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Abstract

Why do animals move the way they do? Bacteria, insects, birds, and fish
share with us the necessity to move so as to live. Although each organism
follows its own evolutionary course, it also obeys a set of common laws. At
the very least, the movement of animals, like that of planets, is governed
by Newton’s law: All things fall. On Earth, most things fall in air or water,
and their motions are thus subject to the laws of hydrodynamics. Through
trial and error, animals have found ways to interact with fluid so they can
float, drift, swim, sail, glide, soar, and fly. This elementary struggle to escape
the fate of falling shapes the development of motors, sensors, and mind.
Perhaps we can deduce parts of their neural computations by understanding
what animals must do so as not to fall. Here I discuss recent developments
along this line of inquiry in the case of insect flight. Asking how often a fly
must sense its orientation in order to balance in air has shed new light on the
role of motor neurons and steering muscles responsible for flight stability.
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1. INTRODUCTION

1.1. Motivation

Why do animals move the way they do? Bacteria, insects, birds, and fish share with us the necessity
to move so as to live. Although each organism follows its own evolutionary course, it also obeys a
set of common laws. At the very least, the movement of animals, like that of planets, is governed
by Newton’s law: All things fall. On Earth, most things fall in air or water, and their motions are
thus subject to the laws of hydrodynamics. Through trial and error, animals have found ways to
interact with fluid so they can float, drift, swim, sail, glide, soar, and fly. This elementary struggle
to escape the fate of falling shapes the development of motors, sensors, and mind. Perhaps we can
deduce parts of their neural computations by understanding what animals must do so as not to fall.
Here I review recent developments along this line of inquiry in the case of insect flight. Asking
how often a fly must sense its orientation in order to balance in air has shed new light on the role
of the first basalar muscle, one of the fly’s steering muscles, in regulating flight stability (1).

1.2. Laws of Movement and Neural Computations

Living life on wings, insects carry out a wide variety of neural computations “on the fly” in tens
of milliseconds. They sense their own state while moving and must separate the movement of the
external world from their own. Moreover, they respond to almost all external stimuli by adjusting
their wing motion. Their algorithms for actions therefore must take into account the laws of
movement. The two macroscopic laws governing flight are the Navier-Stokes equations for the
wing and flow interactions and the Newton-Euler equations for the dynamic coupling between
the body and the wings (Figure 1). These equations are responsible for the aerodynamic forces on
the flapping wings and the consequent motion and stability of the body. Understanding how these
physical laws have shaped insects’ internal computations is critical to mechanistic explanations of
animals’ behavior.

2. STABILITY OF FLAPPING FLIGHT

One place where we find a connection between flight dynamics and the design of neural circuitry
is in insects’ balancing acts. To balance in air, insects need to not only generate enough force but
also make small adjustments in wing motion to remain stable. Without neural feedback control,
their flight is unstable, similar to our standing posture. Such instability may seem inconvenient,
as it requires constant microadjustments to stand upright, but it does make walking easier. All we
need to do is to lean forward and catch ourselves (3). Perhaps for the same reason, insects choose
to fly at the boundary between stability and instability.

2.1. Time-Averaged Dynamic Model

The cause of instability in flapping flight is different from that in fixed-wing flight (4, 5). To get
some intuition about the nature of instability, we can analyze flight stability in the limit where the
wing flaps at a much faster rate than the oscillation of the body. In such a limit, it is reasonable to
average the aerodynamic forces over a wing period to simplify the dynamic equations for flapping
flight. Taking the motion along a longitudinal plane as an example, the body dynamic state is given
by a set of four independent variables, the two translational velocities along the symmetric plane,
(Ux,Uz), and the body pitch orientation and pitching rate (θb , ωb ) (Figure 2a). The dynamics are
given by Newton’s law in the presence of aerodynamic forces. The governing equations, expressed
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Figure 1
(a) The key components in models of insect flight. (b) Naming convention for body rotation. Pitch and roll
axes are defined in the mean stroke plane. (c) Wing motion during a saccade, a rapid yaw rotation, viewed
from the side (2).

in the comoving coordinates with body, (x′, z′), are

mU̇x′ = ωUz′ + 〈Fx′ 〉 sin θ + g sin θ, 1.

mU̇z′ = −ωUx′ + 〈Fz′ 〉 cos θ − g cos θ, 2.

I ω̇ = −〈Fx′ 〉 h, 3.

θ̇ = ω, 4.

where 〈Fx′,z′ 〉 represent the aerodynamic lift, FL, and drag, FD, averaged over a flapping period,
decomposed in the body frame. In this model, the wing mass is assumed to be negligible, and
thus the inertial coupling between the wing and the body is ignored. The lift and drag depend
on the superposition of the body and wing velocities, �u = �U + �UW. In the simplest form of a
quasi-steady approximation of the aerodynamic force, the lift and drag are quadratic in velocity,
with coefficients depending on the angle of attack, α: FL,D = 1

2ρCL,D(α)u2. For a symmetric plate
undergoing a translational motion at intermediate Reynolds numbers, the lift and drag coefficients
can be approximated by

CL(α) = CL(π/4) sin 2α, 5.

CD(α) = CD0 + CD(π/2)(1 − cos 2α). 6.
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Figure 2
Dynamic instability of a hovering insect. (a) (Left) The kinematic state of the body in a longitudinal flight is
defined by four variables, the two translational velocities, (Ux ,Uz), and the pitch orientation and the pitching
rate, (θb , ωb ). (Middle) the body rotation, roll, yaw, and pitch defined in the body coordinates. The pitch and
roll axes are in the mean stroke plane. (Right) The wing motion in the averaged dynamic model. The wing
flaps along a mean stroke plane, with its net velocity given by the sum of the wing and body velocities.
Aerodynamic lift, FL, is normal to the net wing velocity, and aerodynamic drag, FD, is antiparallel to the
velocity. (b) The schematics for the onset of pitching instability due to the coupling between the rotation and
translational motion. (c) Simulation of flapping flight shows the timescale associated with the pitching
instability and the steady-state dynamics (1).

They are extracted from the computational and experimental studies of a flapping wing and
approximate the forces over a full range of angles of attack during dynamic stall (6), beyond the
small angle limit assumed by the Kutta-Joukowski theory. The dependence on 2α reflects the
symmetry of a plate, since sin 2(α + π ) = sin 2α. In the small angle limit, sin 2α ≈ 2 sinα, and
therefore is consistent with the Kutta-Joukowski lift, CL(α) = 2π sinα (7).

To quantify the stability of flapping flight, recent work has carried out linear stability analyses
of averaged dynamic models for longitudinal and lateral flight with various approximations of
aerodynamic forces (1, 8–14; for a review, see Reference 15). Flight stability is determined by the
largest eigenvalue from the linear stability calculation about an equilibrium, either hovering or
a steady state flight. Those that have been studied so far, including hoverflies, bumblebees, fruit
flies, locusts, and hawkmoths, all have an unstable mode in hovering, corresponding to the pitch
and roll instability.

Although the details differ, the pitch and roll instabilities are caused by a similar mechanism.
Both arise from the coupling between the translational and rotational motions. Imagine that a
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hovering insect is like a small helicopter, with a spinning disk around its shoulders (Figure 2a).
The aerodynamic force acts roughly perpendicular to the disk. If we tilt the disk slightly, the body
drifts. The drift velocity would modify the aerodynamic force and torque on the body, changing
its velocity, which in turn would affect the aerodynamic force. The resulting imbalance in the
drag force would introduce a torque that rotates the body, leading to pitch and roll instability
(Figure 2b). The pitch and roll correspond to the tilt about the two orthogonal axes in the stroke
plane (Figure 2a).

If the disk were rotated about the axis normal to the plane, the yaw axis, the coupling
between the wing and body motions would induce a drag, damping the yaw turn (2, 16–
19). This linear damping is not due to air viscosity but due to a generic effect resulting
from the dynamic coupling between the body motion and a pair of symmetric wing motions:
δFD = FD(Uw − δUb ) − FD(Uw + δUb ) = −βδUb + O(δU 2

b ). The linear damping is present as
long as the drag increases with velocity. Because this damping term is absent in tethered flight,
the timescales in the dynamics of saccades, a fast yaw rotation, are different during tethered versus
free flight (17, 18, 20, 21). The fly takes advantage of this passive damping to simplify its control
of yaw rotation. It waits until the body damps its rotation before applying an active torque with
asymmetric wing strokes; therefore, it can correct its orientation with a linear controller (19).

2.2. Fully Coupled Dynamics

A subtler effect of flight stability is the timescale over which the instability occurs and the coupling
among different degrees of freedom (1). The dynamic timescales for stability affect the timescales
of the feedback control used by different insects (9). To analyze this, we need to examine the fully
coupled dynamic equations, where the instantaneous coupling between the wing and body motions
are included (Section 3). Simulation of free flight illustrates the onset of the pitch instability
(Figure 2b and Video 1) (1). In the first ten wingbeats, the aerodynamic torque pitches the body
nose-down (A → B). Thus, the aerodynamic lift tilts forward and drives the insect forward (B →
C). The forward motion then couples with the back-and-forth wing motion resulting in a drag
that pitches the body up (C → D). The drag and the horizontal component of the lift decelerate
the body, and the body eventually moves backward (D → E). The backward motion is coupled
with the wing motion to produce a nose-down torque (E → F). The body oscillates as a result of
this coupling between the horizontal and body-pitch motions, with a period of ∼20 wingbeats.
Because of the oscillation of the body, the weight balance requires a significant descent velocity
to induce a vertical drag force. After a transient period, the body reaches a steady descent with a
terminal speed of ∼50 cm/s. This transition from an initially unstable hovering state to the final
descending periodic state is representative of uncontrolled flight, and finding appropriate controls
is a critical part of designing robotic flyers (22).

To further analyze the stability of flapping flight where the motions of the wings and body are
coupled instantaneously, one can apply methods in dynamical systems, in particular, the Floquet
stability analysis of periodic systems (10, 22a). A flapping flight due to a periodic wing motion
is likely to lead to a periodic orbit in phase space. Each equilibrium flight is a fixed point in
the Poincaré map of flight dynamics (Figure 3). For longitudinal flight, the phase space is four-
dimensional, spanned by Ux , Uz, θ , and ωb . The periodic flight can be found by searching for
an initial state, �x0, that satisfies the periodic condition �x0 = f (t0 + q T ; t0, �x0), where T is the
wing-stroke period, q is a fixed integer, and f (t; t0, �x0) evolves the initial state �x0 to the current
state �x(t). The stability of a periodic flight can be evaluated using a linear stability analysis on
the corresponding linear return map. A small perturbation from the equilibrium state, ε0, evolves
according to εn+1 = ∇ f |x0 · εn to the leading order. The Jacobian matrix of the Poincaré map,
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(a) The Poincaré map of longitudinal flight. The dynamic state X is four-dimensional, corresponding to two translational velocities
and the pitching angle and pitching rate. (b) Stability diagram calculated with Floquet stability analyses of periodic flight. For each
ascending velocity, the equilibrium state is found by searching for a periodic orbit. The linear stability is given by the eigenvalues of the
monodromy matrix. The three curves correspond to the real part of the eigenvalues of the monodromy matrix associated with each
periodic flight. Apart from fast descending flight, all have a positive, real eigenvalue corresponding to unsteady flight. Adapted from
Reference 22a with permission.

∇ f |x0 , is the monodromy matrix. The periodic flight is stable if and only if all eigenvalues of the
monodromy matrix have a modulus less than 1.

In cases where we have examined, for example, when a fruit fly travels at different vertical
velocities, corresponding to hovering, ascent, and descent, almost all periodic states are unstable,
except at fast descent (Figure 3). The pitch instability does not have sensitive dependence on
the force coefficients in the aerodynamic force models, but it can be tuned by changing the
morphological parameters, such as the position of the wing hinge with respect to the center of the
mass of the body.

3. THREE-DIMENSIONAL, FREE-FLIGHT SIMULATIONS
WITH FEEDBACK CONTROL

A computational framework for simulating insect flight serves many purposes. In addition to the
stability analyses described above, such a framework offers a tool to tease out the causal relations
between the observed wing motion and the body dynamics. It also allows us to switch on and
off the control algorithms, so as to disentangle the effect from feedback control and the natural
flight dynamics. By examining different control schemes, we can gain insight into the algorithms
used by insects, as well as obtain theoretical bounds on the timescales for sensing and actuations
associated with flight stability and maneuvers.

The building blocks of free-flight simulations include aerodynamic calculations, the dynamic
coupling between the body and flapping wings, and the control schemes of wing modulation in
response to the measured body dynamics (Figure 1).

3.1. Unsteady Aerodynamics

The aerodynamic force on a flapping wing is governed by the Navier-Stokes equations. The fluid
velocity �u(�x, t) and pressure p(�x, t) obey the conservation of momentum and mass,
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∂ �u
∂t

+ (�u · ∇)�u = −∇ p
ρ

+ ν∇2 �u,
∇ · �u = 0,

where ρ is the density of the fluid and ν is the kinematic viscosity. By choosing a length scale,
L, and velocity scale, U, the equation can be expressed in a nondimensional form containing the
Reynolds number, Re = UL

ν
. The flow velocity for these problems is on the order of 1 m/s, which

is far smaller than the speed of sound, and thus the flow is nearly incompressible. The coupling
between the wing and the fluid lies in the no-slip boundary condition at the wing surface, �ubd = �us ,
which states that the flow velocity at the wing surface is the same as the wing velocity. Given the
wing size and speed, the flow around each flapping wing has a Reynolds number (Re) in the range
of 10–10,000. The Re is about 150 for a fruit fly and 3,000 for a dragonfly. The flow is intrinsically
unsteady, signified by the formation and shedding of the vortices from the flapping wing (23–25)
(Figure 4). Understanding the unsteady aerodynamic forces on a flapping wing has motivated
many experimental and computational studies (for a review see Reference 28).

For extensive parameter studies, optimization, or back-of-the-envelope calculations, it is also
useful to construct reduced-order models of the aerodynamics force. Various models have been
proposed in the literature (6, 26, 29–31). The unsteady force on a translating and rotating wing
includes three main components. In addition to the quadratic term in the linear velocity, there
is also a contribution from the coupling between the rotation and translation, CR �Uw × �ω, as well
as a term due to wing acceleration, [Ma ] · �aw, with [M a ] being the added mass tensor, which
depends on the geometry of the wing (32). The added mass term averages to zero for a periodic
motion; however, it is relevant when considering instantaneous forces (6). These are quasi-steady
forces in the sense that the instantaneous force depends only on the current state of the wing
kinematics.

The specific form of the quasi-steady forces that we have used for optimization (33) and for
stability analyses (1) are based on our experiments on falling plates in water, which have Reynolds
numbers similar to those found in insects (26, 27). Free-falling plates allow us to simultaneously
measure the kinematics and unsteady aerodynamic forces, bypassing the use of strain gauges,
because the acceleration of the plate is directly proportional to the sum of the aerodynamic force
and the gravity. By studying plates with different geometries, one can extract what forces are acting
on a plate of arbitrary geometry (26, 34). The force on a 3D wing is typically calculated by evoking
the blade-element approximation, which divides the wing into a series of blade elements in the
chord direction and then sums up the 2D force on each element. By construction, this ignores
the spanwise flow. The difference between these approximated models and the unsteady forces
can be studied either by comparing the model force with experiments or with direct numerical
simulations (6, 26, 35).

3.2. Newton-Euler Equations for Body and Wing Coupling

The body and wing motions are coupled through the forces and torques at their joints. The
aerodynamic force on the wing also depends on the sum of the wing and body velocities. Many
methods have been developed for simulating multiple rigid body dynamics. Flapping-flight simu-
lations have either adopted the existing software (36) or solved the explicit dynamic equations for
two-winged insects (15). We have chosen a method that treats each of the rigid bodies separately
and use kinematic constraints at the joints to determine the internal forces (1). This formulation
can be generalized to arbitrary numbers of wings and also lets us include the aerodynamic force
terms with ease.
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(b) Computed vorticity field around the two wings at two different Reynolds numbers (25). (c) Falling paper as an analogous system for
studying the wing and flow interactions. (d ) Computed vorticity field around a fluttering plate in water at a Reynolds number similar to
those found in insects. The computed forces, together with the experimental measurements, are used to deduce the aerodynamic force
models (26, 27).

The coordinates for each rigid body are defined along its principal axes. The body kinematics
are given by its position �r b, linear velocity �v b, Euler angles φb (yaw), θb (pitch), ηb (roll), and
the corresponding angular velocity �ω b (Figure 5a). The wing motion is defined relative to the
body and has its own three rotational degrees of freedom, φw (yaw), θw (pitch), and ηw (roll). The
governing equations for the body dynamics are

mb�ab = mb �g −
n∑

i=1

�f c
i , 7.

Ib �β b = −�ω b × (Ib �ω b) −
n∑

i=1

�τ c
i −

n∑

i=1

�r b
i × �f c

i . 8.
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the body. Each is treated separately as a rigid body subject to two constraints at the joint. (c) Blade-element approximation for
aerodynamic forces on a wing. (d ) A generic family of wing motions given by Equations 11–13 (33).

Similarly, the governing equations for the ith wing are

mw
i �a w

i = mw
i �g + �f c

i + �f a
i , 9.

Iw
i

�β w
i = −�ω w

i × Iw
i �ω w

i + �τ c
i + �r w

i × �f c
i + �τ a

i , 10.

where b and w denote the body and the wing, respectively. m is the mass; I is the moment of inertia
tensor; �a is the linear acceleration; �β is the angular acceleration; �g is the gravitational constant;
�ω is the angular velocity; �f c and �τ c are the internal force and torque between the body and the
wings, respectively; �r b

i is the position of the ith wing-root relative to the body center of mass; and
�r w

i is the position of the wing relative to the center of mass of the body. Finally, �f a and �τ a are
the aerodynamic force and torque acting on the wing, respectively.

In these dynamic equations for each rigid body, we have introduced the internal forces and
torques at the joints, �f c and �τ c, which are unknown variables, so we need additional equations
that express the kinematic constraints at the joints. There are two constraints at each joint con-
necting a wing to the body. The first is on the angular acceleration of the wing relative to the
body, �β r

i = �β w
i − �β b, which must agree with the prescribed wing motion. The second is the
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matching condition for the linear acceleration of the wing and the body at the attachment point:
�a b + �β b × �r b

i + �ω b × ( �ω b × �r b
i ) = �a w

i + �β w
i × �r w

i + �ω w
i × ( �ω w

i × �r w
i ).The main difference between

this set of equations and the averaged dynamic models described earlier lies in the treatment of the
instantaneous inertial coupling between the wing and the body. In the averaged model, the wing
inertia is ignored, and the aerodynamic force is averaged over a cycle. Here, the Newton-Euler
equations, together with the aerodynamic force modeling, provide a general method for simulat-
ing flapping flight in 6 degrees of freedom. The special cases of yaw, pitch, and roll dynamics are
subsets in this framework. For the stability analysis of periodic orbits, these equations serve as the
evolution operator, f (t; t0, �x0), in the Floquet analysis.

3.3. Wing Motions

Flies, bees, and hummingbirds use similar reciprocal wing strokes. They flap their wings back and
forth about an approximately horizontal stroke plane (Figure 1b). The wing tips trace out a figure
eight or an elliptical-shaped orbit, and the wing can twist about its spanwise axis (37, 38). The
wing motion is similar to the strokes we use to tread water, but with the leading edge leading in
both the forward and backward strokes. The frequency for different insect range from a few hertz
to about 800 Hz. The smaller the insect, the faster it beats its wings. The frequency roughly scales
with the inverse of the wing length (24, 39). A fruit fly beats its wings at about 250 Hz, a dragonfly
at about 40 Hz, and a butterfly at about 15 Hz.

The need for accurate and efficient methods for tracking animal motion has driven recent
development of various algorithms for 3D tracking of insect wing and body dynamics (40–43).
They offer increasingly refined kinematic descriptions and have become indispensable tools for
animal research. For modeling, it is also useful to abstract the wing motions into a family of
periodic functions. We can construct three periodic functions, one for each rotational degree of
freedom: φw(t), the stroke angle; θw(t), the deviation angle; and ψw(t), the wing-pitch angle (33):

φw(t) = φ0 + φm
arcsin[K sin(2π f t)]

arcsin K
, 11.

θw(t) = θ0 + θm cos(N · 2π f t + δθ ), 12.

ψw(t) = ψ0 + ψm
tanh[C sin(2π f t + δψ )]

tanh C
, 13.

whereφ0, θ0, andψ0 are the constant offsets andφm, θm, andψm are the amplitudes. f is the wingbeat
frequency, δθ and δψ are the phase shifts, and N = 1 or 2, 0 < K < 1, C > 0 are waveform control
parameters. N = 1 corresponds to one vertical oscillation per stroke, and N = 2 corresponds to
a figure eight motion. φ becomes sinusoidal when K is close to 0 and triangular when K is close
to 1. ψ approaches sinusoidal form for small C and a step function for large C . Examples of the
wing strokes in this family are shown in Figure 5d.

3.4. Feedback Control Algorithms

The neural control of the body posture during flight is modeled by feedback control algorithms
that specify the wing kinematic changes in response to the measured dynamic state of the body.
There are potentially different approaches to constructing these control algorithms. One could
start from the control literature and view insect flight as a special example of general control
problems. The approach we followed is to extract some key elements from the behavioral studies
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Figure 6
Control algorithm and timescales. (a) Both pitch and roll can be controlled by shifting the stroke forward
and backward. The body pitch can be controlled by shifting the center of the wing stroke symmetrically
between left and right wings, and the body roll can be controlled by shifting the strokes asymmetrically.
Body yaw can be controlled by changing the relative wing pitch between left and right wings (2, 19).
(b) Discrete time-delayed controller for the body pitch. It takes measurements every T s, and reacts after Td.
Time is measured in wingbeats. (c) Controllability as a function of sensing rate, every T s wingbeats, and time
delay between sensing and action, Td. The color corresponds to the root-mean-square value of body pitch.
Blue indicates well-controlled flight.

of the fly’s response to perturbations. The control analyses can then lead to interpretations of
experimental results and offer predictions to be tested by further experiments.

To remain stable and to maneuver, insects have developed different strategies to modulate
their wing motion so as to generate the necessary forces and torques to accelerate and to turn. As
we saw earlier, the aerodynamic force depends on a number of parameters in the wing motion: the
amplitude, the frequency, the angle of attack, and the detailed time course in the three degrees
of freedom of wing rotation. Although a typical set of wing kinematics contains a complex mix
of changes in all these variables, it is possible to discern some of the correlations between the
observed wing and body kinematics that are consistent with our intuition about the direction of
the aerodynamic forces and torques (Figure 6a).

For example, to pitch the body, a fly can shift the center of its wing strokes forward and
backward to adjust the averaged positions of the aerodynamic forces relative to the center of its
mass (44). To roll about the body’s long axis, a fly can use asymmetric amplitudes to generate a
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differential lift, and to yaw, it can use asymmetric angles of attack to generate differential drag for
the yaw torque (2, 8, 19, 42, 45).

Using pitch control as an example, we can construct a discrete time-delayed control algorithm
that senses the body state at discrete intervals of T s and adjusts the center of the wing stroke,
φ0, according to the body-pitch (θb ) and body-pitching rate, ωb , measured at a previous time,
φ0(t) = kθ θb (t − T d ) + kωωb (t − T d) (Figure 6b). This controller can be viewed as a proportional-
integral control, with ωb directly sensed by the halteres (Section 5.1) and θb being ωb ’s integration
over time. Using such an algorithm, we can make a model insect hover stably (see Video 2) (1).

Similar algorithms can be constructed for other degrees of freedom (Figure 6a). Instead of
φ0, we can use the amplitude difference between left and right wings for roll and wing pitch
asymmetry for yaw. For vertical translation, we can make symmetric changes in the wing-stroke
amplitude. The transverse motion is coupled with the rotation of the body, as we saw in the
stability analysis. The sideways motion occurs together with the rolling motion, and the forward
translation accompanies the pitching motion. In a typical flight, because different degrees of
freedom are coupled, a combination of these wing adjustments is necessary for a desired maneuver.
The main features of the control algorithms considered here are that they are discrete in time,
both in sensing and in action, and they are linear functions of the dynamic state of the body at a
prior time.

4. A PREDICTION OF THE SENSING RATE FOR STABLE FLIGHT

With closed-loop simulations, we can determine how fast and how often the feedback control
should sense and act in order to stabilize flapping flight. The discrete time-delayed control in-
troduces two new timescales to the problem, the sensing rate, Ts, and the delay time, Td. Their
effects on the control of the flight are summarized in the phase diagram (Figure 6c), which reveals
two key results. First, for each sensing rate, there is a critical time delay below which the flight
can be controlled. Second, the most effective control occurs at sampling intervals that are integer
multiples of half a wingbeat, T s = 0.5, 1, . . . wingbeats.

This sensitivity to discrete values of T s reflects the beat-to-beat oscillation of the underlying
time-periodic system. It is more effective for the flies to clock their sensing and actuations by
wingbeats, for example, to initiate turns by adjusting the wing motion at the two ends of a stroke,
and to switch on and off the actuations in discrete time steps. The discrete control was seen also
in the analyses of a fruit fly’s yaw turn. The fly switches gears, modeled as a torsional spring, in a
step-function-like fashion (2). These finer-scale control strategies deserve further investigation.

The phase diagram also shows that the control is most robust in the vicinity of T s = 1, and
this led us to conjecture that a fly senses its body rotation every wingbeat for stability (1). Relating
the timescales required for flight stability to the findings in neurophysiology of the fly’s reflex
for balance further led us to conjecture that one of the fly’s seventeen steering muscles, the first
basalar muscle (Mb1), is the key muscle for regulating flight stability. To see these connections,
we next discuss the literature on halteres and the associated neural-feedback circuitry.

5. A FLY’S STABILITY REFLEX: HALTERES, MOTOR NEURONS,
AND STEERING MUSCLES

5.1. Halteres as Gyroscopic Sensors for Body Rotation

For a fruit fly, a beat-to-beat sensing rate means a measurement every 4 ms. Even in the world of
small, this is fast. For comparison, the timescales for visual feedback circuitries in insects are in the
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Back viewa
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Figure 7
Halteres’ detection of body rotation. (a,b) A pair of halteres tucked behind the main wings. They point
backward by about 30◦ and beat along a vertical stroke plane. (c) The Coriolis force normal to the stroke
plane encodes �y and �L,R. The signal corresponding to �y oscillates at twice the frequency of the
wingbeats, peaking at the quarter stroke (A,A′), and the signal corresponding to �L,R oscillates at the
frequency of the wingbeats, peaking at the midstroke (M). (d ) The vector sum and difference of the two
lateral axes, one for each haltere, �eL and �eR, leading to two orthogonal axes, corresponding to the body roll
and pitch directions, −�eroll and �epitch, respectively. It follows that �pitch = (�R −�L)/(2 sinβ) and
�roll = −(�R +�L)/(2 cosβ).

range of 20–50 ms (46, 47). A fast sensor on a fly is a pair of halteres, which are mechanosensors
evolved from the fly’s hindwings. They detect the rotation of the body by sensing the small
Coriolis force exerted on them and provide direct neural signals to the motor neurons of steering
muscles (47–49). Each haltere is a thin stalk with a thick end-knob (Figure 7). They oscillate
at the same frequency as the forewings but in antiphase. The role of halteres in flight stability
was first reported by Derham in 1713, who saw that the flies would tumble and fall without their
halteres (50). Attaching a thread to a fly’s abdomen would, however, restore its stability. This
and other behavioral evidence led Fraenkel & Pringle to suggest that the halteres act as a pair of
gyroscopes for flight stabilization (51). The gyroscopic mechanisms were initially worked out in
an analysis by Pringle in 1948 (52) and were further elaborated in a series of behavioral studies of
the head-response of tethered flies subject to accelerations (53–55).

The sensing mechanism is based on the detection of the Coriolis force acting on a flapping
stalk with an end-knob mounted on a rotating body, much like a Foucault pendulum. The Coriolis
force, 2 �U w × ��b , is proportional to the haltere velocity, �U w, and to the body rotation, ��b . The
small Coriolis force on the end-knob is measured at the haltere’s base by a group of directional
mechanoreceptors, campaniform and codototal sensilla (49). The orientation of the sensilla as well
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as the fly’s response to imposed accelerations suggest that they primarily detect the force normal
to the stroke plane (52, 55, 56).

Two questions related to flight control are how a fly makes use of the Coriolis force to deduce
the rotational rate of its body and how it responds by modulating its wing strokes. One can ask
whether flies construct independent control algorithms in response to the rotational rate along
the symmetrical axes of the body: the roll, yaw, and pitch directions (47, 55). Behavioral studies,
including the earlier observation of free flight (49, 57) and later more systematic studies of tethered
flight (54, 55), have shown that flies respond to rotations in all three directions with different wing
kinematic changes. By measuring the Coriolis force normal to the stroke plane, each haltere can
detect the two components of the angular velocity in the stroke plane. Because the two stroke
planes are not coplanar, in theory, all three components of the angular velocity can be detected.

The decomposition can be done in multiple ways. Here I give an algorithm in response to ques-
tions concerning the role of the in-plane noninertial forces and the effect of the two nonorthogonal
stroke planes (55). The decomposition involves two steps (Figure 7). As noted in Reference 52,
the normal force on each haltere encodes �y , angular velocity along the yaw axis, and �L,R along
the lateral axes. �y and �L,R can be separated according to their different frequencies: The signal
due to �y oscillates at twice the wing frequency, whereas the signal due to �L,R oscillates at the
wing frequency. The separation can be done without using a Fourier transform, for example, by
taking phase-locked measurements, or by averaging over different portions of the strokes. The
sum of the two consecutive quarter strokes only depends on�L,R, and the difference only depends
on�y (Figure 7c). If different groups of campaniform sensilla are already tuned to detect different
frequencies, then we can bypass this initial step. With the two signals from each haltere, the fly can
combine them to extract all three components of rotation. For yaw, we take the average of the two
and this will reduce the noise. For pitch,�p , and roll,�r , we can take the sum and difference of�R

and�L, weighted by geometric factors 1/(2 sinβ) and −1/(2 cosβ), respectively (Figure 7d). This
follows from the fact that the vector sum and difference of any pair of unit vectors lead to a pair of
orthogonal axes, and the sum of the unit vectors along the two lateral axes give a pair of orthogonal
axes in the pitch and yaw directions. Note that these vector operations do not require the two
stroke planes to be orthogonal. A rotation of the coordinates, however, would require the orthog-
onality of the stroke planes (54). Also, because only the Coriolis force normal to the stroke plane
is needed, it avoids the interference from other larger in-plane forces, the centrifugal force and
the force due to linear acceleration.

To find out whether flies use algorithms similar to this would require further experiments. So
far, the physiological studies have yet to offer direct support for a bilateral computation (56, 58).
However, the anatomy of haltere afferents in the blowfly show prominent lateral branches in the
metathorax (59, 60), making them likely candidates for cross-computations.

Short of bilateral computations, there is another possibility for flies to control their three
axes of rotation, without computing the pitch and roll separately. Suppose that each haltere only
sends its signal to the steering muscles for one wing, resulting in a small change in the wing
kinematics. In the dynamic regimes where the body responds linearly to a small adjustment of the
wing motion, the summation of the signals from the two halteres can effectively take place in the
body dynamics rather than in the neural circuitry. Given that most turning maneuvers, including
more dramatic saccades, result from relatively small changes in the wing strokes (2, 19, 48), the
linear response is likely to hold for many maneuvers. As seen in recent studies of flies’ yaw turns
in response to torque perturbations, the corrective body rotational angle has a linear dependence
on the wing pitch asymmetry (19). Moreover, the effective torque needed to generate a large yaw
turn is proportional to the wing pitch asymmetry (2). These linear relations between the wing and
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body kinematic changes reflect an efficient scheme to control the body dynamics, a point that I
shall return to.

5.2. Sensing Rate, Motor Neurons, and Steering Muscles

The next question is how the signals from the halteres affect the wing kinematics. Starting with
the sensors at the haltere base, the strain caused by the Coriolis force alters the firing patterns of
the campaniform sensory neurons (52, 61). These sensory neurons are connected to the motor
neurons. Although not all of the connections have been mapped out, the first basalar muscle
(Mb1), one of the steering muscles, has a beat-to-beat firing pattern (62–64). Moreover, it is active
even during steady flight, whereas other muscles are active during turning maneuvers in response
to visual stimuli (63, 64). The beat-to-beat firing pattern suggests an input from afferents from
haltere and wing nerves (64). Intraceullar neural recordings have further found that the connection
between haltere nerves and the motor neuron is monosynaptic, suggesting a fast neural pathway
between the haltere sensors and the motor neuron for the first basalar muscle (62, 65).

In addition to the signals from the halteres, the motor neurons to the steering muscles also
receive strong visual inputs. In fact, a moving visual display is the dominant method for eliciting
turning response in flies (21, 58, 66, 67). By eliciting a fly’s attempts to turn while being teth-
ered, it is possible to make neural recordings. This further allows for a close examination of the
correlations between the muscle activity of specific muscles and wing kinematic changes (63).
Electrophysiological experiments in Drosophila have shown that three of the largest steering mus-
cles (Mb1, Mb2, and MI1) can account for many of the changes in wing motion during saccades
and other maneuvers (63, 68). The large changes in stroke amplitude from one stroke to the next
are associated with the activity of Mb2 and MI1, whereas the more subtle changes in the wing
strokes are correlated with the firing phase of Mb1.

5.3. A Conjecture on the Role of the First Basalar Muscle in Flight Stability

Viewing these results together with the phase diagram for flight stability, we suggested that the
main function of the first basalar muscle is to counter instability during steady flight (Figure 8) (1).
It responds to signals from the halteres at every wingbeat by making a small adjustment in the wing
motion to shift the center position of the stroke. Moreover we expect that wing kinematic changes
are made to correct the two unstable directions of flight, pitch, and roll. In theory, the corrections
in pitch and roll can be done with the same variable, the shift in the wing-stroke position forward
and backward with respect to the insect’s center of mass. A symmetric shift between the left and
right wings would correct for a pitch instability, and an asymmetric shift that leads to asymmetric
amplitude between the left and right wings can correct for a roll instability (Figure 6a).

5.4. Initial Observations of Flies with the MNb1 Motor Neuron Silenced

Only small kinematic changes in the wing are needed to correct for instability. A change of a
fraction of a degree in the wing stroke is sufficient (1). This makes it difficult to discern the
effect of Mb1 on wing kinematics during steady flight based on direct observation. So far, the
kinematic changes in the wing have been studied in turning maneuvers, where the asymmetry is
on the order a few degrees, which is small but measurable. One recent development in neural
science is the ability to alter specific neural circuitries with genetic modifications. Flies with their
motor neurons to the first basalar muscle (MNb1) silenced just became available. This allows us
to examine flight behavior when the Mb1 muscle does not receive direct inputs from the haltere.
An initial comparison between these genetically modified flies and the control group is shown in

www.annualreviews.org • Insect Flight 295

A
nn

u.
 R

ev
. C

on
de

ns
. M

at
te

r 
Ph

ys
. 2

01
6.

7:
28

1-
30

0.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

C
or

ne
ll 

U
ni

ve
rs

ity
 o

n 
03

/2
1/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.



CO07CH12-Wang ARI 22 February 2016 19:10

Back view

Haltere

Mb1

Mb2

Haltere  (gyroscopic sensor)

 MNb1 adjusts the tension of Mb1

Modifies the wing motion 

Corrects for body rotation
to stabilize flight

Motor neuron (MNb1) of first basalar muscle

Figure 8
A fly’s stability reflex during steady flight: from halteres to wing adjustment. Flies have two distinct groups of
flight muscles: large asynchronous muscles attached to the thorax to drive the wings at high frequency via
resonance and 17 pairs of small steering muscles directly attached to each wing to adjust the wing motion
(73, 74, 77). The first basalar muscle is one of the steering muscles.

Figure 9. The flies with the MNb1 motor neuron silenced fall at a much faster rate and have
trouble stabilizing their body pitch. A more careful statistical quantification is under way (69).
This work is a new step toward understanding the functional role of a fly’s steering muscles during
free flight.

6. FURTHER THOUGHTS

6.1. A Fly’s Gearbox

The first basalar muscle is one of the seventeen small steering muscles directly attached at the
base of each wing. The function of a fly’s muscles has long been a subject of interest in anatomical
studies (49, 70–73) and neurophysiological studies (64, 68, 74), as well as X-ray imaging (75, 76).
In Diptera, the steering muscles are separated from the power muscles (49, 77, 78). The wings
are driven by a set of large powerful asynchronous muscles attached to the thorax. Although these
power muscles are now textbook examples of an insect’s solution for generating high-frequency
flapping motions by making use of the stiff thorax as a resonating box, the specific functions of the
small steering wing muscles during flight maneuvering require further study. The neuroanatomical
studies of fly’s muscles have provided an initial map on a subset of muscles based on the correlation
between the pull of the muscles and the change in the wing kinematics (74, 77). Silencing specific
motor neurons of each of these steering muscles provides a new possibility for observing the
consequence of the missing action of an individual muscle on flight dynamics during free flight.
The 3D wing and body tracking of these flight behaviors would provide data on the correlation
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Figure 9
Comparison of flight trajectories of (a) a fly with its MNb1 motor neuron silenced and (b) a normal fly in the
control group. The flies with silent MNb1 tend to have erratic trajectories and steeper falls (69).

between the muscles and kinematics of the wings. Dynamic calculations of free flight will provide
a means to tease out the causal relations between observed body dynamics and wing kinematic
changes, and therefore are critical to our understanding of the gear mechanisms.

One would hope that in spite of the complex relationships among the muscles that tug and pull
the wings, the key mechanisms for flight control can be understood with relatively few variables.
It is this belief that drives our modeling efforts. Our previous analysis of saccades found that the
turning dynamics of the body can be explained in terms of a small shift in the equilibrium position
of a torsional spring at the wing hinge (2, 79). Here the analyses of flight stability single out one
of the steering muscles on stability in steady flight.

6.2. From Small to Large, Hierarchical Organization, Dynamical Equilibria,
and Links Among Different Parts

By definition, a complex system has many parts. “Why are atoms so small and we so large?” as
Schrödinger asked in his set of lectures on “What Is Life?” (80). Take neurons alone: Each of us has
about 100 billion neurons, a fly has 700,000, and a small worm, Caenorhabditis elegans, has 302 (81).
Why do we need so many? How are these neurons organized to carry out specific computations?

The flight stability reflex discussed here is a circuitry small enough for us to comprehend,
and it offers some insights into the organization of the neural computation for motion. We can
imagine a hierarchical organization within the organism composed of mechanical, chemical, and
computational units. Each subsystem has evolved to be near a dynamic equilibrium. Animals’
actions are likely the result of small perturbations away from that equilibrium, passing from one
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level to another. We can further imagine that the equilibrium is marginally unstable. Small changes
lead to small changes if the system is slightly unstable. So it is conceivable that flight maneuvers,
spectacular as they are, arise from a succession of linear transformations.

To reiterate the sequence of a fly’s balancing act in these terms, the body’s initial rotational rate
causes a proportional small strain, which leads to a proportional change in muscle stiffness, and
a subsequent proportional shift in the wing strokes, which further leads to a proportional change
in the rate of rotation of the body. All together, the final change in the body rotation is linearly
proportional to the initial change, or d ��(t + τd ) = M 1 M 2....M n d ��(t), with M i representing
linear transformations.

6.3. Theory and Experiments

Finally, few parts of a living system are amenable to descriptions and analyses based on first
principles, and not surprisingly, studies of animal behavior have largely been experimental. In the
case of insect flight, by including the laws of movement, we start to build a theoretical framework to
interpret and predict the functions and designs of insects’ internal machinery. These predictions
can be tested experimentally by modifying specific neurons in animals, thanks to advances in
genetics. This is an encouraging and exciting development.
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