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Application of biosolids in soils is an efficient method of recycling nutrients from biosolids and it is considered even safer when
it is modified after mixing and diluting with other suitable soil organic amendments. A variety of soil organic amendments, such
as green manures and composts, are used for modifying and co-composting with biosolids. However, these may not be considered
as appropriate biosolids disposal and remedial measures for soils with unique problems such as low soil pH, water repellence
nature, and poor water and nutrient retention capacities due to soil textural issues. Historically, soil amendments such as lime,
clay, and recently biochar are being applied for such problematic soils at Western Australia and these researches focused mostly on
improvement in soil physical and chemical properties. However, studies with potential for applying modified biosolids with these
amendments are not complete yet. This review focused on identifying such gaps in these studies from over 170 peer-reviewed key

research and review articles published over decades to latest in these areas.

1. Introduction

Coarse-textured, sandy soils are common in Mediterranean
regions of Australia, which extend from Geraldton north
of Perth, across south-western Australia and southern-south
Australia, and into the Wimmera, Mallee, and northern
districts of Victoria [1]. The Swan Coastal Plain on the
coast of south-western Australia, within this Mediterranean
environment, experiences hot dry summer and cool, wet
winter with annual rainfall ranges between 500 and 600 mm
[2]. Low fertility and soil nutrient deficiency are common in
this climatic zone as the soils are derived from weathered,
ancient rocks and are low in soil organic matter [1, 3]. Deep
sand occurs at more than 80 cm depth and the pale deep
sand found on the Swan Coastal Plain is typically classified
as bleached-Orthic Tenosol [4]. Soil acidity, water repellence,
poor water-holding, nutrient leaching, and environmental

degradation are major issues that need improved soil man-
agement practices to increase productivity in the dry-land
farming zones of this region [1, 5, 6].

Biosolids disposal is an international environmental issue
as many developed countries are incinerating their biosolids
or disposing them as landfills and ocean dumps [7]. Global
production of biosolids exceeds 10 M tyr™' and the produc-
tion average is 27 kg of dry biosolids person™" year ' [8].
Several studies have focused on the advantage of recycling
biosolids for beneficial agronomic effects on soil fertility
from the organic matter and readily available and/or slow
release plant nutrients available in the sludge [9-12]. Sludge
addition usually increased plant growth both in field and
in greenhouse experiments on different crop species [13-15].
On the contrary, research on the limitations of biosolids has
demonstrated that excessively applied biosolids can release



heavy metal and the metal accumulation and cause stress and
restrictive effects on soil microbes [16-24] and on plant root
and shoot biomass [25].

Other studies have focused on managing excessive N and
P nutrient release from biosolids and risk for nearby surface
water quality [26-29]. For instance, the Western Australian
State of the Environment Report identified that eutrophi-
cation led to nearly 30% of accidental fish kills associated
with excessive P and N leaching into waterways through
fertiliser application (TN =0.75mgN L™, TP =0.03mgP L™
trigger values indicated for the Swan-Canning estuaries as
per guidelines of ANZECC and ARMCANZ) [30]. These
studies show that no generalised application rate can be
recommended; rather it is necessary to investigate sources of
biosolids separately for a particular soil due to varying con-
tent of nutrients and metals present within biosolids [31-35].

L.1. Modified Biosolids Products. Traditionally, biosolids are
applied to land in their original form for their nutritional
value after treating raw sludge [15, 36, 37]. Plant nutrient
imbalances as either deficiencies or phytotoxicities can occur
when using these materials in unmodified forms [38]. This
could outweigh the fertiliser value of sludge application.
However, it is possible to rectify this problem by slightly
modifying the physical and chemical properties of biosolids
in addition to improving their formulation for safe disposal
for specific soil conditions [38].

Several forms of modified biosolids are available for use
in agriculture. The simple form of a biosolids mixture is
lime-stabilised biosolids or LAB (lime-amended biosolids)
[39, 40]. For example, a study conducted by Sloan and Basta
[9] noticed that alkaline biosolids caused greater reductions
in phytotoxic-Al when applied in strong acid soils than when
applied with nonalkaline biosolids. In another study, Luo and
Christie [39] found increased yield of barley when amending
a mild to strong acid sandy loam (pH 4.5) soil with alkaline-
stabilised biosolids at 33.5t dry matter ha™'. In this study,
fly-ash, a liming material resulting from coal combustion,
was used for alkaline stabilisation. The liming effect of the
modified biosolids increased soil pH by about 1.2-1.5 units
and as a consequence Al toxicity was reduced (from 4.0 to
0.lcmolkg™") in barley crop that was grown under strong
acid sandy soil conditions.

Manipulating soil pH using alkaline stabilised biosolids
helped suppress the soilborne pathogenic nematode, Meloi-
dogyne incognita, in addition to supplying plant nutrients
in a loamy sand soil [41]. In this study, N-Viro soils, a
commercial product developed by mixing biosolids with
alkaline byproducts (such as coal ash, cement, and lime kiln
dusts), was used as a soil amendment, further amended with
urea fertiliser and kept for 5 days in incubation. It suppressed
nematode growth which was directly associated with higher
NH; production from urea and indirectly through increased
soil pH by the alkaline biosolids.

Studies have also focused on mixing a variety of materials
with biosolids to alter the nutrient or heavy metal availability
that enhanced safe nutrient levels [42]. For example, there
were benefits when biosolids were mixed with river sediments
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and/or composted with other organic materials such as
oats straw and cattle manures [43-46]. A greenhouse study
showed a significant increase in plant growth when soil
was amended with a mixture of sediment and biosolids
compared with application of either sediment or biosolids
alone [44]. In this case, heavy metals were within an accepted
range in the plant tissues when grown with the mixture.
However, the impact on soil microbial communities was not
assessed in this study. A formula that contains a mixture of
biosolids with river-sediments was investigated for recycling
nutrients from biosolids using native grasses [46]. It was
suggested that mixing of biosolids with river sediments
has potential benefit in increasing organic and inorganic
nutrient content of the sediments and in improving sediment
quality; the reclamation of damaged soils was improved at
a field scale for the combination of biosolids and sediments
compared with either sediment or biosolids alone. This study
confirmed that a mixture of river sediment improved soil
texture and increased plant available nutrients, microbial
biomass, and plant growth. The mixture altered microbial
community composition, with relative increases in Gram-
negative bacteria and decreases in Gram-positive bacteria,
fungi, and actinomycetes [46].

1.2. Research on LaBC in Western Australia. LaBC is a slow
release organic amendment [47]. It is a typical modified clay
and lime amended biosolids product (LaBC: lime-amended
BioClay) formulated for use in acid sandy soils of the
Swan Coastal Plain in Western Australia [47]. It has been
demonstrated that LaBC has lower chemical contaminant
threshold concentrations than that required for unrestricted
use (CI classification) based on Western Australian Biosolids
Guidelines [47, 48]. This is a consequence of the severe
dilution of the biosolids in a lime and clay blended product.
LaBC has a number of desirable soil-organic amendment
qualities such as improving water and nutrient retention
capacity of coarse textured soils. It has been shown to alter
soil pH (CacCl, extract) from 5.0 to pH of 8.0 as the product-
blend is strongly alkaline (pH of 10.0) due to the presence
of lime [48]. In addition, LaBC is rich in clay and organic
matter and rich with significant amounts of plant nutrients
from the biosolids component [48]. The clay material blended
in the LaBC is not hydrophobic and has potential to reduce
the severity of hydrophobicity of sandy soils when applied at
rates greater than 50 tonnes per hectare [47-49].

The suitability of LaBC as a soil organic amendment
has been investigated at both laboratory and field scales
to evaluate the safe recycling of biosolids in the environ-
ment [48-52]. The chemical effects of LaBC in providing
agronomical benefits for crop growth have been extensively
demonstrated under both field and laboratory conditions [47,
48, 53]. Furthermore, field experiments have been initiated to
investigate nutrient leaching risks after its applications and to
study the long-term effect of LaBC using ryegrass [47, 50, 53].
However, the overall effect of LaBC on soil microbiological
fertility was not considered in these studies and this requires
investigation before the product is recommended for wide
application in the soils of Ellen Brook catchment [54].
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2. Major Problems in Sandy Soils and
Their Causes

2.1. Soil Acidity. Insouth-western Australia, soil acidification
is widespread and results in part from inefficient use of
nitrogen in agriculture that enhances natural acidification
processes [40, 47, 55]. Soil acidification from pasture and
cropping affects about 3 M ha of cropped land in the Mediter-
ranean region of Australia [56]. Soil acidity (mostly pH
less than 5.5) commonly develops in agricultural lands in
association with building-up of organic matter, frequent
application of mineral fertilisers, and leaching of nitrate [55].
Acidity also creates Al and Mn toxicity to plants [9, 39, 57] and
inhibits root nodulation and N-fixation in legumes [1, 58—
61]. Low soil pH reduces the growth and activities of many
soil microorganisms and this eventually leads to lower plant
productivity due to decreased organic matter decomposition
and mineralisation [62, 63]. Historically, agricultural lime or
other liming materials are applied at rates of 1-1.5 tha™' every
7-10 years in Australia based on soil buffering capacity and
properties of liming materials, towards increasing soil pH for
tavourable plant productivity [40, 55, 64].

2.2. Soil Water Repellence. Soil water repellence develops by
the accumulation of plant and fungi derived hydrophobic
organic coating on the sand grains [6, 65, 66]. Soil organic
materials, in particular stable humic fraction, have been
identified as main reason for water repellence on sand grains
[67-69]. Water repellence in soils of south-western Australia
occurs mostly in coarse-textured sandy soils and sandy
duplex soils that have less than 5% clay on the surface [1, 70,
71]. Water repellent soils have been investigated worldwide
[67], for example, in USA, Florida and California, in New
Zealand, and in Australia, and the involvement of organic
matter is considered a factor associated with water repellence
in all of these regions [67, 69]. In Australia, more than 5
million ha of land has been characterised with water repellent
sands, including those on the Swan Coastal Plain [6, 72,
73]. Several studies also reported accumulation of wax-like
long chain fatty acids of either fungal or plant origin and
other similar types of organic compounds of plant origin, in
particular, from Eucalyptus spp. as causes of water repellence
[66, 74-76]. The nonwetting nature of soil increases the risk
of water and wind erosion. Some 2 million ha of sandy soils
across southern Australia is affected by wind erosion and
leads to severe productivity losses [1, 6, 66, 77]. Nonuniform
wetting of soil, often associated with nonwetting properties,
results in severe yield reduction in agricultural land due to
poor germination of seeds and less plant establishment in
these regions [6, 66, 69, 78, 79].

2.3. Nutrient Leaching. Excessive fertilisation can accelerate
nutrient leaching in sandy agricultural soils and has potential
to cause environmental problems such as eutrophication [80],
soil acidity [81], and ground water pollution [82, 83]. For
instance, commercial bags of garden and all-purpose fertilis-
ers should not contain more than 2% and 1% of P, respectively,
according to the Environment Protection regulations guide-
lines of Western Australia. Nutrient retention capacity of

sandy soils is generally very poor with excessive fertilisation
in sandy soils increasing nutrient leaching [84] and free-
draining sandy soils can threaten nearby water bodies.

For the Swan Coastal Plain in south-western Australia,
nutrient leaching is a primary cause of ground water pollu-
tion [85, 86]. The contaminated groundwater further affects
surface water quality of the river systems and surrounding
lakes [87, 88]. Dissolved inorganic N and bioavailable P are
generally the excessive nutrients that promote algal growth
in water bodies [89-91] which can be hazardous to aquatic
organisms and human health [92]. Maximum acceptable
limit for nitrate in drinking water is 10 mgL™" according to
World Health Organization. Hence, efficiency in application
of nutrients should be the main objective in designing
fertiliser plans for coarse-textured agricultural soils [86-88].

3. Potential Sandy Soil Management
Using Amendments

3.1. Clay. Clay spreading is a sustainable and economically
viable method for long-term remediation of water repellence
in sandy soils [93] and claying is a common term used for top
dressing transported clay materials on surface of the sandy
soil, which is a practice used in south-western Australia.
Increases in clay content of even 1-2% can play a crucial
role in prevention of water repellence in a very sandy soil
[70, 71]. Water repellence can be minimised by applying a
higher amount of clay minerals (up to 100tha™") in sandy
soils [70, 93, 94] and, in particular, use of kaolinite clay
on a very severely water repellent soil has been shown as
the best clay in overcoming water repellence [95]. Clay is
attributed for its potential in increasing surface area that
causes improved soil wettability [93, 95]. Conventionally, clay
has been added at rates of 40-250 tha™" on sandy soils in
southern and south-western Australia to overcome the water
repellence [70, 93, 94]. However, the technique of claying
is continually being modified to attain maximum economic
returns from degraded agricultural lands in various regions
of Australia [6, 93].

3.2. Lime. Lime addition has been shown to decrease water
repellence in sandy soils and liming is generally used as
a common term for soil lime application [6, 69]. It has
been demonstrated that lime added at rates of 3-15tha™"
decreased water repellence under irrigated sandy soils in
WA [6]. While liming is generally practiced to increase
soil pH in acid soils, it has also been shown to increase
microbial biomass and soil respiration that is associated
with acid-intolerant microorganisms [62, 63, 96]. Increased
soil microbial biomass and activities due to liming, in turn,
increase mineralisation and nutrient availability for better
plant productivity [63, 97]. However, increases in microbial
activity, including mineralisation rates, are not consistent
under different soil management systems [98, 99]. In a
comparison of the practices of claying and liming, it was
shown that lime applied up to 5tha™" could be used as an
alternative for clay applied at 100 tha™" in a sandy soil [6].
However, a combination of lime with clay was not included



in this investigation. Furthermore, higher soil pH has been
shown to increase the abundance of wax-degrading bacteria
corresponding with a reduction in the hydrophobic layer that
causes water repellence in sandy soil [6]. Therefore, man-
agement practices that decrease water repellence under acid
soil conditions could be strategically planned by choosing a
combination of soil ameliorants.

3.3. Biochar. Biochar is a byproduct resulting from pyrolysis
(process of thermal degradation in the absence of air)
of organic materials [100, 101]. Besides being popularly
known for its carbon sequestration values [102-106], its soil
ameliorating and agronomic values have equally attracted
research attention worldwide [107-111]. Biochar character-
istics differ (e.g., pH 6.2-9.9) with the various feedstock
sources used under different production temperatures (260-
700°C) [101]. There is no supply of direct plant nutrients
avaijlable in biochar to help enriching soil fertility status
[101, 112]. However, the varying micro- and macropore
structures of biochar (from nano-, <0.9 nm, micro-, <2nm,
to macropores, >50 nm) [113] help increase soil surface area
and retention of nutrients supplied through other fertiliser
sources. These factors increase soil agronomic values and
plant productivity in addition to providing a physical niche
for beneficial soil microorganisms [101, 108, 114-116]. There-
fore, biochar has potential for improving soil fertility by
manipulating aspects of soil physical, chemical, and bio-
logical properties when amended with a range between 0.5
and 135 t ha™![101, 110, 117]. The nature of the manipulation
depends on the origin of the biochar, as not all forms of
biochar have the same characteristics [101].

The physical structure of biochar manipulates soil macro-
and microporosity and provides microhabitat for soil micro-
bial communities including fungi (arbuscular mycorrhizal
(AM) fungi) and bacteria [108, 110, 118-120]. Management
of microbial communities in agricultural soils depends on
provision of soil conditions that suit their growth and activity
[121]. Several studies have shown increased colonisation of
AM fungi corresponding with biochar application [119, 122,
123]. The biochar particles buried in soil increased availability
of micropore space which has been claimed to provide
protective microhabitat for growth and extension of the
hyphae of AM fungi into the biochar [124, 125]. The extended
extraradical hyphae can thereby increase plant P uptake from
soil [126-128]. Similarly, rhizobacterial activity and symbiotic
nitrogen fixation with legume plants can be increased in
association with biochar application [129]. Biochar applied
to soil can protect rhizobia in pores <50 mm from predation
in soils with low clay content and caused improved nitrogen
fixation [130].

In addition to creating favourable microhabitat as a
direct benefit to microbial communities, biochar application
can help create favourable soil chemistry for their survival
and plant uptake indirectly [124, 131-134]. For example,
increased atmospheric N, fixation was observed in biochar-
applied legume root nodules through improved symbiotic
association with soilborne rhizobia [124, 129]. These effects
are associated with a suppressive effect of soluble forms of
N in soil solution on the N, fixation, while available soil P
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can provide supportive effect in the bacterial growth when
soils are amended with biochar [118, 124, 135]. It has also
been suggested that biochar may have a role in presence
of fertilisers if they stimulate the available native strains of
beneficial microbial communities in the soil [112, 132].

From an environmental perspective, soil amendment
with some forms of biochar has potential to minimise nearby
surface and ground water pollution [112, 136-141] through
the mechanism of adsorption of dissolved organic carbon
[119], NH,* [112, 142, 143], and trace metals in leachates
[144]. Soil amendment with biochar may also reduce heavy
metal accumulation due to frequent applications of other
organic amendments (e.g., biosolids) that contain potential
metal contaminants [100]. Some studies have demonstrated
increased bioavailability of plant nutrients and uptake of P,
K, Ca, Zn, and Cu after charcoal application, while decreased
N leaching has also been observed [112, 145-149]. A range of
specific soil physical, chemical, or microbiological properties,
therefore, may be manipulated by developing a careful soil
amendment strategy with biochar, although not all biochars
are expected to function in the same manner [110]. For
instance, short-term negative impacts of biochars have also
been attributed to volatile toxic organic compounds and
phytotoxic salts that could have caused reduced microbial
biomass C [143] and plant root growth activities, respectively
[110].

3.4. Interactions between Clay, Biochar, and Biosolids. Char-
acteristics of soil amendments are inherently different. They
determine key roles in altering soil N mineralisation pro-
cesses when applied independently or when coapplied with
other amendments. While biosolids are usually considered
as a source of nutrients (especially N) that accelerate N
release into soil [150, 151], other amendments such as clay
and biochar act as potential sinks and lead to retention of soil
N and decrease N leaching into the immediate environment
through various mechanisms [101, 110].

Dempster et al. [141] compared the efficiency of clay and
biochar in achieving decreased N leaching in coarse-textured
soils in south-western Australia. A lysimeter column study
was investigated for 21 days after amending soil indepen-
dently with 25tha™" of clay and biochar with different appli-
cation methods. Both amendments significantly decreased
cumulative NH, " leaching by about 20% and NO,~ leaching
by about 25%. However, biochar significantly decreased
NO;~ leaching more than clay did and this was mainly
associated with a larger difference in anion retention capacity.
While clay lacked the ability to retain NO; ™, the biochar used
in this study had a dual role in NO;~ sorption processes and
increased water holding capacity [141]. Moreover, the capacity
of biochar to control N leaching in this case was associated
with decreased nitrification values in amended soil as shown
in a previous study [143].

Previous studies with biochar identified the same two
important mechanisms as described above, which were
attributed as potential reasons for decreased N leaching
capacity. First the high NO,™ retention was due to positive
charge of biochar [152]. Second, decreased NH," leaching
was due to improved gravimetric water holding capacity of
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soil rather than its sorption effect onto the biochar [112, 141,
142].

Coapplication of clay with other organic composts has
been shown to be a beneficial soil management practice
in coarse textured soils of south-western Australia and for
similar environments [153]. As discussed above for the exper-
iments of Dempster et al. [141], a preliminary 21-day study
showed that clay also had a significant effect on decreasing
N leaching in sandy soils and its effect was comparable
with that of biochar. However, that study did not investigate
whether the nutrients retained by clay or biochar were plant
avaijlable or whether they helped increase the efficiency of
use of fertiliser in the amended agricultural soil. Further,
these studies did not investigate the combined effect of clay
and biochar on plant growth nor did they investigate the
combined influence on slow release fertiliser such as biosolids
when they are coapplied in multiple combinations.

The inclusion of biochar helped decrease nitrate leaching
from biosolids amended soils over five months [42]. A
lysimeter column leaching study was established with rye-
grass and amended with combinations of biochar (102 tha™
equivalent) and biosolids (600 and 1200 kg N ha™" equivalent)
in two types of silty loam soils. The inclusion of biochar
and biosolids together resulted in significantly less nitrate
leaching than in the biosolids alone treatment and suggested
for higher rate application of the mixtures to rebuild degraded
soils. However, developing an optimum mixture ratio and
identification of the mechanisms responsible for alteration
in the nitrogen cycle were not addressed in this study. There
is potential that biosolids applied at a level equivalent to
1200 kg N'ha™" could become an additional risk associated
with excessive leaching in conditions similar to those used by
Knowles et al. [42].

The use of clay minerals such as Na-bentonite and Ca-
bentonite could be a potential tool for immobilising up to
70% of bioavailable form of heavy metals such as Zn, Cd,
Cu, and Ni in sewage sludge contaminated soil [154]. In
an incubation study of more than 110 days, soil biological
parameters such as microbial biomass C, respiration, and
organic C mineralisation rate were higher in clay-amended
soil, and this was associated with reduced heavy metal
toxicity on the microbial parameters.

In comparison to the studies considered above, the com-
bination of lime, clay, and biosolids makes LaBC a unique
biosolids product with potential for benefits to be multiplied
when coapplied with biochar. This raises scope of investigat-
ing the biosolids amendment in combination with other N-
absorbing ameliorants [54].

4. Soil Microbial Properties

A shift in soil microbial communities can be associated
with soil textural changes. For example, mineralization is
influenced by soil texture and structure as they both affect the
aeration status, the physical distribution of organic materials,
and other physical, chemical, and biological environmental
characteristics of soil [155-157]. Bach et al. [157] demon-
strated that soil microbial community (using phospholipid

fatty acid, PLFA method) responses to grassland restoration
were moderated by soil texture during the monitoring of
grassland ecosystem recovery for 19 years. Nevertheless, other
studies have claimed that soil texture had no significant effect
on the decomposition rate and/or microbial community
structures when soils with contrasting textures were amended
with carbon substrates such as low molecular weight carbon
sources (e.g., glucose) [158-160]. However, addition of clay
to soil could create new microhabitats, particularly if it has
low clay content [161]. The added clay can contribute to an
increase in soil microbial biomass [156, 162-164]. Despite
conflicting observations, the respiration rate of preincubated
soils could, at least to some extent, depend on the replacement
of the labile substrate from soil organic matter, and the
amount applied could decrease when soil texture is altered,
for example, when texture is modified with increasing clay
content [165].

Soil texture, in particular clay content, is an impor-
tant factor which influences organic matter decomposition
including the labile pool of carbon, that is, microbial biomass
[166, 167]. Clay can physically protect living (microbial
biomass C) and nonliving soil organic matter and causes
reduced decomposition and CO, evolution in soils [165, 168,
169]. The direct physical protection of organic matter is possi-
bly achieved by surface adsorption and entrapment of organic
matter between clay layers and thereby prevents or reduces
the rate of decomposition by soil microorganisms [170-173].
On the other hand, clay can protect the active component of
living organic matter (known as soil microflora) by physically
confining them in small pores, making them less active and
protecting them against predation by soil protozoa [174].
Thus, clay is assumed to play a major role in minimising soil
C mineralisation.

Umar [167] investigated the protective effect of clay
minerals (5, 10, 20, and 40% w/w) on wheat residue (2%
w/w) decomposition in commercial sand associated with
decreased C mineralisation through 32-day incubation study.
Clay applied at <20% decreased cumulative respiration until
28 days and this decreased C mineralisation was associated
with a clay binding effect on organic matter. However, 20
and 40% clay increased the C mineralisation after 18 days
which was associated with higher water retention capacity
and corresponding increase in higher activities of micro-
bial communities which were unable to survive in lighter-
textured soils.

5. Conclusions

Biosolids disposal on soils with water repellent, acid, and
coarse-textured characteristics will need to ensure that any
nutrients from the modified product do not become a
potential threat to the environment. While the potential agro-
nomical influences of modified biosolids products use have
been identified in terms of altering soil physical and chemical
properties, their use in improving soil fertility with relevance
to microbiological parameters has not been studied critically.

The potential benefits of combining biosolids with other
amendments can include reduction in microbial processes
such as mineralisation of organic matter. This could be



beneficial if it led to slow release of nutrients from biosolids.
There is a need for further investigation of the C and N
mineralisation patterns and related changes in soil micro-
biological properties when combinations of clay, lime, and
biosolids and/or biochar are applied to sandy soil. This
information would enable greater understanding of how
modified biosolids products influenced the short- and long-
term dynamics of soil nutrient cycling following application
to soil. It would clarify effects of plant rotation, in terms of the
build-up of soil N, microbial biomass N, and bioavailability of
N. Investigation of impacts on soil microbiological processes
across the scales of laboratory incubation through a series
of glasshouse and field experiments would contribute to
modification of biosolids products to suit particular soils,
plants, agricultural management systems, and environmental
conditions.
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