠𝑖𝑖𝜛𝑥𝑠𝑖𝑖 (𝐺𝑠𝑖−1) ,
(That is

𝑏𝑠𝑖𝐺𝑠𝑖−1 ∩ 𝜓𝑠𝑖 ≤
𝑏𝑥𝑠𝑖𝑖𝐺𝑠𝑖−1 ∩ 𝜓𝑥𝑠𝑖𝑖 ) . (17)

Equation (18) is true based on the derivation from (16)
and (17).

𝑏𝑠𝑖𝐺𝑥𝑠𝑖𝑖−1 ∩ 𝜓𝑠𝑖 =
𝑏𝑠𝑖𝐺𝑠𝑖−1 ∩ 𝜓𝑠𝑖 ≤

𝑏𝑥𝑠𝑖𝑖𝐺𝑠𝑖−1 ∩ 𝜓𝑥𝑠𝑖𝑖
= 𝑏𝑥𝑠𝑖𝑖𝐺𝑥𝑠𝑖𝑖−1 ∩ 𝜓𝑥𝑠𝑖𝑖 ,

(That is 𝑏𝑠𝑖 ≤ 𝐺𝑥𝑠𝑖𝑖−1 ∩ 𝜓𝑠𝑖𝐺𝑥𝑠𝑖𝑖−1 ∩ 𝜓𝑥𝑠𝑖𝑖 𝑏𝑥𝑠𝑖𝑖 ) .
(18)

Equation (19) is true according to the main idea of
payment calculation in Line (9) of QAIM(𝑃).

𝑝𝑠𝑖 = max
𝑥
𝑠𝑖
𝑟 ∈𝜒
𝑠𝑖

{{{
𝜛󸀠𝑠𝑖 (𝐺𝑥𝑠𝑖𝑟−1)𝜛󸀠
𝑥
𝑠𝑖
𝑟

(𝐺𝑥𝑠𝑖𝑟−1)𝑏𝑥𝑠𝑖𝑟
}}} . (19)

From the analysis of (18) and (19), we know 𝑏𝑠𝑖 ≤ 𝑝𝑠𝑖 .
(3) 𝑄𝐴𝐼𝑀 Is Truthful. According to Myerson’s Theorem [51],
an auction is truthful if and only if the selection rule is
monotone and each winner is paid the critical value 𝑝𝑖; if a
participant wins the auction by bidding 𝑏𝑖, he also wins by
bidding 𝑏󸀠𝑖 < 𝑏𝑖 but loses by bidding 𝑏󸀠𝑖 > 𝑝𝑖.

Themonotonicity of the selection rule is obvious: if 𝑠𝑖 bids
a smaller 𝑏󸀠𝑠𝑖 that means 𝑏󸀠𝑠𝑖/𝜛𝑠𝑖(𝐺𝑠(𝑖−1)) ≤ 𝑏𝑠𝑖/𝜛𝑠𝑖(𝐺𝑠(𝑖−1)), 𝑠𝑖 will
also be selected according to (12).

Suppose 𝑝𝑠𝑖 = max𝑥𝑠𝑖𝑟 ∈𝜒𝑠𝑖 {(𝜛󸀠𝑠𝑖(𝐺𝑥𝑠𝑖𝑟−1)/𝜛󸀠𝑥𝑠𝑖𝑟 (𝐺𝑥𝑠𝑖𝑟−1))𝑏𝑥𝑠𝑖𝑟 } =(𝜛󸀠𝑠𝑖(𝐺𝑥𝑠𝑖𝑓−1)/𝜛󸀠𝑥𝑠𝑖𝑓 (𝐺𝑥𝑠𝑖𝑓−1))𝑏𝑥𝑠𝑖𝑓 ; (20) is true if 𝑏𝑠𝑖 is greater than𝑝𝑠𝑖 .
𝑏𝑠𝑖 ≥ 𝜛󸀠𝑠𝑖 (𝐺𝑥𝑠𝑖𝑓−1)𝜛󸀠

𝑥
𝑠𝑖
𝑓

(𝐺𝑥𝑠𝑖
𝑓−1
)𝑏𝑥𝑠𝑖𝑓 ,

(That is
𝑏𝑠𝑖𝜛󸀠𝑠𝑖 (𝐺𝑥𝑠𝑖𝑓−1) ≥ 𝑏𝑥𝑠𝑖

𝑓𝜛󸀠
𝑥
𝑠𝑖
𝑓

(𝐺𝑥𝑠𝑖
𝑓−1
)) .

(20)

Equation (20) shows the fact that 𝑠𝑖 will not be selected
before the previous 𝑓 participants (𝑥𝑠𝑖1 , 𝑥𝑠𝑖2 , . . . , 𝑥𝑠𝑖𝑓) are
selected. But if the previous 𝑓 participants are selected,
there is no reason to select 𝑠𝑖 because the previous selected
participants can satisfy different sensing requirements.

(4) The Approximation Factor to Optimal Solution Is
ln(Ω(𝐺)) + 1. Let OPT denote the minimal social cost
computed by optimal solution, Ω(𝐺󸀠𝑠𝑖) denote the effective
sensing units of the selected participants 𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑖}
calculated by (15), and cost(𝑠𝑖+1) denote the social cost of the(𝑖 + 1)th selected participant 𝑠𝑖+1.

Because the participant is selected in the nondecreasing
order of the effective average sensing weight according to
QAIM(𝑆) and the average cost of the rest uncovered sensing
units is not greater than OPT/(Ω(𝐺) − Ω(𝐺󸀠𝑠𝑖)), (21) is true.

cost (𝑠𝑖+1) ≤ OPTΩ (𝐺) − Ω (𝐺󸀠𝑠𝑖) . (21)

Hence the total cost of QAIM can be calculated by

𝑚∑
𝑟=1

cost (𝑠𝑟) ≤ 𝑚∑
𝑟=1

OPTΩ (𝐺) − Ω (𝐺󸀠𝑠𝑟−1)
≤ OPTΩ (𝐺) + OPTΩ (𝐺) − 1 + OPTΩ (𝐺) − 2 + ⋅ ⋅ ⋅
+ OPTΩ (𝐺) − (Ω (𝐺) − 2)
+ OPTΩ (𝐺) − (Ω (𝐺) − 1)≤ (ln (Ω (𝐺)) + 1)OPT.

(22)

5. Performance Evaluation

5.1. Before the Simulation Setup. Because there is no real data
set which is consistent with the proposed system model, we
have to mine the ways of human mobility from Gowalla [52]
and Brightkite [53], which come from the location-based
social networking website where users share their locations
by checking-in.Thedetails of the data sets are listed inTable 7.

We consider the variation law of user’smobile preferences
because the sensing task is dependent on location in most
crowd sensing systems. Observing a user’s visiting history
can help discover the user’s abilities to fulfill the subtasks in
different locations.

We divide the region 𝑄 into 𝑘 ∗ 𝑘 square blocks and let𝑞(𝑥, 𝑦) ∈ 𝑄 denote the block in which 𝑥, 𝑦 ∈ {1, 2 . . . , 𝑘}
represents horizontal and vertical locations, respectively. Let𝑓𝑖(𝑡, 𝑞(𝑥, 𝑦)) denote the number of checking-ins of user𝑖 during the time period 𝑡 ∈ [𝑡1, 𝑡2] in block 𝑞(𝑥, 𝑦).
If 𝑓𝑖(𝑡, 𝑞(𝑥, 𝑦)) is greater than zero, 𝑞(𝑥, 𝑦) is called the
reachable region of user 𝑖 during the time period 𝑡.

The reachable regions of user 𝑖 can be viewed as the
subtasks in different locations that the user can fulfill. Letℎ(𝑖, 𝑡) denote the number of reachable regions which can be
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Table 7: Facts about studied traces.

Trace source Brightkite Gowalla
Time/duration of trace 2008/4–2010/10 2009/2–2010/10
The number of users 58228 196591
The number of check-ins 4491143 6442890
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Figure 3: The complementary cumulative distribution of ℎ(𝑖, 𝑡) in
Gowalla.

viewed as the number of subtasks that the user can fulfill,
which is calculated by

ℎ (𝑖, 𝑡) = 𝑘∑
𝑥=1

𝑘∑
𝑦=1

𝜂𝑖 (𝑡, 𝑞 (𝑥, 𝑦)) ,
𝜂𝑖 (𝑡, 𝑞 (𝑥, 𝑦)) = {{{

0, 𝑓𝑖 (𝑡, 𝑞 (𝑥, 𝑦)) = 0,
1, 𝑓𝑖 (𝑡, 𝑞 (𝑥, 𝑦)) > 0.

(23)

With different partition granularity in different data set,
more than 95% of the users’ number of reachable regions
is smaller than 1.25% of the number of region blocks; the
complementary cumulative distribution of ℎ(𝑖, 𝑡) follows the
same power-law distribution formulated by (24), which can
be seen in Figures 3 and 4, respectively.

𝑝 (𝑋 > 𝑥) = ( 𝑥𝑥min
)−𝑘 . (24)

The phenomenon of power-law distribution is consistent
with our life experience: the activity scope of most people has
a limited range in several specific regions in their daily life.
The above-mentioned result tells us how to set the number of
subtasks that the user can fulfill.
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Figure 4: The complementary cumulative distribution of ℎ(𝑖, 𝑡) in
Brightkite.

5.2. Performance Evaluation. In order to evaluate QAIM, we
first introduce two baseline algorithms with the similar ideas
of using redundancy.

(i) max(𝐾) is derived from the K-depth coverage objec-
tive solution proposed in [43]. No matter how differ-
ent the sensing quality factor of each subtask is, 𝐾 is
set to the maximal value of these quality factors.

(ii) Greedy(1) is derived from the idea proposed in [41].
Nomatter howmany subtasks one participant can do,
he is only assigned with one subtask at a time. So, the
participant is selected in the nondecreasing order of
the bid price.

The performance metrics include the social cost, the
number of winners, the running time, and the truthfulness,
and the importance of reputation score is also checked up.

Simulation parameters are shown in Table 8. Each mea-
surement is averaged over 100 instances.

(1) Impact of |𝑈|. Figures 5–7 show the performance of
QAIM(𝑆) with different candidates when the number of
sensing subtasks is set to 100. As shown in Figures 5 and 6,
the social cost and the number of winners of QAIM(𝑆) are
both less than those of Greedy(1) or max(𝐾). The variation
does not follow the rule of decreasing with increment of the
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Table 8: Simulation settings.

Simulation parameters Settingsℎ(𝑔𝑘) Uniformly distributed over [3, 7]𝑏V𝑖 Uniformly distributed over [5, 7]𝜓V𝑖 = {𝑔V𝑖
1 , 𝑔V𝑖
2 , . . . , 𝑔V𝑖

𝑘 } 𝑔V𝑖
𝑘 is random in 𝐺 but |𝜓V𝑖 | is between 3 and 10 which abides to Pareto distribution with 𝑥min = 1 and 𝑘 = 1.75.
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number of candidates but iswithin a certain range.The reason
is ℎ(𝑔𝑘) and 𝑏V𝑖 which are generated randomly. QAIM(𝑆)
has superiority in achieving high quality crowd sensing with
minimum social cost.The running time of QAIM(𝑆) is larger
than Greedy(1) but less than max(𝐾) as shown in Figure 7.
The variation trend of the running time is consistent with
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Figure 7: The running time with different candidates.

y

x

Greedy(1)

7000

6000

5000

4000

3000

2000

1000

100 110 120 130 140

So
ci

al
c
o
st

Number of subtasks

QAIM(S)

max(K)

Figure 8:The social cost with different number of sensing subtasks.

the property of theoretical analysis which increases with the
increasing number of candidates.

(2) Impact of |𝐺|. Figures 8–10 show the performance with a
fixed number of 1400 candidates when the number of sensing
subtasks varies from 100 to 140 with increment of 10. As
shown in Figures 8 and 9, both the social cost and the number
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Figure 9: The number of winners with different number of sensing
subtasks.
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Figure 10: The running time with different number of sensing
subtasks.

of winners ofQAIM(𝑆) increasewith the increment of |𝐺| and
are less than other algorithms.The running time of QAIM(𝑆)
is larger than Greedy(1) but less than max(𝐾) and increases
with |𝐺| as shown in Figure 10, which is consistent with the
property of theoretical analysis.

(3) Truthfulness. We verified the truthfulness of QAIM with
different candidates when the number of subtasks is set to
100. We randomly selected the 78th participant and changed
the bid price 𝑏78 of the 78th participant. When 𝑏78 > 𝑝78, the
78th participant would not be selected. The running time of
QAIM(𝑃) is recorded in Figure 11 which shows the time cost
of the truthfulness.The running time ofQAIM(𝑃) is bounded
by 80 and increases with the increment of the number of
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Figure 11: The running time of QAIM(𝑃) with different candidates.
candidates except when the number of candidates is 1300,
which is a reasonable phenomenon since the running time
of QAIM(𝑃) is related to not only the number of candidates
but also the number of winners.

(4) The Effect of Reputation Value. Finally, we verified the
importance of the calculation of reputation value. We first
set the 78th participant as the malicious user and offer
the contrary sensing result to correct ones of all subtasks
intentionally; we find that it would not be selected after the
second test. Then we reset the reputation score to 1 and let
the 78th participant be selected but the 78th participant does
not fulfill one of the subtasks; we find that it would be selected
after the second test and would not be selected after the third
test.

6. Conclusion

In this paper, we address the fundamental research issue: how
canwe achieve high quality crowd sensingwith theminimum
social cost? To answer this question, we study different con-
ditions of recruiter and candidates in crowd sensing system.
Based on the findings, we formulate the sensing quality
assurance problem as an optimization problem (MQMUS)
and prove it to be NP-hard. We design a polynomial-time
greedy approximation algorithmQAIMwhich consists of two
phases: QAIM(𝑆) selects appropriate participants to satisfy
the objective of this research which approximates the optimal
solution with the times of ln(Ω(𝐺)) + 1 and QAIM(𝑃)
eliminates the fear ofmarketmanipulation.Through rigorous
theoretical analysis, we demonstrate the proposed mecha-
nisms with the properties of high computation efficiency,
individual rationality, and truthfulness and then evaluate
our algorithm using synthetic data with the features of real
data sets. Evaluations show that our algorithms outperform
existing approaches. In the future work, we will explore
the quality-aware incentive mechanisms in more complex
scenarios, for example, how to prevent cocheating using the



12 Journal of Sensors

history of mobility traces and the completed tasks list of
participants.

Appendix

The MQMUS Problem Is NP-Hard

Demonstration. In order to prove that the MQMUS problem
is NP-hard, we first prove that the MQMUS1 problem is NP-
hard. We define MQMUS1 as a special case of MQMUS in
which every ℎ(𝑔𝑘) is equal to one. Thereafter, we conclude
that the MQMUS problem is NP-hard.

The problem of MQMUS1 can be illustrated below which
is a set cover problem with weight 𝑏𝑖.

Given a set of elements 𝐺 = {𝑔1, 𝑔2, . . . , 𝑔𝑘, . . . , 𝑔𝑒} and
a set of 𝐵 = {𝐵1, 𝐵2, . . . , 𝐵𝑘, . . . , 𝐵𝑛} in which 𝜓𝑖 is the subset
of 𝐺 and 𝑏𝑖 is the cost of 𝜓𝑖, the problem of MQMUS1 is to
find a collection 𝑆 = {𝐵𝑠1 , 𝐵𝑠2 , . . . , 𝐵𝑠𝑘} from 𝐵 such that the
union of 𝜓𝑠𝑖 equals 𝐺 with the least costs. We cannot find an
efficient optimal solution for the special case of MQMUS1 in
polynomial time, so MQMUS1 is NP-hard.

MQMUS1 is a special instance of MQMUS while ℎ(𝑔𝑘)
varies with different sensing quality requirement. Therefore,
MQMUS is also NP-hard.
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